MATHEMATICAL ANALYSIS 2

Exam retake, version 4.

1. (2+5p.) Write the equation for the tangent plane for a function $f(x, y)$. Find and classify all the critical points of $f(x, y)=y^{3}-x y-x^{2}-y^{2}$.
2. (3+3p.) Write the definitions of a global extremum, local extremum, and local extremum. Give an example of a local extremum which is not a global one. Find all the vectors $\mathbf{v} \in \mathbb{R}^{3}$ such that the directional derivative of the function $f(x, y, z)=\frac{\sin x}{\sqrt{y^{2}+z^{3}}}$ at the point $(0,-1,1)$ in the direction \mathbf{v} equals 0 .
3. ($\mathbf{3}+\mathbf{4 p}$.) Write the definition of a normal and regular domains on the plane. Draw an example of x-normal domain which is not y-normal. Calculate the double integral $\iint_{D} \frac{y}{x} d x d y$, where the domain D is bounded by the curves $y=-\sqrt{x}, y=\sqrt[5]{x}, x=1$.
4. (2+5p.) Write the change of variables formula in double integral. Performing a proper change of variables, calculate

$$
\iint_{D}(x-2 y)^{2} d x d x y, \quad D=\left\{(x, y): x^{2}+y^{2} \leqslant 1,-x \leqslant y, x \leqslant-\sqrt{3} y\right\}
$$

Draw the domain of integration in (x, y) - and new coordinates.
5. (2+5p.) Write the Taylor formula of the order n. Write the Taylor series for the function $f(x)=(2+x)^{-2}$ at the point $x_{0}=4$. Find the radius of convergence and the interval of convergence of this series.

