## MATHEMATICAL ANALYSIS 2 <br> Problems List 3.

Local and global extrema. Conditional extrema: Lagrange's multipliers method.

1. Given the objective function $f(x, y)=x^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+y^{2}-4 x-2 y-15$ find extremal points.
2. A rectangular box that is open at the top must have a volume of $32 \mathrm{~cm}^{3}$ What must its dimensions be so that its total area will be minimal?
3. Determine the point on the plane $4 x-2 y+z=1$ that is closest to the point $(-2,-1,5)$.
4. On the surface $2 x^{2}+3 y^{2}+3 z^{2}-12 x y+4 x z=85$ find the points of maximal and minimal values for $z$.
5. Find the global extrema of $f(x, y)=x^{2}+4 y^{2}$ on the domain bounded by the curves $x^{2}+(y+1)^{2}=$ $4, y=-1$, and $y=x+1$.
6. Find the global extrema of $f(x, y)=x^{2}+y^{2}-6 x+6 y$ on the disk of radius 2 , centred at the origin.
7. Find the maximal and the minimal values of the functions on the given domains:
(a) $f(x, y)=2 x^{3}+4 x^{2}+y^{2}-2 x y, D=\left\{(x, y): x^{2} \leqslant y \leqslant 4\right\}$;
(b) $f(x, y)=\sqrt{y-x^{2}}+\sqrt{x-y^{2}}, D=\left\{(x, y): y \geqslant x^{2}, x \geqslant y^{2}\right\}$;
(c) $f(x, y)=\sqrt{1-x^{2}}+\sqrt{4-x^{2}-y^{2}}, D=\left\{(x, y): x^{2} \leqslant 1, x^{2}+y^{2} \leqslant 4\right\}$;
(d) $f(x, y)=x^{2}-y^{2}, D$ is the triangle with the vertices $(0,1),(0,2),(1,2)$;
(e) $f(x, y)=x^{4}+y^{4}, D=\left\{(x, y): x^{2}+y^{2} \leqslant 9\right\}$
8. Krzysztof and Szymon consume two products. If $x$ and $y$ are the quantities of the products (respectively), then Krzysztof's utility function is $U(x, y)=\ln x+2 \ln y$, and Szymon's is $U(x, y)=$ $x y^{2}$. The prices of the products per unit are: $P_{x}=5$ and $P_{y}=2$. Krzysztof and Szymon have identical incomes, of 90 złeach. Find the optimal consumed quantity from each of the two products, for each of Krzysztof and Szymon.
