MATHEMATICAL ANALYSIS 2

Test 1, version C.

1. Write the general and the directional forms of equation of the tangent plane to the graph $z=f(x, y))$ of the function

$$
f(x, y)=\frac{1}{\sqrt{1+\operatorname{arctg}\left(x^{2} y\right)}}
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)=\left(1,1, z_{0}\right)$.
2. Find and classify the critical points of the function $f(x, y)=x^{3}+3 x^{2} y-6 x y$.
3. Find the maximal and minimal values of the function $f(x, y)=x^{2}+2 y^{2}$ under the constraint $g(x, y)=x^{4}+y^{4}-1=0$. Indicate all the points where the maximal/minimal values are obtained.
4. * In the previous problem, find the the maximal and minimal values of the function $f(x, y)$ in the domain $D=\{(x, y): g(x, y) \leqslant 0$.

