ALGEBRA

Binomial formula. Induction

1. Using the Newton Binomial formula, transform
(a) $(2 x-y)^{4}$;
(b) $\left(x+\frac{1}{x^{3}}\right)^{3}$;
(c) $(\sqrt{u}-\sqrt[4]{v})^{8}$;
(d) $\left(x+\frac{1}{x^{3}}\right)^{6}$.
2. Find the coefficient at term t in the expansion
(a) $(2 p-3 q)^{7}, t=p^{2} q^{5} ;$
(b) $\left(\sqrt[4]{b^{5}}-\frac{3}{b^{3}}\right)^{7}, t=\sqrt[4]{b}$
(c) $\left(2 x-\frac{1}{x}\right)^{6}\left(x+\frac{1}{2 x}\right)^{6}, t=x^{0}$.
3. Using the mathematical induction, prove the equalities:
(a) $1+2+3+\cdots+n=\frac{n(n+1)}{2}, n \in \mathbf{N}$;
(b) $1+3+5+\cdots+(2 n-1)=n^{2}, n \in \mathbf{N}$;
(c) $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, n \in \mathbf{N}$.
4. Using the mathematical induction, prove the inequalities:
(a) $n^{3}<3^{n}, n \in \mathbf{N}$;
(b) $\frac{1}{\sqrt{1}}+\ldots \frac{1}{\sqrt{n}} \geqslant \sqrt{n}, n \in \mathbf{N}$;
(c) $(1+a)^{n} \geqslant 1+n a$, for any $a \geqslant-1$ and $n \in \mathbf{N}$.

Complex numbers

5. Perform the algebraic operations and write the result in the Carthesian form $x+i y$:

$$
(a)(i+3)-(2-3 i) ; \quad(b)(1-i)(2+5 i) ; \quad(c) \frac{1-3 i}{2+3 i} ; \quad(d)(1-i)^{4}
$$

6. Find all complex numbers z which satisfy the following conditions:

$$
(a) \operatorname{Re} z+\operatorname{Im} z=3 ; \quad(b) \operatorname{Re}(-i z) \leqslant 1 ; \quad(c) \operatorname{Im}((1+i) z) \leqslant 2
$$

Indicate the solution on the complex plane.
7. Comparing the real and imaginary parts of both sides of the equations, solve them for real x, y :
(a) $(1-i) x+(2-i) y=1+i$;
(b) $\frac{x}{1-i}+\frac{y}{1+i}=1+i$;
(c) $2 x^{2}+i y^{2}=3$;
(d) $3 x^{2}-2 i y^{2}=(1+i)(i-2)$.
8. Writing z in the algebraic form $z=x+i y$, solve the equations

$$
\begin{aligned}
& \text { (a) } z^{2}=-i ; \quad(b)(3-2 i) z=(2+i) ; \quad(c) \frac{z+1}{2+i}=\frac{3-z}{3-2 i} ; \quad(d) z^{2}-4 z+5 \\
& (e) z(1+i)+\bar{z}(2-i)=1+i ; \quad(f) i \operatorname{Re} z+\operatorname{Im} z=1+2 i ; \quad(g) z \bar{z}=(\bar{z})^{2}
\end{aligned}
$$

9. Using the Carthesian form of complex numbers, compute the following roots:

$$
\text { (a) } \sqrt{1-2 i} ; \quad \text { (b) } \sqrt{5-i} .
$$

10. Write the following numbers in the trigonometric form:

$$
\text { (a) } 2 i ; \quad \text { (b) }-1+\sqrt{3} i ; \quad(c)-2 \sqrt{3}-2 i ; \quad \text { (d) }\left(\frac{1-\sqrt{3} i}{2+2 \sqrt{3} i}\right)^{5}
$$

11. Draw on the complex plane the sets of complex numbers satisfying the following conditions:

$$
\begin{gathered}
\text { (a) }|2 z+i|=6 ; \quad(b)|3 z-1|<3 ; \quad(c) 2 \leqslant|2 z+i| \leqslant 4 ; \quad(d)|z-2 i|=|z+i| \\
(e) \operatorname{Im}\left(z^{3}\right)<0 ; \quad(f) \operatorname{Re}\left(z^{4}\right) \geqslant 0 ; \quad(h)|z+1| \leqslant|\bar{z}+i|
\end{gathered}
$$

12. Using de Moivre's formula, compute the following powers:

$$
\text { (a) }(1-i)^{13} ; \quad(b)(-1+\sqrt{3} i)^{15} ; \quad\left(\frac{1+i}{-1+i \sqrt{3}}\right)^{17}
$$

Give the answers in the Carthesian form.
13. Using the trigonometric form of complex numbers, compute the following roots:

$$
\text { (a) } \sqrt[6]{-1} ; \quad \text { (b) } \sqrt[3]{-\sqrt{3}+i} ; \quad(c) \sqrt[6]{-64}
$$

Give the answers in the Carthesian form.
14. Solve the following equations:

$$
(a)(z+1)^{3}=(z-2)^{3} ; \quad(b)(z+i)^{4}=(1-z)^{4} ; \quad(c)(2 z-1)^{3}=(z+i)^{3} .
$$

Give the answers in the Carthesian form.
15. Solve the equations for complex z :
(a) $z^{2}-z+1=0$;
(b) $z^{2}+16=0 ;$
(c) $z^{4}-3 z^{2}+2=0 ;$
(d) $z^{2}+(1-i) z+2 i=0 ;$
(e) $z^{4}=-1$; $(f) z^{2}+4 i z+1=0 ;$
$(g) z^{3}=(1+i)^{3} ;$
(h) $(z-i)^{4}=(2 z+1)^{4}$.
16. Find all integer roots of the following real polynomials:

$$
\text { (a) } x^{3}+x^{2}-x+2 ; \quad \text { (b) } x^{4}-3 x^{3}+5 x^{2}-9 x+6 ; \quad \text { (c) } x^{4}+x^{2}-2
$$

17. Find all rational roots of the following real polynomials:

$$
\text { (a) } 6 x^{4}-x^{3}+11 x^{2}-2 x-2 ; \quad \text { (b) } x^{4}-5 x^{2}+4 ; \quad \text { (c) } 4 x^{4}+7 x^{2}-2
$$

18. Perform the long division and find $Q(x), R(x)$ such that $P(x)=D(x) Q(x)+R(x)$, $\operatorname{deg}(R)<\operatorname{deg}(D)$ for
(a) $P(x)=x^{12}-3 x^{10}+2 x^{7}, D(x)=x^{3}+1 ; \quad$ (b) $P(x)=2 x^{8}-4 x^{3}+5 x, D(x)=x^{2}+x+1$.
19. Find all roots of the following real polynomials:

$$
\text { (a) } x^{4}-6 x^{2}-3 x+2 ; \quad \text { (b) } x^{4}-3 x^{3}-2 x^{2}+2 x+12
$$

20. Find all roots of the following complex polynomials, knowing one of their roots:
(a) $z^{4}+2 z^{3}+4 z^{2}+3 z+2, z_{1}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i ; \quad$ b) $z^{4}+3 z^{3}+9 z^{2}+12 z+10, z_{1}=-1-i$.
21. Factor the following real polynomials into irreducible real factors:

$$
\text { (a) } x^{3}-x^{2}+x-1 ; \quad \text { (b) } x^{6}+8 ; \quad \text { (c) } x^{4}+3 x^{2}+2
$$

22. Factor the following complex polynomials into irreducible complex factors:

$$
(a) z^{3}-z^{2}+z-1 ; \quad(b) z^{4}+3 z^{2}+2 ; \quad(c) z^{4}+1
$$

23. Decompose the following real rational functions into real partial fractions:

$$
\text { (a) } \frac{x}{\left(x^{2}-1\right)(x+2)} ; \quad \text { (b) } \frac{x^{4}-2}{x^{3}+1} ; \quad \text { (c) } \frac{1}{\left(x^{2}-1\right)(x+1)(x-2)} \text {. }
$$

24. Decompose the following complex rational functions into complex partial fractions:
(a) $\frac{1}{z^{3}-z^{2}+4 z-4}$;
(b) $\frac{z-1}{z^{3}+1}$;
(c) $\frac{1}{\left(z^{2}+2\right)(z+1)}$.

Matrices. Determinants. Inverse matrices

25. For the matrices A, B, C given below, which of the matrices: $A+B, A+C, 2 A, A B, B A, A C, C A, A^{2}, C^{2}$ are well defined? Compute the matrices which are well defined.
(a)

$$
A=\left(\begin{array}{rrr}
3 & 0 & 1 \\
-1 & 2 & 0 \\
1 & 1 & -1
\end{array}\right), \quad B=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
1 & 0 & 1 \\
4 & 3 & -1
\end{array}\right), \quad C=\left(\begin{array}{rr}
1 & 2 \\
2 & 1 \\
-1 & 1
\end{array}\right) ;
$$

(b)

$$
A=\left(\begin{array}{rr}
2 & 1 \\
-1 & -2 \\
-1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
1 & 0 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

(c)

$$
A=\left(\begin{array}{rrr}
2 & 1 & 0 \\
1 & -2 & 1
\end{array}\right), \quad B=\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 3 & -1
\end{array}\right), \quad C=\left(\begin{array}{rr}
1 & 2 \\
-1 & 2 \\
1 & -2
\end{array}\right) .
$$

26. Let

$$
A=\left(\begin{array}{rr}
3 & -4 \\
-2 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right), \quad C=\left(\begin{array}{rr}
-2 & 1 \\
3 & 5
\end{array}\right)
$$

Compute $A B$, and then solve the matrix equations
(a) $A X=C$;
(b) $X A=C$;
(c) $A X B=C$.
27. It is known that

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=6 .
$$

Find the following determinants:
(a) $\left|\begin{array}{lll}g & h & i \\ a & b & c \\ d & e & f\end{array}\right|$,
(b) $\left|\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right|$,
(c) $\left|\begin{array}{lll}g & d & a \\ h & e & b \\ i & f & c\end{array}\right|$,
(d) $\left|\begin{array}{lll}3 a & -b & c+4 a \\ 3 d & -e & f+4 d \\ 3 g & -h & i+4 g\end{array}\right|$.
28. Let A be a real 7×7-matrix with $\operatorname{det} A=2$. Find the determinants of the following matrices: (a) $2 A$; (b) $-5 A$; (c) $-A^{3}$; (d) $A A^{T}$.
29. Write the Laplace expansions of the given determinants along indicated rows or columns
(a) $\left(\begin{array}{rrr}2 & 1 & \mathbf{2} \\ 3 & 2 & \mathbf{1} \\ 4 & 3 & -\mathbf{1}\end{array}\right)$,
(b) $\left(\begin{array}{rrrr}2 & 1 & 3 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{2} & \mathbf{1} \\ 1 & -1 & 1 & 3 \\ 2 & -2 & 1 & -3\end{array}\right)$,
(c) $\left(\begin{array}{rrrr}1 & -3 & 1 & \mathbf{2} \\ 2 & 3 & -2 & \mathbf{1} \\ -2 & 1 & 1 & \mathbf{0} \\ 1 & 4 & 3 & \mathbf{0}\end{array}\right)$.
30. Calculate the determinants from the previous problem.
31. Calculate the determinants
(a) $\left(\begin{array}{rrr}1 & 2 & -3 \\ -2 & 3 & -1 \\ 3 & 2 & 1\end{array}\right)$,
(b) $\left(\begin{array}{rrrr}2 & 0 & 2 & 3 \\ -1 & 1 & -1 & 1 \\ -2 & 0 & 2 & 0 \\ 5 & -1 & -1 & 1\end{array}\right)$,
(c) $\left(\begin{array}{rrrr}1 & 0 & 2 & 3 \\ -2 & 0 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ -1 & 0 & 5 & 1\end{array}\right)$,
(d) $\left(\begin{array}{llll}4 & 1 & 3 & 0 \\ 4 & 1 & 0 & 2 \\ 4 & 0 & 2 & 2 \\ 0 & 1 & 2 & 2\end{array}\right)$,
(e) $\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5\end{array}\right)$.
32. Calculate the determinants for the matrices which depend on real parameters:

$$
\begin{gathered}
\text { (a) }\left(\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right), \\
\text { (b) }\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
b & 1 & 1 & 1 \\
b & b & 1 & 1 \\
b & b & b & 1
\end{array}\right), \quad(\mathrm{c})\left(\begin{array}{lllll}
c & c & c & c & c \\
1 & c & c & c & c \\
1 & 1 & c & c & c \\
1 & 1 & 1 & c & c \\
1 & 1 & 1 & 1 & c
\end{array}\right), \\
\\
\text { (d) }\left(\begin{array}{rrrrrr}
1+a & b & c & d & e \\
a & 1+b & c & d & e \\
a & b & 1+c & d & e \\
a & b & c & 1+d & e \\
a & b & c & d & 1+e
\end{array}\right) .
\end{gathered}
$$

33. Using the properties of the determinants, justify that the following matrices are not invertible

$$
\text { (a) }\left(\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & -1 \\
-1 & 0 & -1
\end{array}\right), \quad \text { (b) }\left(\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
3 & 2 & 1 & 3 \\
4 & 5 & 6 & 7 \\
0 & 2 & 6 & 5
\end{array}\right)
$$

34. For which values of the parameter c the following matrices are invertible?
(a) $\left(\begin{array}{rr}c & -1 \\ c & 1\end{array}\right)$,
(b) $\left(\begin{array}{rrr}c & 1 & 1 \\ 1 & c & -1 \\ 1 & 1 & -1\end{array}\right)$,
(c) $\left(\begin{array}{rrr}1 & 2 & c \\ -1 & 2 & -1 \\ 2 & 0 & 3\end{array}\right)$,
(d) $\left(\begin{array}{llll}1 & 0 & 4 & 2 \\ 0 & 0 & 1 & c \\ 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2\end{array}\right)$.
35. Using the cofactor formula, calculate the inverse matrices to the given ones, if the inverse exists:
(a) $\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$,
(b) $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$,
(c) $\left(\begin{array}{rrr}0 & 1 & 2 \\ 2 & -1 & 0 \\ 3 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{rrr}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right)$,
(e) $\left(\begin{array}{llll}0 & 0 & 0 & 5 \\ 0 & 0 & 4 & 0 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0\end{array}\right)$,
(f) $\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4\end{array}\right)$.
36. Solve the previous problem using the Gauss elimination method.

Systems of linear equations. Rank of a matrix

37. Using Cramer's rule, find the specified unknown in the SLE
(a) $\left\{\begin{array}{l}3 x+z=1 \\ y+3 z-2 x=2 \\ -x+y-z=-1\end{array}\right.$, find x,
(b) $\left\{\begin{array}{l}-x+y-z=1 \\ 2 x-y-z=2 \\ x+y+z=-3\end{array}\right.$, find z,
(c) $\left\{\begin{array}{l}x+z+y+t=1 \\ x-z+y-t=2 \\ x-z-y+t=-1 \\ x-z-y-t=2\end{array}\right.$, find y,
(d) $\left\{\begin{array}{l}x+y+z+t=2 \\ x+2 y+2 z+2 t=3 \\ x+2 y+3 z+3 t=4 \\ x+2 y+3 z+4 t=5\end{array}\right.$, find z.
38. Solve the SLEs from the previous problem using the Gauss elimination method.
39. Solve the SLEs
(a) $\left\{\begin{array}{l}x+2 y+z=3 \\ 3 x+2 y+z=3 \\ x-2 y-5 z=1\end{array}\right.$,
(b) $\left\{\begin{array}{l}x+2 y+3 z-4 v=0 \\ 2 x-y+3 z-2 v=2 \\ 3 x+4 z+2 v=-1\end{array}\right.$,
(c) $\left\{\begin{array}{l}x+y+2 z-v=-1 \\ 2 x+y+3 z+v=3 \\ 3 x+y-z-2 v=-4\end{array}\right.$
40. (a) Show that the SLE

$$
\left\{\begin{array}{l}
x+2 y+z+4 v=1 \\
2 x+y+3 v=3 \\
-x+2 z+v=1 \\
2 x+y+3 z+6 v=6
\end{array}\right.
$$

is inconsistent.
(b) Find all values of the parameters a, b, c, d such that the SLE

$$
\left\{\begin{array}{l}
x+2 y+z+4 v=a \\
2 x+y+3 v=b \\
-x+2 z+v=c \\
2 x+y+3 z+6 v=d
\end{array}\right.
$$

is consistent.
(c) For the SLE above, in case it is consistent, determine the dimension of the set of its solutions.
41. Decompose the rational functions into real partial fractions:
(a) $\frac{x^{3}+2 x^{2}+3 x-4}{\left(x^{2}+x+1\right)\left(x^{2}+2 x+5\right)}$,
(b) $\frac{x^{5}+x^{4}-2 x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}+x+2\right)\left(x^{2}+2 x+5\right)}$,
(c) $\frac{x^{3}+2 x^{2}+3 x-4}{\left(x^{2}+x+1\right)^{2}\left(x^{2}+2 x+5\right)}$.
42. Find the ranks of the matrices:
(a) $\left(\begin{array}{rrrr}3 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & -1 & 1\end{array}\right)$,
(b) $\left(\begin{array}{rr}-1 & 2 \\ 1 & -2 \\ -4 & 8\end{array}\right)$,
(c) $\left(\begin{array}{rrrrr}2 & 0 & 2 & 4 & 6 \\ 1 & 2 & 0 & 1 & -1 \\ 1 & 1 & -1 & 1 & -1 \\ 4 & 1 & 2 & 1 & -2\end{array}\right)$.

Compare the ranks with the dimensions of the matrices.

Analytic geometry in \mathbb{R}^{2} and \mathbb{R}^{3}.
43. A line ℓ and a point M on the plane are given. Write the parametric and the normal forms of equation for a line which contains M and is
(1) parallel to ℓ;
(2) orthogonal to ℓ
in the following cases:
a) $M(2,-3), \quad \ell: 2 x-3 y+5=0$;
b) $M(1,-2), \quad \ell: 5 x-y+3=0$;
c) $M(4,-1), \quad \ell:-3 x+y+2=0$.
44. For the triangle $A B C$ with $A(-2,3), B(4,1), C(6,-5)$, write the the parametric and the normal forms of equation for a line which contains
a) the median containing the vertex A;
b) the bisector containing the vertex A;
c) the altitude containing the vertex A.
45. The middle points of the sides of a triangle are $M_{1}(2,3), M_{2}(-1,2)$ i $M_{3}(4,5)$. Find equations of the sides of the triangle.
46. Write an equation of the line such that the point $P(2,3)$ is the orthogonal projection of the origin on this line.
47. Calculate, if it is possible, $\vec{v} \cdot \vec{w}$ and $\vec{v} \times \vec{w}$ for
a) $\vec{v}=(1,2,3), \vec{w}=(-1,-2,3)$;
b) $\vec{v}=(2,0,1), \vec{w}=(1,2,0)$;
c) $\vec{v}=(2,1), \vec{w}=(1,2)$;
d) $\vec{v}=(2,0,1), \vec{w}=(1,2)$.
48. The lengths of vectors \vec{v} and \vec{w} are equal to 2 and 3 , respectively. Knowing that $\vec{v} \cdot \vec{w}=-1$, calculate
a) $(\vec{v}+2 \vec{w}) \cdot(2 \vec{v}-\vec{w})$;
b) the angle between $\vec{v}+\vec{w}$ and $\vec{v}-\vec{w}$.
49. Knowing that $\vec{v} \times \vec{w}=(-1,2,1)$, calculate
a) $\vec{w} \times \vec{v}$;
b) $(\vec{v}+2 \vec{w}) \times(2 \vec{v}-\vec{w})$.
50. Knowing that $\vec{v} \cdot \vec{w}=-\sqrt{2}$ and $\vec{v} \times \vec{w}=(1,2,1)$, calculate the angle between \vec{v}, \vec{w}.
51. Find the values of the parameters t, s for which the vectors $\vec{v}=(2-2 t, 2,-4)$ and $\vec{w}=(1,3-s, 1)$ are parallel.
52. Find the values of the parameter t for which vectors $\vec{v}=(2-2 t, 2,-4)$ and $\vec{w}=(1,3-t, 1)$ are orthogonal.
53. Compute the area of the parallelogram spanned by vectors $\vec{v}=(2,2,-1)$ and $\vec{w}=(1,3,2)$.
54. Compute the area of the triangle with vertices $A=(1,0,1), B=(2,0,4)$ and $C=(0,1,1)$.
55. For the triangle from the previous problem calculate all the altitudes.
56. Compute the volume of the parallelepiped spanned by vectors $\vec{u}=(2,2,-4) \vec{v}=(1,2,0)$ and $\vec{w}=(1,3,1)$.
57. Compute the volume of the tetrahedron with vertices $A=(0,1,0), B=(1,1,2), C=$ $(0,2,1)$ and $D=(3,2,-1)$.
58. For the tetrahedron from the previous problem compute the altitude through the vertex D.
59. Find normal and parametric equations of the plane
(a) through the points $P=(1,2,1), Q=(2,1,5)$ and $C=(3,0,1)$;
(b) through the point $P=(-2,3,2)$ and including the $O x$ axis;
(c) through the point $P=(1,0,1)$ and orthogonal to the $O y$ axis.
60. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 2 + t } \\
{ y = 1 + t } \\
{ z = - 1 + 3 t }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x=2 t \\
y=-1+2 t \\
z=-7+6 t
\end{array}\right.\right.
$$

describe the same line.
61. Do the parameteric equations

$$
\left\{\begin{array} { l }
{ x = 2 + 3 t + s } \\
{ y = 1 + t + 2 s } \\
{ z = - 1 + t - s }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=5+4 t+2 s \\
y=2+3 t+4 s \\
z=-2 s
\end{array}\right.\right.
$$

describe the same plane? Justify your answer.
62. Find a parametric equation of the plane given by the equation $x+2 y-z+5=0$.
63. Find a normal equation of the plane given by the parametric equation

$$
\left\{\begin{array}{l}
x=2+t+2 s \\
y=1+2 t+s \\
z=3+t-s
\end{array}\right.
$$

64. Find a parametric equation of the line in which two planes

$$
\left\{\begin{array}{l}
x+2 y+z+3=0 \\
2 x-y+z+5=0
\end{array}\right.
$$

intersect each other.
65. Find the intersection point of the line $l: x=t, y=1+2 t, z=3+t$ and the plane $\pi: x+2 y-z-3=0$.
66. For the point $P=(1,0,1)$ and the plane $\pi: x+2 y-z+3=0$, find
(a) the projection of P on π;
(b) the distance from P to π;
(c) the point, symmetric to P with respect to π.
67. For the point $P=(1,2,3)$ and the line $l: x=2 t, y=1-t, z=-2+3 t$, find
(a) the projection of P on l;
(b) the distance from P to l;
(c) the point, symmetric to P with respect to l.
68. Find the distance between two parallel lines

$$
\left\{\begin{array} { l }
{ x + y + z + 2 = 0 } \\
{ 2 x - y + z + 5 = 0 }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x+y+z+2=0 \\
2 x-y+z+7=0
\end{array}\right.\right.
$$

69. A line ℓ and a point P on the plane are given. Find the point Q, which is the projection of P on ℓ, and the point R, which is symmetric to P w.r.t. ℓ
a) $P(-6,4), \quad \ell: 4 x-5 y+3=0$;
b) $P(-5,13), \quad \ell: 2 x-3 y-3=0$;
c) $P(-8,12), \quad \ell$ contains $M_{1}(2,-3), M_{2}(-5,1)$;
d) $P(8,-9), \quad \ell$ contains $M_{1}(3,-4), M_{2}(-1,-2)$.
70. Check if the lines ℓ_{1} and ℓ_{2} are parallel. For parallel lines find the distance between them. For non-parallel lines find the acute angle between them.
a) $\ell_{1}: x+y+3=0, \ell_{2}:\left\{\begin{array}{l}x=1-t, \\ y=2+t,\end{array} \quad ;\right.$
b) $\ell_{1}: 2 x-y+1=0, \ell_{2}:\left\{\begin{array}{l}x=1+t, \\ y=2-t,\end{array}\right.$

Change of a basis. Linear transformations

71. Is $(1,-1,2),(2,1,0),(2,0,-1)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(2,3,4)$ in this basis.
72. Is $(1,-1,1),(1,1,0),(0,1,1)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(-2,0,3)$ in this basis.
73. Is $(1,-1,1),(1,1,0),(1,0,1)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(-3,0,2)$ in this basis.
74. Is $(1,-1,1),(1,1,0)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(-2,0,2)$ in this basis.
75. Is $(-2,0,2)$ a linear combination of $(1,-1,1),(1,1,0)$? If yes, with which coefficients?
76. Is $(-2,0,1)$ a linear combination of $(1,-1,1),(1,1,0)$? If yes, with which coefficients?
77. Let the linear mapping of \mathbb{R}^{2} be given by $T(x, y)=(2 x+y, x-y)$. Find its matrices in the standard basis $B=\left\{e_{1}, e_{2}\right\}$ and in the basis $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ given by $v_{1}=(1,1), v_{2}=(1,-1)$.
78. The linear mapping of \mathbb{R}^{2} transforms the vector $(1,2)$ to $(-1,1)$, and the vector $(2,1)$ to $(3,1)$. Write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
79. For the linear mapping of \mathbb{R}^{2} which corresponds to rotation clockwise around the origin by the angle α composed with the reflection with respect to $O x$ axis, write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
80. For the linear mapping of \mathbb{R}^{2} which corresponds to reflection with respect to
(a) the $O y$ axis;
(b) the line $y+x=0$;
(c) the line $3 y-4 x=0$,
write the matrices of these mappings in the standard basis in \mathbb{R}^{2}.
81. For the linear mapping of \mathbb{R}^{3} which corresponds to reflection with respect to
(a) the $O z$ axis;
(b) the $O y z$ plane;
(c) the plane $x+2 y-3 z=0$,
write the matrices of these mappings in the standard basis in \mathbb{R}^{3}.
82. For the linear mappings of \mathbb{R}^{3} which corresponds to rotation counter-clockwise around the $O y$ and $O z$ axes by the angle α, write the matrices of these mappings in the standard basis in \mathbb{R}^{3}. For which values of α these mappings commute?
83. Write the matrices in the standard basis in \mathbb{R}^{3} of the rotation counter-clock wise by angle $\frac{2 \pi}{3}$ around the line $x=y=z$.

Eigenvalues and eigenvectors. Diagonalization and the Jordan normal form of a matrix
84. Determine the real eigenvalues and eigenvectors of the following matrices:

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & -1 & -2 \\
0 & 2 & 2 \\
0 & -1 & -1
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

85. Find the complex eigenvalues and eigenvectors of the following matrices:

$$
\left(\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right), \quad\left(\begin{array}{cc}
1 & -4 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

86. Find the eigenvalues and eigenvectors of the following linear mappings:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $T(x, y)=(x-2 y, x+y)$;
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where $T(x, y, z)=(2 z, x, y)$;
(c) $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$, where $T(x, y, z)=(2 z, x, y)$;
(d) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where $T(x, y, z)=(2 x+y, y-z, z)$.

In each of the above cases, answer whether the mapping has an eigenbasis.
87. For the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & -1 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) check if the matrix is diagonalizable;
(c) give geometric interpretation for the linear transformation given by this matrix
(d) calculate A^{10}, e^{A}.
88. For the matrix

$$
A=\left(\begin{array}{rrr}
-4 & 6 & -10 \\
-1 & 1 & -2 \\
1 & -2 & 3
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) check if the matrix is diagonalizable;
(c) give geometric interpretation for the linear transformation given by this matrix
(d) calculate A^{10}, e^{A}.
89. For the matrix

$$
A=\left(\begin{array}{rrr}
3 & 1 & -1 \\
-4 & -2 & 1 \\
8 & 2 & -3
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) check if the matrix is diagonalizable;
(c) give geometric interpretation for the linear transformation given by this matrix
(d) calculate A^{10}, e^{A}.
90. Diagonalize the real matrices

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & 0 & -4 \\
0 & -1 & 0 \\
2 & -4 & 5
\end{array}\right), \quad\left(\begin{array}{ccc}
2 & -1 & -1 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right), \quad\left(\begin{array}{ccc}
-5 & 0 & -2 \\
4 & -1 & 2 \\
4 & 0 & 1
\end{array}\right)
$$

91. For the matrix

$$
A=\left(\begin{array}{rrr}
5 & 3 & -3 \\
-8 & -6 & 2 \\
4 & 4 & 1
\end{array}\right),
$$

(a) determine its eigenvalues and eigenvectors;
(b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
(c) explain why the matrix is not diagonizable;
(d) determine its generalized eigenvectors;
(e) write the decomposition of the matrix to the Jordan normal form.
92. For the matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & 0 \\
3 & 1 & -2 \\
3 & -1 & -1
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
(d) determine its generalized eigenvectors;
(e) write the decomposition of the matrix to the Jordan normal form.
93. For the matrix

$$
A=\left(\begin{array}{rrr}
2 & 2 & -1 \\
1 & 1 & 0 \\
2 & -2 & 2
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
(d) determine its generalized eigenvectors
(e) write the decomposition of the matrix to the Jordan normal form.

