MATHEMATICAL ANALYSIS 2

Final Test, version D.

1. (1p.) Write the general and the directional forms of equation of the tangent plane to the graph of the function $z=\frac{\cos \left(x^{2}+y^{2}\right)}{e^{x y}}$ at the point $\left(-\pi, \pi, z_{0}\right)$.
2. (2p.) Which points are called critical? What types of critical points there exist? Find and classify all the critical points of the function $f(x, y)=x^{2}+y^{2}-4 x y+x-y$.
3. (3p.) Write the formulae for moments of inertia for a material body U with the density function $\gamma(x, y, z)$. Calculate the moments of inertia of the cylindrical ring $U=\left\{(x, y, z): 1 \leqslant x^{2}+y^{2} \leqslant\right.$ $2,|z| \leqslant 1\}$ with the density function $\gamma(x, y, z)=z^{2}$.
4. (3p.) Write the change of variables formula in a double integral. Performing a proper change of variables, calculate

$$
\iint_{D}\left(x^{3}+y^{3}\right) d x d x y, \quad D=\left\{(x, y): 1 \leqslant x y \leqslant 2, y^{3} \leqslant x \leqslant 2 y^{3}\right\} .
$$

Draw the domain of integration in (x, y) - and new coordinates.

