MATHEMATICAL ANALYSIS 2

Exam retake, version 3.

1. (2+5p.) Write the equation for the tangent plane for a function f(x, y). Find and classify all the critical points of $f(x, y) = x^3 + xy + x^2 + y^2$.

2. (3+3p.) Write the definition of positive defined and negative defined matrices. Formulate the Sylvester criterion. Find the directional derivative of the function $f(x, y, z) = \frac{\cos x^2}{\sqrt{y+z^2}}$ at the point (0, 2, -1) in the direction (1, 1, 2).

3. (3+4p.) List the properties of a double integral. Calculate the double integral $\iint_D \frac{y}{x} dx dy$, where the domain D is bounded by the curves $y = -\sqrt{x}, y = x^2, x = 3$.

4. (2+5p.) Write the change of variables formula for polar coordinates. Performing a proper change of variables, calculate

$$\iint_{D} (x+y)^2 \, dx dxy, \quad D = \{(x,y) : x^2 + y^2 \le 3, -x \le y \le \sqrt{3}x\}.$$

Draw the domain of integration in (x, y)- and new coordinates.

5. (2+5p.) Write the formula for the Taylor-Maclaurin series. Write the Taylor series for the function $f(x) = (x - 2)^{-2}$ at the point $x_0 = 5$. Find the radius of convergence and the interval of convergence of this series.