MATHEMATICAL ANALYSIS 2

Test 2, version C.

1. Calculate the double integral

$$
\iint_{D} \frac{y}{\sqrt{y+x}} d x d y, \quad D=\{(x, y): 0 \leqslant x \leqslant y \leqslant 1\}
$$

Draw the domain of integration.
2. Write the change of variables formula for double integrals. Perform the change of variables $x=-1+\rho \cos \phi, y=1+\frac{1}{3} \sin \phi$ and calculate the integral

$$
\iint_{D}\left(x^{2}+y^{2}\right) d x d y, \quad D=\left\{(x, y):(x+1)^{2}+9(y-1)^{2} \leqslant 3\right\} .
$$

Draw the domain of integration on (x, y)-plane and (ρ, ϕ)-plane.
3. Write the change of variables formula to the polar coordinates. Changing coordinates to polar, calculate

$$
\iint_{D}\left(x y+y^{2}\right) d x d x y, \quad D=\{(x, y): x \leqslant y, x \leqslant-\sqrt{3} y\} .
$$

Draw the domain of integration in (x, y) - and polar coordinates.
4. Write the formulae for the static moments, the center of mass, and moments of inertia for a material plate D with the density function $\gamma(x, y)$. Calculate the moments of inertia of the quarter of a circle of radius D, located in the 3rd quadrant, with the density function $\gamma(x, y)=x y$.

