Timetable for the course MATHEMATICAL ANALYSIS 2 (MAT001649)

Lecture	Date	Topic
1	27.02	Functions of several variables, their domains and graphs. Partial and directional
		derivatives. The gradient. The plane tangent to the graph of a function of two
		variables. The differential of multivariate function and its applications.
2	13.03	Higher order partial derivatives. Second order derivatives and convexity.
3	27.03	Local and global extrema. Conditional extrema.
4	10.04	The definite integral of a function of two variables. Double integrals over normal
		and regular regions. Midterm
5	08.05	Change of variables in double integrals. Double integrals in polar coordinates. Ap-
		plications of double integrals in geometry.
6	22.05	Power series. Taylor and Maclaurin series.
7	05.06	Infinite numerical series. The basic criteria for convergence of series. Absolute co-
		nvergence.
8	12.06	Improper integrals of type I. Comparison and limit comparison test.

Pr. Class	Date a	Date b	Topic
1	27.02	28.02	Calculation of partial and directional derivatives. Equation of the
			plane tangent to the graph of a function of two variables. Approxi-
			mate calculations using the gradient and differential of multivariate
			function.
2	06.03	07.03	Calculation of higher order partial derivatives. Second order deri-
			vatives and convexity. Types of critical points: hill, well, saddle
3	20.03	21.03	Local and global extrema. Sylvester's criterion.
4	03.04	04.04	Conditional extrema: Lagrange's multipliers method. Quiz 1
5	17.04	15.04	Calculation of double integrals over normal and regular regions.
			Quiz 2
6	24.04	25.04	Performing change of variables in double integrals. Change of va-
			riables to polar coordinates.
7	15.05	16.05	Power series. Taylor formula and Taylor-Maclaurin series. Quiz 3
8	29.05	30.05	Infinite numerical series and improper integrals. Basic tests for co-
			nvergence. Quiz 4

Quiz No.	Topics
1	Calculation of partial and directional derivatives. Equation of the plane tangent
	to the graph of a function of two variables. Approximate calculations using the
	gradient and differential of multivariate function. Calculation of higher order partial
	derivatives.
2	Second order derivatives and convexity. Types of critical points: hill, well, saddle.
	Sylvester's criterion. Local and global extrema. Conditional extrema: Lagrange's
	multipliers method.
3	Calculation of double integrals over normal and regular regions. Performing change
	of variables in double integrals. Change of variables to polar coordinates.
4	Power series. Taylor formula and Taylor-Maclaurin series