MATHEMATICAL ANALYSIS 2

Test 2, version A.

1. Calculate the double integral

$$
\iint_{D} \frac{1}{y \sqrt{y-x}} d x d y, \quad D=\{(x, y): 0 \leqslant x \leqslant y \leqslant 1\} .
$$

Draw the domain of integration.
2. Write the change of variables formula for double integrals. Perform the change of variables $x=1+\rho \cos \phi, y=-1+\frac{1}{2} \sin \phi$ and calculate the integral

$$
\iint_{D} x y d x d y, \quad D=\left\{(x, y):(x-1)^{2}+4(y+1)^{2} \leqslant 2\right\}
$$

Draw the domain of integration on (x, y)-plane and (ρ, ϕ)-plane.
3. Write the change of variables formula to the polar coordinates. Changing coordinates to polar, calculate

$$
\iint_{D}\left(x^{2}+x y\right) d x d x y, \quad D=\{(x, y): x \geqslant y, x \geqslant-\sqrt{3} y\} .
$$

Draw the domain of integration in (x, y) - and polar coordinates.
4. Write the formulae for the static moments, the center of mass, and moments of inertia for a material plate D with the density function $\gamma(x, y)$. Calculate the moments of inertia of the quarter of a circle of radius D, located in the 1st quadrant, with the density function $\gamma(x, y)=x^{2}$.

