LIST 1
 Sequences

1.1. Show that the given sequences are monotone and bounded.
(a) $a_{n}=\frac{n}{2 n+1}$,
(b) $b_{n}=\frac{2^{n}}{3^{n}+2}$,
(c) $c_{n}=\frac{(n!)^{2}}{(2 n)!}$,
(d) $d_{n}=\sin \frac{\pi}{2 n+1}$,
(e) $e_{n}=\frac{(n+2)^{2}}{2^{n+2}}$,
(f) $f_{n}=\sqrt{n+8}-\sqrt{n+3}$,
(g) $g_{n}=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}$.
1.2. Using the definition of a limit of a sequence, show that
(a) $\lim _{n \rightarrow \infty} \frac{n}{n+2}=1$,
(b) $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n}=+\infty$,
(c) $\lim _{n \rightarrow \infty} \frac{n+4}{n+2} \neq 2$.
1.3. By giving the appropriate examples, show that the following expressions are not well defined

$$
\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty-\infty, \quad 1^{\infty}, \quad \infty^{0}, \quad 0^{0}
$$

1.4. Find the limits of the sequences
(a) $a_{n}=\frac{2 n-3}{3 n+4}$,
(b) $b_{n}=\frac{n^{2}+3 n-8}{2 n+5}$,
(c) $c_{n}=\frac{n^{2}+n-3}{n^{3}+2 n+1}$,
(d) $d_{n}=\frac{\left(2 n^{3}+3\right)^{8}}{\left(2 n^{4}+7\right)^{6}}$,
(e) $e_{n}=\frac{n+\sqrt{n^{3}+7}}{\sqrt[3]{n^{2}+5}+4 n}$,
(f) $f_{n}=\frac{8^{n+2}+2^{n}}{2^{3 n+1}+3^{n}+4}$,
(g) $g_{n}=\frac{1+2+3+\cdots+n}{n^{2}}$,
(h) $h_{n}=\sqrt{n+8}-\sqrt{n+3}$,
(i) $i_{n}=\sqrt{n^{2}+4 n+1}-\sqrt{n^{2}+3}$,
(j) $j_{n}=\sqrt{2 n+1}-\sqrt{n+23}$,
(k) $k_{n}=\sqrt{9^{n}+4 \cdot 3^{n}+1}-\sqrt{9^{n}+3}$,
(1) $l_{n}=n^{30}-2 \cdot n^{21}-3 \cdot n^{9}+3$,
(m) $m_{n}=7^{n}-2 \cdot 5^{2 n}+3 \cdot 9^{n+5}+4$,
(n) $m_{n}=\left(\frac{n+4}{n+1}\right)^{n+3}$,
(o) $o_{n}=\left(\frac{n^{2}+3}{n^{2}+1}\right)^{n^{2}}$,
(p) $p_{n}=\left(\frac{2 n+1}{2 n+5}\right)^{1-3 n}$,
(r) $r_{n}=\left(\frac{4 n+1}{2 n-1}\right)^{n+6}$,
(s) $s_{n}=\left(\frac{3^{n}+2^{n}}{5^{n}+3^{n}}\right)^{n}$.
1.5. For a given sequence $\left(a_{n}\right)$ find a sequence $\left(b_{n}\right)$ of the form $b_{n}=n^{p}$ or $b_{n}=\alpha^{n}$ such that $\left(a_{n}\right) \mathrm{i}\left(b_{n}\right)$ are of the same order. (We say that the sequences $\left(a_{n}\right),\left(b_{n}\right)$ are of the same order if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, for a certain positive number c.)
(a) $a_{n}=\frac{1}{n^{2}+4 n+3}$,
(b) $a_{n}=\frac{n^{2}}{n^{3}+7}$,
(c) $a_{n}=\sqrt{n+9}-\sqrt{n+1}$,
(d) $a_{n}=\frac{1}{3 \cdot 2^{n}+2 \cdot 3^{n}}$,
(e) $a_{n}=\frac{3^{n}}{4^{n}+5^{n}}$,
(f) $a_{n}=\frac{4^{n+2}}{5 \cdot 2^{n+1}+2 \cdot 3^{n}}$.

