MATHEMATICAL ANALYSIS 2

Problems List 6.
Power series. Taylor-Maclaurin series.

1. Determine the Taylor-Maclaurin series for the given function at the point $x_{0}=0$
(a) $f(x)=\cos (4 x)$;
(b) $f(x)=x^{6} e^{2 x^{3}}$;
(c) $f(x)=x^{2} \cos 2 x^{3}$;
(d) $f(x)=\frac{x^{100}}{1+x^{3}}$.
2. For each function from the previous problem find $f^{(2019)}(0)$.
3. Determine the Taylor-Maclaurin series for the function $(1+x)^{a}$ at the point $x_{0}=0$ (the Generailized Binomial Formula).
4. Using the Generalized Binomial Formula, determine the Taylor-Maclaurin series for the given function at the point $x_{0}=0$
(a) $f(x)=\sqrt{1-x^{2}}$;
(b) $f(x)=\frac{1}{\sqrt[3]{1+x^{3}}}$;
(c) $f(x)=\frac{x^{3}}{\sqrt{x^{2}+16}}$;
(d) $f(x)=\frac{x^{100}}{1+x^{3}}$.
5. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums
(a) $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$;
(b) $\sum_{n=2}^{\infty} \frac{2^{n}-1}{3^{n}}$;
(c) $\sum_{n=0}^{\infty} \frac{n(n+1)}{5^{n}}$;
(d) $\sum_{n=1}^{\infty} \frac{n}{(n+1) 2^{n}}$;
$(\mathrm{e})^{*} \sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ (Hint: consider the limit of $\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+2)}$ as $x \nearrow 1$).
6. Determine the Taylor-Maclaurin series for the given function $f(x)$ and x_{0}. Provide two solutions: using the formula for the coefficients and the change of variables.
(a) $f(x)=e^{-6 x}, x_{0}=-4$;
(b) $f(x)=\ln (3+4 x), x_{0}=1$;
(c) $f(x)=\frac{7}{x^{4}}, x_{0}=-3$;
7. For each of the series in the previous problem determine the interval of convergence.
