MATHEMATICAL ANALYSIS 2

Test 1, version A.

1. Find and classify the critical points of the function $f(x, y)=x^{3}+3 x^{2} y-x^{2}-9 y^{2}$.
2. Find the maximal and minimal values of the function $f(x, y)=x^{3}+y^{3}$ on the domain $D=\left\{(x, y): g(x, y)=x^{2}+2 y^{2} \leqslant 1\right\}$. Indicate all the points where the maximal/minimal values are obtained.
3. Performing a proper change of variables, calculate the integral

$$
\iint_{D} x y d x d y
$$

where the domain D is bounded by the lines

$$
x^{2}+2 y^{2} \leqslant 1, \quad x+\sqrt{2} y>0, \quad \sqrt{3} x-\sqrt{2} y>0
$$

4. Find the area of the surface cutted from the cone $z^{2}=x^{2}+y^{2}$ by the planes $x=0, y=$ $0, x+y=1$.
