MATHEMATICAL ANALYSIS 2

Test 1, version C.

1. Find and classify the critical points of the function $f(x, y)=x^{3}+3 x^{2} y-6 x y$.
2. Find the maximal and minimal values of the function $f(x, y)=2 x^{2}+y^{2}$ on the domain $D=\left\{(x, y): g(x, y)=x^{4}+y^{4} \leqslant 1\right\}$. Indicate all the points where the maximal/minimal values are obtained.
3. Performing a proper change of variables, calculate the integral

$$
\iint_{D}\left(x^{2}+y^{2}\right) d x d y
$$

where the domain D is bounded by the lines

$$
2 x^{2}+3 y^{2} \leqslant 1, \quad \sqrt{2} x+\sqrt{3} y>0, \quad \sqrt{2} x-y>0
$$

4. Find the area of the surface cutted from the cone $z^{2}=x^{2}+y^{2}$ by the cylinder $x^{2}+y^{2} \leqslant x$.
