MATHEMATICAL ANALYSIS 2

Exam retake, version 3.

1. (2+5p.) Write the equation for the tangent plane for a function $f(x, y)$. Find and classify all the critical points of $f(x, y)=x^{3}+x y+x^{2}+y^{2}$.
2. ($\mathbf{3}+\mathbf{3 p}$.) Write the definition of positive defined and negative defined matrices. Formulate the Sylvester criterion. Find the directional derivative of the function $f(x, y, z)=\frac{\cos x^{2}}{\sqrt{y+z^{2}}}$ at the point $(0,2,-1)$ in the direction $(1,1,2)$.
3. $(3+4 \mathbf{p}$.$) List the properties of a double integral. Calculate the double integral \iint_{D} \frac{y}{x} d x d y$, where the domain D is bounded by the curves $y=-\sqrt{x}, y=x^{2}, x=3$.
4. (2+5p.) Write the change of variables formula for polar coordinates. Performing a proper change of variables, calculate

$$
\iint_{D}(x+y)^{2} d x d x y, \quad D=\left\{(x, y): x^{2}+y^{2} \leqslant 3,-x \leqslant y \leqslant \sqrt{3} x\right\} .
$$

Draw the domain of integration in (x, y) - and new coordinates.
5. (2+5p.) Write the formula for the Taylor-Maclaurin series. Write the Taylor series for the function $f(x)=(x-2)^{-2}$ at the point $x_{0}=5$. Find the radius of convergence and the interval of convergence of this series.

