MATHEMATICAL ANALYSIS 2 Problems List 2.

Second and higher order derivatives. Convexity. Sylvester's criterion.

1. Calculate all partial derivatives of the 2nd order of the functions

(a)
$$f(x,y) = \cos(x^2 + y^2)$$
, (b) $f(x,y) = ye^{xy}$, (c) $f(x,y) = x^2 + \frac{y^3}{x}$,
(d) $f(x,y) = y \ln \frac{x}{y}$, (e) $f(x,y,z) = \frac{y}{\sqrt{1 + x^2 + z^2}}$ (f) $f(x,y,z,w) = \ln(x + y^2 + z^3 + w^4 + 1)$.

3

2. Write the Hessian of the function and specify the domains where the Hessian is positively/negatively defined. Investigate the domains of convexity. 2

(a)
$$f(x,y) = \sin(x^2 + y^2)$$
, (b) $f(x,y) = xe^{xy}$, (c) $f(x,y) = x^3 + \frac{y^2}{x}$,
(d) $f(x,y) = x \ln \frac{y}{x}$, (e) $f(x,y) = \frac{y}{\sqrt{1+x^2}}$ (f) $f(x,y) = \ln(x+y^2+1)$

3. Study the following matrices for being positively/negatively definite or semi-definite. $(-1^{2})^{2}$

(a)
$$\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$$
, (b) $\begin{pmatrix} -1 & 2 \\ 2 & 3 \end{pmatrix}$, (c) $\begin{pmatrix} -1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}$,
(d) $\begin{pmatrix} 2 & 4 & 3 \\ 4 & 5 & 4 \\ 3 & 4 & 12 \end{pmatrix}$, (e) $\begin{pmatrix} 3 & 1 & 5 \\ 1 & 1 & 2 \\ 5 & 2 & 7 \end{pmatrix}$, (f) $\begin{pmatrix} 2 & 2 & 3 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$.

4. Find the points of convexity, concavity, and inflection for the function in the given direction. (a) $f(x,y) = x^3 + y^3 - 3x^2y^2$, $\vec{v} = (-1,1)$, (b) $f(x,y) = x^4 + y^4 - 4xy$, $\vec{v} = (2,-1)$.

5. Find and classify all the critical points of $f(x, y) = 4 + x^3 + y^3 - 3xy$.

- 6. Find and classify all the critical points of $f(x, y) = 3x^2y + y^3 3x^2 3y^2 + 5$. 7. Find and classify all the critical points of $f(x, y) = 3xy \frac{1}{2}y^2 + 2x^3 + \frac{9}{2x^2}$.
- 8. Calculate all partial derivatives of the 3rd order of the functions
- (a) $f(x,y) = \cos(x^2 + y^2)$ (b) $f(x,y) = e^{xy}$ (c) $f(x,y) = \sqrt{x+y}$.