MATHEMATICAL ANALYSIS 2
Worksheet 12.
Taylor formula. Power series. Taylor-Maclaurin series. Generating functions

Theory outline and sample problems

We have seen that the derivative of the function can be used in order to approximate the function,
in a vicinity of a given point, by a linear function:

f(@) & f(xo) + ['(xo)(z — o). (1)

The approximate identity sign ‘~’ here can be understood various ways, most of them involving
an information about the approzimation error, or the residual term

R(z,x0) = f(x) — f(x0) — f'(wo)(x — xo)
Theorem 1. Let function f be differentiable on an interval [a,b] and x¢ € (a,b). Then

(a)

¢

R(x, zy)

— 0, x— zg;
|z — z¢]

(b) there exists a point 0, intermediate between points x and xq, such that
R(w,a0) = (f'(0) = f'(x0))(x — x0), € [a,b].

Statement (a) in the above theorem tells us that, infinitesimally, i.e. when x — x, is (infinitely)

small, the residue of the approximation is neghglble w.r.t. the linear part. Statement (b) is of the
prln(:lpal importance, because it gives a bound for the approximation error for the given pair of

points x, zg:
| R(, z0)| < |2 — ol Sup £(0) = f'(xo0)]
0€lxo,x

Statement (b) is actually the Lagrange theorem, properly re-written; in its original form the La-
grange theorem (AKA the Mean Value theorem) states that

f@) = f(xo) = f(0)(z — o).

The Taylor formula can be understood an extension of the above approximation formula, where
instead of linear functions polynomials are used as approximations.

Theorem 2. Let function [ have n derivatives on an interval [a,b] and x¢ € (a,b). Then

£(0) = F(a0) + £@0)& = m0) + 3" (@u) i = a0)? + -+ = f O o) = 0)" + R 20,

wheren! =1-2-----n, and
(a)
Rn(xer)

—0, = — x0;
|z — x|



(b) there exists a point 0, intermediate between points x and xq, such that

R(z,w0) = - (F(8) ~ /) o)) (& — w0)"

If the function f have n derivatives on an interval |a,b], then there exists a point ¥, intermediate
between points x and xy, such that

F(a) = Fw) + £/ (ao)(w — w0 + 5 f"(@o) @ — o) + -+ [ o) @ — 0)" + Rl ), (2)

R (2, 0) FrD@) (@ — wo)™ . (3)

(n+1)!

Identities (2), (3) are called the Taylor formula of the order n with the residue in the Lagrange
form. These identities give a practical tool for approximating functions, with increasing accuracy,
by polynomials. The accuracy of approximation can be estimated using the formula

- — o[ sup | (y).

R,(z,x)| < ———
[£in(, 70) (n+1)! velab)

Sample problem 1: : Write the Taylor formula of the orders n = 2,3 at the point xq = 0 for the
function f(z) = sinz?. Estimate respective approximation errors at the interval [—1,1].

Solution: We have
f'(x) =2xcosx®, f"(x) =2cosa® —4a?sina®, f"(r) = —12rsinz? — 82° cos 22,
fW(x) = (142" — 12) sin2® — 24(2® + 1) cos 2%,
and
f(0)y=0, f(0)=0, f"0)=2, f"(0)=0.
=1, 20=2 3 =6 4/ =24
Then the 2-nd and the 3rd order Taylor formulae have the form

In addition,

1

sin(z?) = 0+ 0(x — 0) + 52@ —0)? + Ry(2,0) = 2° 4+ Ry(x,0),
1

sin(z?) = 0+ 0(z — 0) + 52(ac —0)? + R3(7,0) = 2% + R3(x,0).

Since
|f"(z)| = |12z sin 2% 4 823 cos 22| < 20, |fW(x)| < [142* — 12| + 24(2? + 1) < 50, =z € [-1,1],

we have

20 10
|R2($>O)| < —HLU - 0|3 = —|.T’37
6 3
50 25
< 2ol = 22t
R 0)] € e = 0 = 2

The above example shows clearly that, while n is increasing, the approximation accuracy for
the Taylor formula typically improves. The Taylor series appears when, in this approximation,
n — oo; in this setting, an approzimation formula transforms to a true identity. To deal with
such an identity rigorously, we need to introduce several new notions.



Definition 1. (I) An infinite (number) series is a sum of the form ) 7 a,, where ag,ay, ...
are real numbers. This infinite sum is defined as a limit, as N — oo, of the partial sums

SN = ZnN:O Q.

(II) A functional series is a sum of the form Y ° , f,(x) where fo(z), fi(x),... are functions
defined on some interval [a,b]. The infinite sum is obtained as a collection of sums of
number series in each point = € [a, b].

(ITI) A power series is a functional series with f,(x) = a,(z — x¢)", where ag,ay,... are real
numbers and xg is a given number.

The notion of convergence of a functional series (that is, the sum of an infinite number of functions)
requires a certain accuracy. It is highly desirable for the standard operations of differentiation and
integration to be adjusted with this notion. It appears that the point-wise convergence introduced
above is not well adjusted with these basic analysis tools. This motivates the following

Definition 2. A functional series ) , f,.(z) converges uniformly to a function f(z) on a segment
a, b] if
—0, N — o0.

sup
z€a,b]

Theorem 3. (1) Let functional series Y - fn(x) converge uniformly to a function f(z) on a

segment [a,b]. Then for every [c,d] C |a, b,

/Cdf(x)dx = g/cdfn(x)dx

(II) Let functional series Y, fn(x) converge to a function f(x), and the series > - f, ()
converge uniformly on a segment [a,b]. Then f(x) is differentiable and

flla)=2 fu(x).

For a power series, it is quite easy to describe the interval of convergence.

Theorem 4. (The Cauchy-Hadamard theorem) For any power series y -, an(x—x)" there exists
unique number A € [0, 00] such that the sequence |a,\"| is bounded whenever |A\| < A and |a,\"|
is unbounded whenever |X| > A. The power series Y~ a,(x — zo)" converges uniformly on any
segment [a,b] C (zg — A, xo + A) and diverges at any point x outside of [xg — A, xo + A].

The interval (zg — A, zo + A) is called the interval of convergence of the power series > >~ a,(x —

x9)", and A is caller the radius of convergence. Frequently, the radius of convergence can be
calculated as a limit, if of either of the following limits exists:

(4)

With these preliminaries made, we can proceed to the main topic of this section, which is the
Taylor-Maclaurin series.



Definition 3. The Taylor series of a function f(z) at a point z; is the power series
Flao) + F0)(e — 20) + S F ) — o) = 3 fO ) — o)
0 0 o) 3 0 0) 2 o o)™

This series has a certain convergence interval I = (xg — A, zg+ A). If for x € I the residues in the
Taylor formula (2) satisfy
R, (z,29) - 0, n — oo,

then the function f(z) has the Taylor series representation
o 1 .
Zn_ 0)(x —x)", x€ (vg— A zo+A).
n=0

The Taylor series with x¢ = 0 is called the Maclaurin series.

Sample problem 2: : Write the Taylor-Maclaurin series representation for the function f(z) = o

Solution: Writing f(x) = (1 + 2)~!, we can calculate the derivatives:
flla)y==(1+2)% f2)=(-1)(=2)A+2)  =2(1+2)7. ..,

() = (=1)(=2)...(—n)A +2)™ = (=1)"n!(1 +2)™ L, ...
Then the Taylor series at ¢ = 0 has the form

> (=1t

n=0

and its follows from (4) that the radius of convergence A = 1. Using the formula for the sum of
an infinite geometric progression, we get that, for any = € (—1,1),

o0 o0

non n 1 1
S =Y ) = e = Ty

n=0 n=0

i.e. f(r) = 115 has the Taylor-Maclaurin representation

1—1—:1: Z

n=0

Sample problem 3: : Write the Taylor-Maclaurin series representation for the function f (x) =
sin x.

Solution: Calculate the derivatives:
fl(x) =cosz, f"(z)=—sinz, f"(x)=—cosz, fH(zr)=sinz=f(z),

and then all the higher order derivatives can be calculated cyclically:

f(4k+j)(x) — f(j)(x), j=0,1,2,3, k>1.



Since sin(0) = 0, cos(0) = 1, the Taylor-Maclaurin series has the form

1 1
0+1$+§0x2+6(—1)x3—|—....

The even terms in the sum are zero, while an odd term with the number n (i.e., with the overall
2n—1

number 2n — 1) equals (—1)"‘1h. That is, after eliminating the zero terms and renumbering
the series has the form
oo l‘2n71
PG i SR
— (2n —1)!
The sequence
(_1)71—:172”71 = Iz . lal el n>1
(2n —1)! 1 2 2n-1 -
is bounded for any z, hence the radius of convergence A = oc.
Finally, since
1 1
R.(z)| = () (9| < =0
Ru@)] = T £ O] € gy 0.
we have the Taylor-Maclaurin series representation
> 2n—1
: _ _1\n—1 T
SlniL‘—Z( 1) 2n =11

n=1

Knowing the Taylor-Maclaurin series representation for some function

f(z) = Zana:”, x € (—AN),

n=0

we can provide the representation for other functions, which are obtained from this one by natural
transformations

1. Scaling of the argument: if g(x) = f(cz), then

> o A A
g(x)—nzzoancx, xE(—E,E),

2. Shift of the argument: if g(x) = f(z — b), then

A A

g(x) = an(z—b)", ze(b- b+ 2);

3. Multiplying by a monomial: if g(z) = 2 f(x), then

g(x) = Zanx"+k = Zan_kzzn, r e (——,—);
n=0 n=~k

c C



4. Differentiation: for g(z) = f'(x),

= Znam:"’l = Z(n + Day12", =€ (—AAN).
n=1 n=0
5. Integration: for g(z) = [ f(v) dv,
g(x) = i In_gntl = i Inlpn ze (—A,A).
n=0 n+ 1 n=1 n
Sample problem 4: : Write the Taylor-Maclaurin series representation for the functions (1 —
)" In(1 — x).
Solution: We have by Sample problem 2
(I-a) ' =1+ (-2) ' =) (~D)"(-a)" =) ", we(-11).
n=0 n=0

Since N
In(1—z) = —/ (1—v)tdv,
0

after integration we get
n+1

o ooxn

n=0

Such transformations often makes it possible to calculate values of particular infinite sums.

Sample problem 5: : Find > °°

n=1 2” .
Solution: We know that

n=0
and hence .
an”’l (1—=) 1), =(1—x)?
n=1
Then )
“n e . 1 1\~
— = — ne =—(1—-= = 2.
Zagn 2 ;m omtjz 2 ( 2)

Knowing the Taylor-Maclaurin series representation of a function actually gives us a knowledge
of all its derivatives at the point 0:

F@) =S ™ = a, = % FO(0) = f™(0) = annl. (5)



Sample problem 6: : Find f(1001)(0), £2020(0) for f(x) = 2°sinz.
Solution: We have by Sample problem 3

5 . 5 o0 i m?n—l o . :L.2n+4

To use (5), we have to return to find the coefficients ajgo1, a0 in the representation f(x) =
Yoo ganx™. We have non-zero coefficients for the even terms starting from 6, only; that is,

ayoo1 = 0 and thus 99D (0) = 0. Next, to get the power 2n+4 = 2020, we have to take n = 1008,
hence
1 1

B 2020
2015!  2015!"

2015!

ag020 = (—1)107 f2029(0) = = —2020 - 2019 - 2018 - 2017 - 2016.

Below, a table of several most important Taylor-Maclaurin series is given; the notation

(a) ala—1)...(a—n+1)

n) = n!

is used for the so called generalized binomial coefficient.

Name Function Series Interval of convergence
Exponential e’ Sy " R
Sine sinz p (—1)”%
Cosine cos Yo (=1 é:;! R
Generalized Binomial (14+z)" | >, ( ?L ) z" (—1,1)
Generalized Binomial, a = =1 | (14+2z)" ' [ > (=1)"a" (—1,1)
Logarithm In(l1+z) | > (-1)" (—1,1)

Taylor-Maclaurin expansions can be used as a tool for solving difference equations. The key notion
here is the generating function of a sequence, which is a discrete-value analogue of the Laplace
transform.

Definition 4. Generating function of a sequence {a,,n > 0} is the sum of the power series

G(z) = i anz"
n=0

The following property is straightforward.
Proposition 1. Let p € N, and G,,}(2) be the generating function for a sequence {ay,}. Then

Glansn)(2) = 27PGray (2) — 27 Yay g — -+ — 2 Pay.



Proof.

oo o0 o
_ n __ n+p __ n -1
PGa,, 1 (2) = 27 g Upgp? = E Upip2" P = g anz" —ag — a1z — - — ap_12°
n=0 n=0 n=0
]

Sample problem 7: : Find the generating function of the sequence satisfying the difference equation
Tpio =Tp1+x,+1, n>0, 20=0, x=1.

Knowing the generating function, find the sequence.

Solution: By Proposition 1,
Gony(2) = 272G (2) =271, G (2) = 271G(2),

where G(2) = Gy,,3(2) is the generating function we are looking for. The generating function for
a, = 11is i Hence, calculating the generating function for both sides of identity we get

1

272G(2) — 2zt = 271G(2) + G(2) + T

It is convenient to introduce temporarily the new variable v = z~!, then

2_ _— = pr—
G(z)(v* —v—1) v+1_1/v U+v—1 7

This gives the expression for the function G(2):

’U2

G e e oy ) S

To find the sequence {x,}, we decompose the rational expression above into simple fractions:

2 A B C 1£vV5
Y = + + ;A= \/_
(—v—=—1w-=1) v—=XA v—=XA wv-—1

The unknown coefficients satisfy the system

A+B+C=1
/\214 + /\1B + )\1)\20 == 0
Solving this system, we get
A=1+ 2, B=1-2, C=-1



e 6 D)

This gives the final answer for the sequence x,,: zo = 0 and

T, = (1+%) <1+2\/3)n—1+ (1—%) (1_2\@)”_1—1, n>1.

Problems to solve

1. Write the Taylor formula of the orders n = 2,3 at the point xq = 0 for the given function, and
estimate approximation errors on the given interval

(a) f(z)=e% xe[-1,1];
(b) f(z) =In(1+2?),z€[-1/2,1/2].

2. Determine the Taylor-Maclaurin series for the given function

(a) f(x) = cos (4z);

(b) f(z) = abe*";
(¢) f(x) = xcos2z?;
100

@ f@) = {7

3. For each function from the previous problem find f(2°29)(0).

4. Determine the Taylor series for the given function f(z) and xy. Provide two solutions: using
the formula for the coefficients and the change of variables.

(a) f(z)=e % 29 = —4
(b) f(z) =In(3+4x),x0=1;

(©) f (@)= Tm0=—3

5. For each of the series in the previous problem determine the interval of convergence.

6. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums



(n+ )27’
o0 1 n
(e) Z Py P (Hint: consider the limit of Z TQ) asz /1).

7. Using the Generalized Binomial function, determine the Taylor-Maclaurin series for the given
function

(a) f(z) = V1—a%
1

(b) f(z)= ﬁ;
(©) f(2) = Jms
@ F) =

8. Find the generating function of the sequence satisfying given difference equation. Knowing the
generating function, find the sequence.

Tpy2 =Tppi+ T, +2"% n>0, zg=0, z,=1

Tpio =Tp1+Tp+n, n>0, 20=0, z;=1.



