ALGEBRA

Binomial formula. Induction

1. Using the Newton Binomial formula, transform

(a)
$$(2x - y)^4$$
; (b) $\left(x + \frac{1}{x^3}\right)^3$; (c) $(\sqrt{u} - \sqrt[4]{v})^8$; (d) $\left(x + \frac{1}{x^3}\right)^6$.

2. Find the coefficient at term t in the expansion

$$(a) (2p - 3q)^7, \ t = p^2 q^5; \quad (b) \left(\sqrt[4]{b^5} - \frac{3}{b^3}\right)^7, \ t = \sqrt[4]{b} \quad (c) \left(2x - \frac{1}{x}\right)^6 \left(x + \frac{1}{2x}\right)^6, \ t = x^0.$$

3. Using the mathematical induction, prove the equalities:

(a)
$$1+2+3+\cdots+n = \frac{n(n+1)}{2}, n \in \mathbf{N};$$

- (b) $1+3+5+\dots+(2n-1)=n^2, n \in \mathbf{N};$
- (c) $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, n \in \mathbf{N}.$
- 4. Using the mathematical induction, prove the inequalities:
 - (a) $n^3 < 3^n, n \in \mathbf{N};$

(b)
$$\frac{1}{\sqrt{1}} + \dots \frac{1}{\sqrt{n}} \ge \sqrt{n}, n \in \mathbf{N}$$

(c) $(1+a)^n \ge 1+na$, for any $a \ge -1$ and $n \in \mathbf{N}$.

Complex numbers

5. Perform the algebraic operations and write the result in the Carthesian form x + iy:

(a)
$$(i+3) - (2-3i);$$
 (b) $(1-i)(2+5i);$ (c) $\frac{1-3i}{2+3i};$ (d) $(1-i)^4.$

6. Find all complex numbers z which satisfy the following conditions:

(a) $\operatorname{Re} z + \operatorname{Im} z = 3;$ (b) $\operatorname{Re} (-iz) \leq 1;$ (c) $\operatorname{Im} ((1+i)z) \leq 2.$

Indicate the solution on the complex plane.

7. Comparing the real and imaginary parts of both sides of the equations, solve them for real x, y:

8. Writing z in the algebraic form z = x + iy, solve the equations

(a)
$$z^2 = -i;$$
 (b) $(3-2i)z = (2+i);$ (c) $\frac{z+1}{2+i} = \frac{3-z}{3-2i};$ (d) $z^2 - 4z + 5;$

(e)
$$z(1+i) + \overline{z}(2-i) = 1+i;$$
 (f) $i \operatorname{Re} z + \operatorname{Im} z = 1+2i;$ (g) $z\overline{z} = (\overline{z})^2.$

9. Using the Carthesian form of complex numbers, compute the following roots:

(a)
$$\sqrt{1-2i}$$
; (b) $\sqrt{5-i}$.

10. Write the following numbers in the trigonometric form:

(a) 2*i*; (b)
$$-1 + \sqrt{3}i$$
; (c) $-2\sqrt{3} - 2i$; (d) $\left(\frac{1 - \sqrt{3}i}{2 + 2\sqrt{3}i}\right)^5$.

11. Draw on the complex plane the sets of complex numbers satisfying the following conditions:

(a)
$$|2z + i| = 6;$$
 (b) $|3z - 1| < 3;$ (c) $2 \le |2z + i| \le 4;$ (d) $|z - 2i| = |z + i|;$
(e) Im $(z^3) < 0;$ (f) Re $(z^4) \ge 0;$ (h) $|z + 1| \le |\overline{z} + i|.$

12. Using de Moivre's formula, compute the following powers:

(a)
$$(1-i)^{13}$$
; (b) $(-1+\sqrt{3}i)^{15}$; $\left(\frac{1+i}{-1+i\sqrt{3}}\right)^{17}$.

Give the answers in the Carthesian form.

13. Using the trigonometric form of complex numbers, compute the following roots:

(a)
$$\sqrt[6]{-1}$$
; (b) $\sqrt[3]{-\sqrt{3}+i}$; (c) $\sqrt[6]{-64}$.

Give the answers in the Carthesian form.

14. Solve the following equations:

(a)
$$(z+1)^3 = (z-2)^3$$
; (b) $(z+i)^4 = (1-z)^4$; (c) $(2z-1)^3 = (z+i)^3$.

Give the answers in the Carthesian form.

15. Solve the equations for complex *z*:

(a)
$$z^2 - z + 1 = 0$$
; (b) $z^2 + 16 = 0$; (c) $z^4 - 3z^2 + 2 = 0$; (d) $z^2 + (1-i)z + 2i = 0$; (e) $z^4 = -1$;
(f) $z^2 + 4iz + 1 = 0$; (g) $z^3 = (1+i)^3$; (h) $(z-i)^4 = (2z+1)^4$.

16. Find all integer roots of the following real polynomials:

(a)
$$x^3 + x^2 - x + 2;$$
 (b) $x^4 - 3x^3 + 5x^2 - 9x + 6;$ (c) $x^4 + x^2 - 2$.

17. Find all rational roots of the following real polynomials:

(a)
$$6x^4 - x^3 + 11x^2 - 2x - 2;$$
 (b) $x^4 - 5x^2 + 4;$ (c) $4x^4 + 7x^2 - 2.$

18. Perform the long division and find Q(x), R(x) such that P(x) = D(x)Q(x) + R(x), $\deg(R) < \deg(D)$ for

(a)
$$P(x) = x^{12} - 3x^{10} + 2x^7$$
, $D(x) = x^3 + 1$; (b) $P(x) = 2x^8 - 4x^3 + 5x$, $D(x) = x^2 + x + 1$.

19. Find all roots of the following real polynomials:

(a)
$$x^4 - 6x^2 - 3x + 2$$
; (b) $x^4 - 3x^3 - 2x^2 + 2x + 12$.

20. Find all roots of the following complex polynomials, knowing one of their roots:

(a)
$$z^4 + 2z^3 + 4z^2 + 3z + 2$$
, $z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$; (b) $z^4 + 3z^3 + 9z^2 + 12z + 10$, $z_1 = -1 - i$.

21. Factor the following real polynomials into irreducible real factors:

(a)
$$x^3 - x^2 + x - 1$$
; (b) $x^6 + 8$; (c) $x^4 + 3x^2 + 2$.

22. Factor the following complex polynomials into irreducible complex factors:

(a)
$$z^3 - z^2 + z - 1;$$
 (b) $z^4 + 3z^2 + 2;$ (c) $z^4 + 1.$

23. Decompose the following real rational functions into real partial fractions:

(a)
$$\frac{x}{(x^2-1)(x+2)}$$
; (b) $\frac{x^4-2}{x^3+1}$; (c) $\frac{1}{(x^2-1)(x+1)(x-2)}$.

24. Decompose the following complex rational functions into complex partial fractions:

(a)
$$\frac{1}{z^3 - z^2 + 4z - 4}$$
; (b) $\frac{z - 1}{z^3 + 1}$; (c) $\frac{1}{(z^2 + 2)(z + 1)}$.

Matrices. Determinants. Inverse matrices

25. For the matrices A, B, C given below, which of the matrices: $A+B, A+C, 2A, AB, BA, AC, CA, A^2, C^2$ are well defined? Compute the matrices which are well defined.

(a)

$$A = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 1 \\ 4 & 3 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ -1 & 1 \end{pmatrix};$$
(b)

$$A = \begin{pmatrix} 2 & 1 \\ -1 & -2 \\ -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$
(c)

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ -1 & 2 \\ 1 & -2 \end{pmatrix}.$$

26. Let

$$A = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} -2 & 1 \\ 3 & 5 \end{pmatrix}$$

Compute AB, and then solve the matrix equations

- (a) AX = C;
- (b) XA = C;
- (c) AXB = C.

27. It is known that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 6.$$

Find the following determinants:

(a)
$$\begin{vmatrix} g & h & i \\ a & b & c \\ d & e & f \end{vmatrix}$$
, (b) $\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix}$, (c) $\begin{vmatrix} g & d & a \\ h & e & b \\ i & f & c \end{vmatrix}$, (d) $\begin{vmatrix} 3a & -b & c+4a \\ 3d & -e & f+4d \\ 3g & -h & i+4g \end{vmatrix}$

28. Let A be a real 7×7 -matrix with det A = 2. Find the determinants of the following matrices: (a) 2A; (b) -5A; (c) $-A^3$; (d) AA^T .

29. Write the Laplace expansions of the given determinants along indicated rows or columns

(a)
$$\begin{pmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ 4 & 3 & -1 \end{pmatrix}$$
, (b) $\begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & -1 & 1 & 3 \\ 2 & -2 & 1 & -3 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & -3 & 1 & 2 \\ 2 & 3 & -2 & 1 \\ -2 & 1 & 1 & 0 \\ 1 & 4 & 3 & 0 \end{pmatrix}$.

30. Calculate the determinants from the previous problem.

31. Calculate the determinants

$$(a) \begin{pmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ 3 & 2 & 1 \end{pmatrix}, (b) \begin{pmatrix} 2 & 0 & 2 & 3 \\ -1 & 1 & -1 & 1 \\ -2 & 0 & 2 & 0 \\ 5 & -1 & -1 & 1 \end{pmatrix}, (c) \begin{pmatrix} 1 & 0 & 2 & 3 \\ -2 & 0 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ -1 & 0 & 5 & 1 \end{pmatrix}, (d) \begin{pmatrix} 4 & 1 & 3 & 0 \\ 4 & 1 & 0 & 2 \\ 4 & 0 & 2 & 2 \\ 0 & 1 & 2 & 2 \end{pmatrix},$$
$$(e) \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

32. Calculate the determinants for the matrices which depend on real parameters:

$$(a) \begin{pmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{pmatrix}, (b) \begin{pmatrix} 1 & 1 & 1 & 1 \\ b & 1 & 1 & 1 \\ b & b & 1 & 1 \\ b & b & b & 1 \end{pmatrix}, (c) \begin{pmatrix} c & c & c & c & c \\ 1 & c & c & c & c \\ 1 & 1 & 1 & c & c & c \\ 1 & 1 & 1 & 1 & c & c \\ 1 & 1 & 1 & 1 & c & c \\ 1 & 1 & 1 & 1 & c & c \end{pmatrix},$$
$$(d) \begin{pmatrix} 1+a & b & c & d & e \\ a & 1+b & c & d & e \\ a & b & 1+c & d & e \\ a & b & c & 1+d & e \\ a & b & c & d & 1+e \end{pmatrix}.$$

33. Using the properties of the determinants, justify that the following matrices are not invertible

(a)
$$\begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -1 \\ -1 & 0 & -1 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 1 & -1 & -1 \\ 3 & 2 & 1 & 3 \\ 4 & 5 & 6 & 7 \\ 0 & 2 & 6 & 5 \end{pmatrix}$.

34. For which values of the parameter c the following matrices are invertible?

(a)
$$\begin{pmatrix} c & -1 \\ c & 1 \end{pmatrix}$$
, (b) $\begin{pmatrix} c & 1 & 1 \\ 1 & c & -1 \\ 1 & 1 & -1 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 2 & c \\ -1 & 2 & -1 \\ 2 & 0 & 3 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & 0 & 4 & 2 \\ 0 & 0 & 1 & c \\ 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$.

35. Using the cofactor formula, calculate the inverse matrices to the given ones, if the inverse exists:

$$(a) \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}, (b) \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, (c) \begin{pmatrix} 0 & 1 & 2 \\ 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, (d) \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}, (e) \begin{pmatrix} 0 & 0 & 0 & 5 \\ 0 & 0 & 4 & 0 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}, (f) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

36. Solve the previous problem using the Gauss elimination method.

Systems of linear equations. Rank of a matrix

37. Using Cramer's rule, find the specified unknown in the SLE

(a)
$$\begin{cases} 3x + z = 1\\ y + 3z - 2x = 2\\ -x + y - z = -1 \end{cases}$$
, find x, (b)
$$\begin{cases} -x + y - z = 1\\ 2x - y - z = 2\\ x + y + z = -3 \end{cases}$$
, find z,
(c)
$$\begin{cases} x + z + y + t = 1\\ x - z + y - t = 2\\ x - z - y + t = -1\\ x - z - y - t = 2 \end{cases}$$
, find y, (d)
$$\begin{cases} x + y + z + t = 2\\ x + 2y + 2z + 2t = 3\\ x + 2y + 3z + 3t = 4\\ x + 2y + 3z + 4t = 5 \end{cases}$$
, find z.

38. Solve the SLEs from the previous problem using the Gauss elimination method.

39. Solve the SLEs

(a)
$$\begin{cases} x+2y+z=3\\ 3x+2y+z=3\\ x-2y-5z=1 \end{cases}$$
, (b)
$$\begin{cases} x+2y+3z-4v=0\\ 2x-y+3z-2v=2\\ 3x+4z+2v=-1 \end{cases}$$
, (c)
$$\begin{cases} x+y+2z-v=-1\\ 2x+y+3z+v=3\\ 3x+y-z-2v=-4 \end{cases}$$

40. (a) Show that the SLE

$$\begin{cases} x + 2y + z + 4v = 1\\ 2x + y + 3v = 3\\ -x + 2z + v = 1\\ 2x + y + 3z + 6v = 6 \end{cases}$$

is inconsistent.

(b) Find all values of the parameters a, b, c, d such that the SLE

$$\begin{cases} x + 2y + z + 4v = a \\ 2x + y + 3v = b \\ -x + 2z + v = c \\ 2x + y + 3z + 6v = d \end{cases}$$

is consistent.

(c) For the SLE above, in case it is consistent, determine the dimension of the set of its solutions.

41. Decompose the rational functions into real partial fractions:

(a)
$$\frac{x^3 + 2x^2 + 3x - 4}{(x^2 + x + 1)(x^2 + 2x + 5)}$$
, (b) $\frac{x^5 + x^4 - 2x^2 + 1}{(x^2 + x + 1)(x^2 + x + 2)(x^2 + 2x + 5)}$,
(c) $\frac{x^3 + 2x^2 + 3x - 4}{(x^2 + x + 1)^2(x^2 + 2x + 5)}$.

42. Find the ranks of the matrices:

(a)
$$\begin{pmatrix} 3 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$
, (b) $\begin{pmatrix} -1 & 2 \\ 1 & -2 \\ -4 & 8 \end{pmatrix}$, (c) $\begin{pmatrix} 2 & 0 & 2 & 4 & 6 \\ 1 & 2 & 0 & 1 & -1 \\ 1 & 1 & -1 & 1 & -1 \\ 4 & 1 & 2 & 1 & -2 \end{pmatrix}$

~

Compare the ranks with the dimensions of the matrices.

Analytic geometry in \mathbb{R}^2 and \mathbb{R}^3 .

43. A line ℓ and a point M on the plane are given. Write the parametric and the normal forms of equation for a line which contains M and is

(1) parallel to ℓ ; (2) orthogonal to ℓ

in the following cases:

- a) $M(2, -3), \quad \ell : 2x 3y + 5 = 0;$
- b) $M(1,-2), \quad \ell: 5x y + 3 = 0;$

c) $M(4, -1), \quad \ell : -3x + y + 2 = 0.$

44. For the triangle ABC with A(-2,3), B(4,1), C(6,-5), write the parametric and the normal forms of equation for a line which contains

- a) the median containing the vertex A;
- b) the bisector containing the vertex A;
- c) the altitude containing the vertex A.

45. The middle points of the sides of a triangle are $M_1(2,3)$, $M_2(-1,2)$ i $M_3(4,5)$. Find equations of the sides of the triangle.

46. Write an equation of the line such that the point P(2,3) is the orthogonal projection of the origin on this line.

47. Calculate, if it is possible, $\vec{v} \cdot \vec{w}$ and $\vec{v} \times \vec{w}$ for

a)
$$\vec{v} = (1, 2, 3), \vec{w} = (-1, -2, 3);$$

b)
$$\vec{v} = (2, 0, 1), \vec{w} = (1, 2, 0);$$

c)
$$\vec{v} = (2, 1), \vec{w} = (1, 2);$$

d) $\vec{v} = (2, 0, 1), \vec{w} = (1, 2).$

48. The lengths of vectors \vec{v} and \vec{w} are equal to 2 and 3, respectively. Knowing that $\vec{v} \cdot \vec{w} = -1$, calculate

- a) $(\vec{v} + 2\vec{w}) \cdot (2\vec{v} \vec{w});$
- b) the angle between $\vec{v} + \vec{w}$ and $\vec{v} \vec{w}$.

49. Knowing that $\vec{v} \times \vec{w} = (-1, 2, 1)$, calculate

- a) $\vec{w} \times \vec{v}$;
- b) $(\vec{v} + 2\vec{w}) \times (2\vec{v} \vec{w}).$

50. Knowing that $\vec{v} \cdot \vec{w} = -\sqrt{2}$ and $\vec{v} \times \vec{w} = (1, 2, 1)$, calculate the angle between \vec{v}, \vec{w} .

51. Find the values of the parameters t, s for which the vectors $\vec{v} = (2 - 2t, 2, -4)$ and $\vec{w} = (1, 3 - s, 1)$ are parallel.

52. Find the values of the parameter t for which vectors $\vec{v} = (2 - 2t, 2, -4)$ and $\vec{w} = (1, 3 - t, 1)$ are orthogonal.

- **53.** Compute the area of the parallelogram spanned by vectors $\vec{v} = (2, 2, -1)$ and $\vec{w} = (1, 3, 2)$.
- 54. Compute the area of the triangle with vertices A = (1, 0, 1), B = (2, 0, 4) and C = (0, 1, 1).

55. For the triangle from the previous problem calculate all the altitudes.

56. Compute the volume of the parallelepiped spanned by vectors $\vec{u} = (2, 2, -4)$ $\vec{v} = (1, 2, 0)$ and $\vec{w} = (1, 3, 1)$.

57. Compute the volume of the tetrahedron with vertices A = (0, 1, 0), B = (1, 1, 2), C = (0, 2, 1) and D = (3, 2, -1).

58. For the tetrahedron from the previous problem compute the altitude through the vertex D.

59. Find normal and parametric equations of the plane

- (a) through the points P = (1, 2, 1), Q = (2, 1, 5) and C = (3, 0, 1);
- (b) through the point P = (-2, 3, 2) and including the Ox axis;

(c) through the point P = (1, 0, 1) and orthogonal to the Oy axis.

60. Explain why the parametric equations

$$\begin{cases} x = 2 + t \\ y = 1 + t \\ z = -1 + 3t \end{cases} \text{ and } \begin{cases} x = 2t \\ y = -1 + 2t \\ z = -7 + 6t \end{cases}$$

describe the same line.

61. Do the parameteric equations

$$\begin{cases} x = 2 + 3t + s \\ y = 1 + t + 2s \\ z = -1 + t - s \end{cases} \text{ and } \begin{cases} x = 5 + 4t + 2s \\ y = 2 + 3t + 4s \\ z = -2s \end{cases}$$

describe the same plane? Justify your answer.

- **62.** Find a parametric equation of the plane given by the equation x + 2y z + 5 = 0.
- 63. Find a normal equation of the plane given by the parametric equation

$$\begin{cases} x = 2 + t + 2s \\ y = 1 + 2t + s \\ z = 3 + t - s \end{cases}$$

64. Find a parametric equation of the line in which two planes

$$\begin{cases} x + 2y + z + 3 = 0\\ 2x - y + z + 5 = 0 \end{cases}$$

intersect each other.

65. Find the intersection point of the line l: x = t, y = 1 + 2t, z = 3 + t and the plane $\pi: x + 2y - z - 3 = 0$.

66. For the point P = (1, 0, 1) and the plane $\pi : x + 2y - z + 3 = 0$, find

- (a) the projection of P on π ;
- (b) the distance from P to π ;
- (c) the point, symmetric to P with respect to π .

67. For the point P = (1, 2, 3) and the line l : x = 2t, y = 1 - t, z = -2 + 3t, find

- (a) the projection of P on l;
- (b) the distance from P to l;
- (c) the point, symmetric to P with respect to l.

68. Find the distance between two parallel lines

$$\begin{cases} x+y+z+2=0\\ 2x-y+z+5=0 \end{cases} \text{ and } \begin{cases} x+y+z+2=0\\ 2x-y+z+7=0 \end{cases}$$

69. A line ℓ and a point *P* on the plane are given. Find the point *Q*, which is the projection of *P* on ℓ , and the point *R*, which is symmetric to *P* w.r.t. ℓ

- a) $P(-6,4), \quad \ell: 4x 5y + 3 = 0;$
- b) $P(-5, 13), \quad \ell : 2x 3y 3 = 0;$
- c) P(-8, 12), ℓ contains $M_1(2, -3), M_2(-5, 1)$;
- d) P(8, -9), ℓ contains $M_1(3, -4), M_2(-1, -2)$.

70. Check if the lines ℓ_1 and ℓ_2 are parallel. For parallel lines find the distance between them. For non-parallel lines find the acute angle between them.

a) $\ell_1 : x + y + 3 = 0, \ell_2 : \begin{cases} x = 1 - t, \\ y = 2 + t, \end{cases}$; b) $\ell_1 : 2x - y + 1 = 0, \ell_2 : \begin{cases} x = 1 + t, \\ y = 2 - t, \end{cases}$

Change of a basis. Linear transformations

71. Is (1, -1, 2), (2, 1, 0), (2, 0, -1) a basis in \mathbb{R}^3 ? If yes, give the coordinates of the vector (2, 3, 4) in this basis.

72. Is (1, -1, 1), (1, 1, 0), (0, 1, 1) a basis in \mathbb{R}^3 ? If yes, give the coordinates of the vector (-2, 0, 3) in this basis.

73. Is (1, -1, 1), (1, 1, 0), (1, 0, 1) a basis in \mathbb{R}^3 ? If yes, give the coordinates of the vector (-3, 0, 2) in this basis.

74. Is (1, -1, 1), (1, 1, 0) a basis in \mathbb{R}^3 ? If yes, give the coordinates of the vector (-2, 0, 2) in this basis.

75. Is (-2, 0, 2) a linear combination of (1, -1, 1), (1, 1, 0)? If yes, with which coefficients?

76. Is (-2, 0, 1) a linear combination of (1, -1, 1), (1, 1, 0)? If yes, with which coefficients?

77. Let the linear mapping of \mathbb{R}^2 be given by T(x, y) = (2x + y, x - y). Find its matrices in the standard basis $B = \{e_1, e_2\}$ and in the basis $B' = \{v_1, v_2\}$ given by $v_1 = (1, 1), v_2 = (1, -1)$.

78. The linear mapping of \mathbb{R}^2 transforms the vector (1,2) to (-1,1), and the vector (2,1) to (3,1). Write the matrix of this mapping in the standard basis in \mathbb{R}^2 .

79. For the linear mapping of \mathbb{R}^2 which corresponds to rotation clockwise around the origin by the angle α composed with the reflection with respect to Ox axis, write the matrix of this mapping in the standard basis in \mathbb{R}^2 .

80. For the linear mapping of \mathbb{R}^2 which corresponds to reflection with respect to

- (a) the Oy axis;
- (b) the line y + x = 0;
- (c) the line 3y 4x = 0,

write the matrices of these mappings in the standard basis in \mathbb{R}^2 .

81. For the linear mapping of \mathbb{R}^3 which corresponds to reflection with respect to

- (a) the Oz axis;
- (b) the Oyz plane;
- (c) the plane x + 2y 3z = 0,

write the matrices of these mappings in the standard basis in \mathbb{R}^3 .

82. For the linear mappings of \mathbb{R}^3 which corresponds to rotation counter-clockwise around the Oy and Oz axes by the angle α , write the matrices of these mappings in the standard basis in \mathbb{R}^3 . For which values of α these mappings commute?

83. Write the matrices in the standard basis in \mathbb{R}^3 of the rotation counter-clock wise by angle $\frac{2\pi}{3}$ around the line x = y = z.

Eigenvalues and eigenvectors. Diagonalization and the Jordan normal form of a matrix

84. Determine the real eigenvalues and eigenvectors of the following matrices:

$$\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & -1 & -2 \\ 0 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

85. Find the complex eigenvalues and eigenvectors of the following matrices:

$$\begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

86. Find the eigenvalues and eigenvectors of the following linear mappings:

(a)
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
, where $T(x, y) = (x - 2y, x + y)$;

(b)
$$T : \mathbb{R}^3 \to \mathbb{R}^3$$
, where $T(x, y, z) = (2z, x, y)$;

- (c) $T: \mathbb{C}^3 \to \mathbb{C}^3$, where T(x, y, z) = (2z, x, y);
- (d) $T: \mathbb{R}^3 \to \mathbb{R}^3$, where T(x, y, z) = (2x + y, y z, z).

In each of the above cases, answer whether the mapping has an eigenbasis.

87. For the matrix

$$A = \begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{pmatrix},$$

- (a) determine its eigenvalues and eigenvectors;
- (b) check if the matrix is diagonalizable;
- (c) give geometric interpretation for the linear transformation given by this matrix
- (d) calculate A^{10} , e^A .

88. For the matrix

$$A = \begin{pmatrix} -4 & 6 & -10 \\ -1 & 1 & -2 \\ 1 & -2 & 3 \end{pmatrix},$$

- (a) determine its eigenvalues and eigenvectors;
- (b) check if the matrix is diagonalizable;
- (c) give geometric interpretation for the linear transformation given by this matrix
- (d) calculate A^{10} , e^A .

89. For the matrix

$$A = \begin{pmatrix} 3 & 1 & -1 \\ -4 & -2 & 1 \\ 8 & 2 & -3 \end{pmatrix},$$

(a) determine its eigenvalues and eigenvectors;

- (b) check if the matrix is diagonalizable;
- (c) give geometric interpretation for the linear transformation given by this matrix
- (d) calculate A^{10} , e^A .
- 90. Diagonalize the real matrices

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & -4 \\ 0 & -1 & 0 \\ 2 & -4 & 5 \end{pmatrix}, \quad \begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} -5 & 0 & -2 \\ 4 & -1 & 2 \\ 4 & 0 & 1 \end{pmatrix},$$

91. For the matrix

$$A = \left(\begin{array}{rrrr} 5 & 3 & -3 \\ -8 & -6 & 2 \\ 4 & 4 & 1 \end{array}\right),$$

- (a) determine its eigenvalues and eigenvectors;
- (b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
- (c) explain why the matrix is not diagonizable;
- (d) determine its generalized eigenvectors;
- (e) write the decomposition of the matrix to the Jordan normal form.

92. For the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & -2 \\ 3 & -1 & -1 \end{pmatrix},$$

- (a) determine its eigenvalues and eigenvectors;
- (b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
- (d) determine its generalized eigenvectors;
- (e) write the decomposition of the matrix to the Jordan normal form.

93. For the matrix

$$A = \begin{pmatrix} 2 & 2 & -1 \\ 1 & 1 & 0 \\ 2 & -2 & 2 \end{pmatrix},$$

- (a) determine its eigenvalues and eigenvectors;
- (b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
- (d) determine its generalized eigenvectors
- (e) write the decomposition of the matrix to the Jordan normal form.