MATHEMATICAL ANALYSIS 2

Problems List 6.

Power series. Taylor-Maclaurin series.

1. Determine the Taylor-Maclaurin series for the given function at the point $x_0 = 0$

(a) $f(x) = \cos(4x);$

- (b) $f(x) = x^6 e^{2x^3};$
- (c) $f(x) = x^2 \cos 2x^3$;

(d)
$$f(x) = \frac{x^{100}}{1+x^3}$$

2. For each function from the previous problem find $f^{(2019)}(0)$.

3. Determine the Taylor-Maclaurin series for the function $(1 + x)^a$ at the point $x_0 = 0$ (the *Generalized Binomial Formula*).

4. Using the Generalized Binomial Formula, determine the Taylor-Maclaurin series for the given function at the point $x_0 = 0$

(a)
$$f(x) = \sqrt{1 - x^2};$$

(b) $f(x) = \frac{1}{\sqrt[3]{1 + x^3}};$

(c)
$$f(x) = \frac{1}{\sqrt{x^2 + 16}};$$

(d) $f(x) = \frac{x^{100}}{1 + x^3}.$

5. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums

- (a) $\sum_{n=1}^{\infty} \frac{1}{n3^n};$ (b) $\sum_{n=2}^{\infty} \frac{2^n - 1}{3^n};$ (c) $\sum_{n=2}^{\infty} n(n+1)$
- (c) $\sum_{n=0}^{\infty} \frac{n(n+1)}{5^n};$
- (d) $\sum_{n=1}^{\infty} \frac{n}{(n+1)2^n};$

(e)*
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$
 (*Hint:* consider the limit of $\sum_{n=1}^{\infty} \frac{x^n}{n(n+2)}$ as $x \nearrow 1$).

6. Determine the Taylor-Maclaurin series for the given function f(x) and x_0 . Provide two solutions: using the formula for the coefficients and the change of variables.

(a)
$$f(x) = e^{-6x}, x_0 = -4;$$

(b) $f(x) = \ln(3 + 4x), x_0 = 1;$
(c) $f(x) = \frac{7}{x^4}, x_0 = -3;$

7. For each of the series in the previous problem determine the interval of convergence.