MATHEMATICAL ANALYSIS 2

Exam retake, version 2.

1. (2+5p.) Write the definitions of a partial derivative and a directional derivative. Find and classify all the critical points of $f(x, y)=x^{3}-x^{2} y-2 x^{2}-y^{2}$.
2. (3+3p.) Explain the Lagrange multipliers method. Find all the vectors $\mathbf{v} \in \mathbb{R}^{3}$ such that the directional derivative of the function $f(x, y, z)=\frac{\cos x^{2}}{\sqrt{y+z^{2}}}$ at the point $(0,-1,2)$ in the direction \mathbf{v} equals 0 .
3. ($\mathbf{3}+\mathbf{4} \mathbf{p}$.) Write the definition a normal domain on the plane. Draw an example of y-normal domain which is not x-normal. Calculate the double integral $\iint_{D} x y d x d y$, where the domain D is bounded by the curves $y=\sqrt{x}, y=x^{2}$.
4. $(2+5$ p.) Write the definitions of the Jacobian matrix and the Jacobian determinant. Performing a proper change of variables, calculate

$$
\iint_{D}(x+y)^{2} d x d x y, \quad D=\left\{(x, y): x^{2}+y^{2} \leqslant 2,-x \leqslant y \leqslant-\sqrt{3} x\right\} .
$$

Draw the domain of integration in (x, y) - and new coordinates.
5. $\mathbf{(2 + 5 p .)}$ Write the Taylor formula with the residue term in the Lagrange form. Write the Taylor series for the function $f(x)=(2 x-3)^{-2}$ at the point $x_{0}=1$. Find the radius of convergence and the interval of convergence of this series.

