MATHEMATICAL ANALYSIS 2
Worksheet 1.
Second and higher order derivatives. Convexity. Sylvester’s criterion.

Theory outline and sample problems

The higher order partial derivatives are defined iteratively; that is, for a given function f(x,y)
its second order partial derivatives are defined as the partial derivatives of the first order partial
derivatives f;(z,y), f,(7,y), considered as new functions. For a function of two variables f(x,y),

there exist two partial derivatives of the first order f(z,y), f,(z,y), and four (2 x 2 = 4) partial
derivatives of the second Qrder: e (T, Y)s fa (@, 9), fon(2,9), fir, (2, y). Not all of them are different,
though, due to the following

Theorem 1. (The Schwartz theorem). Let for a function f(x,y) the mived derivative f;, and
e be well defined at the point (ro,y0) and fy, be continuous at this point. Then f, (7o,y0) =

;/,/33(950, Yo)-

In other words, if the mixed derivatives are well defined and one of them is continuous, then
they coincide. The continuity condition is quite mild and is typically satisfied; that is, there are
typically 3 different partial derivatives of the second order for a given function f(z,y).

Control question: How many different partial derivatives of the second order has a function
f(z,y,2)? Answer: 6. Explain, why!

The partial derivatives of the 3-rd, 4-th, ... orders are defined similarly, and for them the analogue
of the Schwartz theorem is true; that is, the mixed derivatives taken with the various order of
variables coincide, provided they are well defined and continuous. For instance, the third order

: s " " s s
derivatives f,7, (z,y) and f;7 (z,y) coincide.

Control question: How many different partial derivatives of the third order has a function f(x,y)?
A function f(z,y,2)? Answers: 4,10. Ezplain, why!

Sample problem 1: Calculate all partial derivatives of the 2nd order of the function
f(z,y) = cos(z® +1°)
Solution: Calculate first the 1st order partial derivatives:

fi(z,y) = —sin(2® 4+ y*)(2® + v*)), = —2wsin(z® + °),

fol@,y) = — sin(z? + y?)(2® + y2)fy = —2ysin(2® + y?),

where we have used the chain rule and the table of derivatives. Then similarly calculate, using in
addition the product formula,

fo(z,y) = (—2x sin(xZ—l—yQ)); = —2sin(2?+y?)—2z cos(z’+4?)(22) = —2sin(2?+y?)—42? cos(z*+4?),
fi(xy) = (2xsin(a® + ), = =2z cos(z® + y°)(2y) = —day cos(z® + y?),

Ty
Fyg(@,y) = (=2ysin(z® + ¢?)), = —2sin(2? + y*) — 4y* cos(2? + y*).
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The function f(z,y) is differentiable in y; that is, f,,(7,y) is well defined; in addition f; (z,y) is
continuous. Then by the Schwartz theorem

fow(@,y) = [, (2,y) = —day cos(z® + ).

Definition 1. The Hessian of the function f(xy,...,z,) at the point (z,yo) is the matrix

n

Hy(z0,90) = (f;f;/ixj (o, yo))

2,j=1



For example, for the function f(z,y) in the sample problem 1

Hy(o,y) = ( ~250(@" +9°) — 4o cosla® + ) —day cos(a® + )
Y= —4ay cos(z? + y?) —2sin(z? + y?) — 4y? cos(a? + y?)

Note that the Hessian is a symmetric matrix, provided that its entries are continuous; this is just
the Schwartz theorem.

The reason why it is natural to place the partial derivatives of second order into a matrix becomes
clear when one looks at various one-dimensional sections (or traces) of the function. Recall that,

for the function of two! variables f(z,y) its section in the direction v = (a,b) at the point (¢, yo)
is the function Fi,, 4)v(t) = f(zo +at,yo +0bt),t € R. The derivative of this function at the point
t = 0 equals to the directional derivative of f in the direction v at the point (z¢,yo), and is equal

d
Pl = V(. 0) v = fi(ao, o + £y 0,30}
where Vf = (f;, f,) is the gradient, or the vector derivative of the function. For the second
derivative, the similar formula is available, which involves the Hessian:
d2
ﬁF(xo,yo)aV(t) o - VHf([Eo, yO)VT - f:;/m(lba y0>a2 + 2f:gy<a?07 ?JO)ab + fg;/y(x(h 90)52-

The second derivative of a function F'(t) is a convenient tool for description of convexity /concavity
of this function. Recall that F(¢) is said to be convex on an interval (to,¢;) if for any s,t € (g, 1)
and any « € (0,1)
Flas+ (1 —a)t) < aF(s)+ (1 — a)F(t);

for the function to be concave the inequality should be ‘>’. Geometrically, the function is co-
nvex/concave if the the horde connecting two points on the graph (points (¢, F'(t9)) and (t1, F'(t1))
is located over/under the graph. The point ¢ is called a convexity/concavity point for the function
F(t) if this function is convex/concave at some neighbourhood (t —¢,t+¢€) of the point . Sufficient
condition for convexity (concavity) is that F”(t) > 0 (resp. F"(t) < 0).

For a function f(z,y) we say that a point (g, yo) is a convexity/concavity point in a direction v
if, for the section of f in this direction, the point ¢ = 0 is a convexity/concavity point.

Sample problem 2: Find the points of convexity and concavity for the function

f(z,y) = 2* + y* — 3zy in the direction v = (—1,1).
Solution: Calculate the gradient and the Hessian of the function:

6xr —3
The second derivative of the section function in the direction v:

VH (20, y0)v' = 620(—1)% + 2(=1)1(=3) + 6y91* = 620 + 630 + 6.

Then _ . .
(%0, Yo) is a concavity point, zg+yo < —1
(70, Yo) is a convexity point, zg+yo > —1
The boundary case xy + yo = —1 is not covered by the sufficient condition, and should be studied

separately. Note that v is the direction vector for the line ¢ = {z+y = 1}, thus if (z¢,yo) € ¢ then
for any t € R the point (zg,yo) + tv € £. Therefore for such (z¢,yo) one has d; Flagyo)v(t) = 0,
which means that the section Fl(g ) v(t) is a linear function of ¢. The linear function is both
convex and concave, hence the final answer is

(x0,Y0) is a concavity point, To+ 1 < —1
(x0,Y0) is a convexity point, To+ 1y > —1
(20, Yo) is both a concavity and a convexity point, x4+ yo = —1

'For simplicity of notation, only; the same relations hold true for arbitrary number of variables



Definition 2. A set D C R? is convex if, for any two points X,Y € D, the segment [X,Y]
connecting these points belongs to D. Function f(x,y), (x,y) € D is called convex if D is convex
and for any (z1,y1), (z2,y2) € D and any a € (0,1)

flazy + (1 — a)zg, ayr + (1 — @)ya) < af (z1,91) + (1 — a) f(22, y2);
for the function to be concave the inequality should be ‘>’.

Geometric meaning of this definition is the same as for the above one-dimensional one: for a
function to be convex/concave, any horde connecting two points on the graph has to be located

over/under the graph; note however that now the graph is a surface, not a curve. The requirement
that the domain D is convex, from this point of view, is just the requirement that for each point
on the horde there should be a point on the graph to compare with.

The point (g, yo) is called a convexity/concavity point for the function f(x,y) if this function is
convex/concave when restricted to some (small) ball B.(zo, yo) centered at this point, B.(zo, o) =

{(z,y) : \/(a: —20)? 4+ (y — yo)? < €}. For (zg, yo) to be a convexity /concavity point it is equivalent

that (zo,yo) is a convexity/concavity point at each direction v. This leads to the useful sufficient
condition for convexity in the terms of the Hessian.

Definition 3. A symmetric n X n-matrix A is called
e positive definite, if vAv' > 0 for any v # 0;
e negative definite, if vAv' < 0 for any v # 0.

Theorem 2. For (xg,yo) to be a convexity/concavity point for a function f(x,y) it is sufficient
that the Hessian of the function in this point is positive/negative definite.

There exists a convenient criterion for a matrix to be positive/negaitive definite.

Theorem 3. (The Sylvester criterion) For a symmetric matriz A to be positive defined it is
necessary and sufficient that for each sub-matriz Ay of the size k x k,k =1,...,n, which has the
same upper left corner with the original matriz, the determinant is positive.

For the matriz to be negative defined, the determinants of Ay should have the signs —1,4+1,—1,...
fork=1,2,3,....

Sample problem 3: Study if the following matrix is positive/negative definite: ( % Z >
Solution: We have

det Ay = det(3) =3 > 0, detAgzdet<§ i)=3>o,

hence the matrix is positive definite.

Sample problem 4: Write the Hessian of the function and specify the domains where the Hessian
is positively /negatively defined, f(x,y) = cos(z? + ?).
Solution: We have already calculated the Hessian,

Hy(x,y) — —2sin(z? + y?) — 42? cos(x? + y?) — 4y cos(a? + y?)
Y= —4zy cos(z? + y?) —2sin(2? + y2) — 4y2 cos(2? + y?) )

For the Hessian to be either positive or negative defined it is necessary that the second minor is
positive, i.e.

det Hy(z,y) = (2sin(z? + y?) 4 42 cos(z? + 3%)) (2 sin(z? + y?) + 4y° cos(a® + ) — 1627y cos(z® + )
= 4sin(2® + %) + 8(2? + y?) sin(2® + y?) cos(z® + y*) > 0



If this condition is satisfied, then the Hessian is positive definite if —2sin(z? + y?) — 422 cos(z? +
y*) > 0, and negative definite if the sign is <. Thus, the answer is that H(x,y) is positive defined
if

4sin(z? + y?)* + 8(2% + y?) sin(z? + y?) cos(z? + y?) > 0,

—2sin(z? + y?) — 4a? cos(z?* + y?) > 0,
and is negative defined if

4sin(z? + y?)? + 8(2% + y?) sin(z? + y?) cos(z? + y?) > 0,

—2sin(x? + y?) — 422 cos(z? + y?) < 0.

Concavity/convexity naturally applies for the study of local extrema of the functions of several
variables.

Definition 4. A point (zg,%o) is a local maximum of a function f(z,y) if there exists a (small)
ball B.(zo,yo) centered at this point, such that

f(z,y) < f(wo,90), (,9) € Be(wo, o)

A point (xg, o) is a local minimum, if

f(l”y) > f(x07y0>a (l’,y) S Be(x07y0)'

Local extremum point is a point of either local maximum or local minimum.

Theorem 4. I (Necessary condition of a local extremum) If (zo,yo) is the interior point of
the domain of a differentiable function f(z,y) and (xg,yo) is a local extremum, then
V (w0, y0) = 0. (%)

Any point (xo,yo) satisfying (*) is called a critical point of the function f(x,y).

II (Sufficient condition of a local extremum) If (xq,yo) is a critical point and a point of conve-
zity/concavity for f(z,y), then it is a local minimum/mazimum.

The following classification of the critical points on a plane is standard: if det H¢(xo, yo) # 0, the
eigenvalues A\, Ay of this matrix is non-zero, and the following three possibilities are available,
only:

o A\, Ay >0, Hy(zo,yo) is positive definite, (z9,yo) is a convexity point and a local minimum;
o A\, A2 <0, Hp(xo,yo) is negative definite, (2o, yo) is a concavity point and a local maximum;

e )\, \y have different signs, f is convex/concave in different directions (namely, eigenvectors
for H¢(zo,v0)), in this case (xg,yo) is called a saddle point

Sample problem 5: Find and classify all the critical points of f(x,y) = 4 + 2* + y* — 3xy.
Solution: To find the critical points, we have to solve (*). Calculate the gradient:

Vf(z,y) = (32* — 3y, 3y* — 32).
Then (*) is equivalent to the system of equations

.2 2
y=a <:>{y_“"4 —
r=1y r=u

{3x2—3y:0

3y? — 37 =0 <:’{

We have 6 5
l’ —_—



and Hy(1,1) is positive definite, while H[(0,0) is neither positive nor negative definite and
det H¢(0,0) = —9 # 0. Thus (1,1) is a local minimum, (0,0) is a saddle point, and there is
no other critical points.

Problems to solve

1. Calculate all partial derivatives of the 2nd order of the functions
3

(@) (29) = sin(a® — 7). (0) flry) = ye'*7 (©) Fay) = tgr +
= £ f(@,y,2) = (1 + 22 +1* + 29).

(d) f(z,y) =Inl+axy, (e) flw,y,2) = N ()

2. Write the Hessian of the function and specify the domains where the Hessian is positive /negative
definite. y

(a) f(w,y) =sin(@® +97),  (b) f(w,y) =aye™, () flw,y) =z + 5,
(@ ) =l vay, (@) f@n) = Zm—s (1) (@) =l +a*+12)

3. Study the following matrices for being positive/negative definite.

3 3 1 2 —1 24
(3 %) oL 1) “)(i ;§>,

34 1 5 2 3 2 2 -5 -1
m>(45 2),<@(21 2) o 22 L 2

1 2 17 32 6 R

4. Find the points of convexity /concavity for the function f(z,y) = 2* + y* — 42y in the direction
v=(1,1).

5. Find and classify all the critical points of f(x,y) = 22 4+ y* — 3zy.
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6. Find and classify all the critical points of f(z,y) = 22* — 32y — 122% — 3y°.
7. Find and classify all the critical points of f(x,y) = 22y — y* + 2° + 2°.

8. Calculate all partial derivatives of the 3rd order of the functions

(a) f(z,y) =cos(z® +¢*) (b) flz,y) =€ (c) flz,y) =T +y.



