MATHEMATICAL ANALYSIS 2
 Problems List 5.

Change of variables formula for an integral of two variables. Polar coordinates.

1. Determine the domain Δ which is transformed by the given mapping to the given domain D.
(a) D is bounded by $y=-x+4, y=x+1$, and $y=\frac{x-4}{3}$, the transformation $x=\frac{1}{2}(u+v), y=\frac{1}{2}(u-v)$
(b) D is the ellipse $x^{2}+\frac{y^{2}}{36} \leqslant 1$, the transformation $x=\frac{u}{2}, y=3 v$.
(c) D is the parallelogram with the vertices $(1,0),(4,3),(1,6)$ and $(-2,3)$, the transformation $x=\frac{1}{2}(u+v), y=\frac{1}{2}(u-v)$.
(d) D is the parallelogram with vertices $(2,0),(5,3),(6,7)$ and $(3,4)$, the transformation $x=$ $\frac{1}{3}(v-u), y=\frac{1}{3}(4 v-u)$.
(e) D is the domain bounded by $x y=1, x y=3, y=2$ and $y=6$, the transformation $x=\frac{v}{6 u}, y=2 u$.
2. Derive a transformation that will represent the triangle D with vertices $(1,0),(6,0)$ and $(3,8)$ as an image of a right triangle with the right angle occurring at the origin of the u, v system.
3. Calculate the Jacobians of the transformations:
(a) $x=4 u-3 v^{2} \quad y=u^{2}-6 v$;
(b) $x=u^{2} v^{3} \quad y=4-2 \sqrt{u}$;
(c) $x=\frac{v}{u} \quad y=u^{2}-4 v^{2}$.
4. Perform the change of variables to the polar coordinates and evaluate the integrals. Draw the domain of integration in the Cartesian and polar coordinates
(a) $\iint_{D} x y d x d y, D: x^{2}+y^{2} \leqslant 1, \frac{x}{\sqrt{3}} \leqslant y \leqslant x \sqrt{3}$;
(b) $\iint_{D} y^{2} e^{x^{2}+y^{2}} d x d y, D: x^{2}+y^{2} \leqslant 1, x \geqslant 0, y \geqslant 0$;
(c) $\iint_{D}\left(y^{2}+3 x\right) d x d y, D$ is the region in the 3 rd quadrant between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$;
(d) $\iint_{D}(4 x y-7) d x d y, D$ is the portion of $x^{2}+y^{2} \leqslant 2$ in the 1 st quadrant.
5. Performing an appropriate change of variables, evaluate the integrals
(a) $\iint_{D} 6 x-3 y d x d y$ where R is the parallelogram with vertices $(2,0),(5,3),(6,7)$ and $(3,4)$ Hint: compare with Problem 1(d);
(b) $\iint_{D} x y^{3} d x d y$ where D is the domain bounded by $x y=1, x y=3, y=2$ and $y=6$. Hint: compare with Problem 1(e);
(c) $\iint_{D} x+2 y d x d y$ where D is the triangle with vertices $(0,3),(4,1)$ and $(2,6)$ Hint: proceed similarly to Problem 2;
(d) $\iint_{D} x^{2} d x d y$, where D is the ellipse $x^{2}+\frac{y^{2}}{36} \leqslant 1$ Hint: use Problem $1(\mathrm{~b})$ and then change coordinates to polar;
6. Find the area of the ellipse $(x-3)^{2}+4(y+1)^{2} \leqslant 10$.
