MATHEMATICAL ANALYSIS 2
 Worksheet 12.

Taylor formula. Power series. Taylor-Maclaurin series. Generating functions

Theory outline and sample problems

We have seen that the derivative of the function can be used in order to approximate the function, in a vicinity of a given point, by a linear function:

$$
\begin{equation*}
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \tag{1}
\end{equation*}
$$

The approximate identity sign ' \approx ' here can be understood various ways, most of them involving an information about the approximation error, or the residual term

$$
R\left(x, x_{0}\right)=f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Theorem 1. Let function f be differentiable on an interval $[a, b]$ and $x_{0} \in(a, b)$. Then
(a)

$$
\frac{R\left(x, x_{0}\right)}{\left|x-x_{0}\right|} \rightarrow 0, \quad x \rightarrow x_{0}
$$

(b) there exists a point θ, intermediate between points x and x_{0}, such that

$$
R\left(x, x_{0}\right)=\left(f^{\prime}(\theta)-f^{\prime}\left(x_{0}\right)\right)\left(x-x_{0}\right), \quad x \in[a, b] .
$$

Statement (a) in the above theorem tells us that, infinitesimally, i.e. when $x-x_{0}$ is (infinitely) small, the residue of the approximation is negligible w.r.t. the linear part. Statement (b) is of the principal importance, because it gives a bound for the approximation error for the given pair of points x, x_{0} :

$$
\left|R\left(x, x_{0}\right)\right| \leq\left|x-x_{0}\right| \sup _{\theta \in\left[x_{0}, x\right]}\left|f^{\prime}(\theta)-f^{\prime}\left(x_{0}\right)\right|
$$

Statement (b) is actually the Lagrange theorem, properly re-written; in its original form the Lagrange theorem (AKA the Mean Value theorem) states that

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(\theta)\left(x-x_{0}\right) .
$$

The Taylor formula can be understood an extension of the above approximation formula, where instead of linear functions polynomials are used as approximations.

Theorem 2. Let function f have n derivatives on an interval $[a, b]$ and $x_{0} \in(a, b)$. Then

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+R_{n}\left(x, x_{0}\right),
$$

where $n!=1 \cdot 2 \cdots \cdot n$, and
(a)

$$
\frac{R_{n}\left(x, x_{0}\right)}{\left|x-x_{0}\right|^{n}} \rightarrow 0, \quad x \rightarrow x_{0}
$$

(b) there exists a point θ, intermediate between points x and x_{0}, such that

$$
R\left(x, x_{0}\right)=\frac{1}{n!}\left(f^{(n)}(\theta)-f^{(n)}\left(x_{0}\right)\right)\left(x-x_{0}\right)^{n} .
$$

If the function f have n derivatives on an interval $[a, b]$, then there exists a point ϑ, intermediate between points x and x_{0}, such that

$$
\begin{gather*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+R_{n}\left(x, x_{0}\right) \tag{2}\\
R_{n}\left(x, x_{0}\right) \frac{1}{(n+1)!} f^{(n+1)}(\vartheta)\left(x-x_{0}\right)^{n+1} \tag{3}
\end{gather*}
$$

Identities (2), (3) are called the Taylor formula of the order n with the residue in the Lagrange form. These identities give a practical tool for approximating functions, with increasing accuracy, by polynomials. The accuracy of approximation can be estimated using the formula

$$
\left|R_{n}\left(x, x_{0}\right)\right| \leq \frac{1}{(n+1)!}\left|x-x_{0}\right|^{n+1} \sup _{y \in[a, b]}\left|f^{(n+1)}(y)\right|
$$

Sample problem 1: : Write the Taylor formula of the orders $n=2,3$ at the point $x_{0}=0$ for the function $f(x)=\sin x^{2}$. Estimate respective approximation errors at the interval $[-1,1]$.
Solution: We have

$$
\begin{aligned}
f^{\prime}(x)=2 x \cos x^{2}, \quad f^{\prime \prime}(x) & =2 \cos x^{2}-4 x^{2} \sin x^{2}, \quad f^{\prime \prime \prime}(x)=-12 x \sin x^{2}-8 x^{3} \cos x^{2}, \\
f^{(4)}(x) & =\left(14 x^{4}-12\right) \sin x^{2}-24\left(x^{2}+1\right) \cos x^{2},
\end{aligned}
$$

and

$$
f(0)=0, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=2, \quad f^{\prime \prime \prime}(0)=0
$$

In addition,

$$
1!=1, \quad 2!=2, \quad 3!=6, \quad 4!=24
$$

Then the 2-nd and the 3rd order Taylor formulae have the form

$$
\begin{aligned}
& \sin \left(x^{2}\right)=0+0(x-0)+\frac{1}{2} 2(x-0)^{2}+R_{2}(x, 0)=x^{2}+R_{2}(x, 0) \\
& \sin \left(x^{2}\right)=0+0(x-0)+\frac{1}{2} 2(x-0)^{2}+R_{3}(x, 0)=x^{2}+R_{3}(x, 0)
\end{aligned}
$$

Since
$\left|f^{\prime \prime \prime}(x)\right|=\left|12 x \sin x^{2}+8 x^{3} \cos x^{2}\right| \leq 20, \quad\left|f^{(4)}(x)\right| \leq\left|14 x^{4}-12\right|+24\left(x^{2}+1\right) \leq 50, \quad x \in[-1,1]$, we have

$$
\begin{aligned}
\left|R_{2}(x, 0)\right| & \leq \frac{20}{6}| | x-\left.0\right|^{3}=\frac{10}{3}|x|^{3} \\
\left|R_{3}(x, 0)\right| & \leq \frac{50}{24}|x-0|^{4}=\frac{25}{12}|x|^{4}
\end{aligned}
$$

The above example shows clearly that, while n is increasing, the approximation accuracy for the Taylor formula typically improves. The Taylor series appears when, in this approximation, $n \rightarrow \infty$; in this setting, an approximation formula transforms to a true identity. To deal with such an identity rigorously, we need to introduce several new notions.

Definition 1. (I) An infinite (number) series is a sum of the form $\sum_{n=0}^{\infty} a_{n}$, where a_{0}, a_{1}, \ldots are real numbers. This infinite sum is defined as a limit, as $N \rightarrow \infty$, of the partial sums $S_{N}=\sum_{n=0}^{N} a_{n}$.
(II) A functional series is a sum of the form $\sum_{n=0}^{\infty} f_{n}(x)$ where $f_{0}(x), f_{1}(x), \ldots$ are functions defined on some interval $[a, b]$. The infinite sum is obtained as a collection of sums of number series in each point $x \in[a, b]$.
(III) A power series is a functional series with $f_{n}(x)=a_{n}\left(x-x_{0}\right)^{n}$, where a_{0}, a_{1}, \ldots are real numbers and x_{0} is a given number.

The notion of convergence of a functional series (that is, the sum of an infinite number of functions) requires a certain accuracy. It is highly desirable for the standard operations of differentiation and integration to be adjusted with this notion. It appears that the point-wise convergence introduced above is not well adjusted with these basic analysis tools. This motivates the following
Definition 2. A functional series $\sum_{n=0}^{\infty} f_{n}(x)$ converges uniformly to a function $f(x)$ on a segment $[a, b]$ if

$$
\sup _{x \in[a, b]}\left|f(x)-\sum_{n=0}^{\infty} f_{n}(x)\right| \rightarrow 0, \quad N \rightarrow \infty
$$

Theorem 3. (I) Let functional series $\sum_{n=0}^{\infty} f_{n}(x)$ converge uniformly to a function $f(x)$ on a segment $[a, b]$. Then for every $[c, d] \subset[a, b]$,

$$
\int_{c}^{d} f(x) d x=\sum_{n=0}^{\infty} \int_{c}^{d} f_{n}(x) d x
$$

(II) Let functional series $\sum_{n=0}^{\infty} f_{n}(x)$ converge to a function $f(x)$, and the series $\sum_{n=0}^{\infty} f_{n}^{\prime}(x)$ converge uniformly on a segment $[a, b]$. Then $f(x)$ is differentiable and

$$
f^{\prime}(x)=\sum_{n=0}^{\infty} f_{n}^{\prime}(x) .
$$

For a power series, it is quite easy to describe the interval of convergence.
Theorem 4. (The Cauchy-Hadamard theorem) For any power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ there exists unique number $\Lambda \in[0, \infty]$ such that the sequence $\left|a_{n} \lambda^{n}\right|$ is bounded whenever $|\lambda|<\Lambda$ and $\left|a_{n} \lambda^{n}\right|$ is unbounded whenever $|\lambda|>\Lambda$. The power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges uniformly on any segment $[a, b] \subset\left(x_{0}-\Lambda, x_{0}+\Lambda\right)$ and diverges at any point x outside of $\left[x_{0}-\Lambda, x_{0}+\Lambda\right]$.

The interval $\left(x_{0}-\Lambda, x_{0}+\Lambda\right)$ is called the interval of convergence of the power series $\sum_{n=0}^{\infty} a_{n}(x-$ $\left.x_{0}\right)^{n}$, and Λ is caller the radius of convergence. Frequently, the radius of convergence can be calculated as a limit, if of either of the following limits exists:

$$
\begin{equation*}
\Lambda=\lim _{n \rightarrow \infty} \frac{1}{\left|a_{n}\right|^{1 / n}}, \quad \Lambda=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| . \tag{4}
\end{equation*}
$$

With these preliminaries made, we can proceed to the main topic of this section, which is the Taylor-Maclaurin series.

Definition 3. The Taylor series of a function $f(x)$ at a point x_{0} is the power series

$$
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n} .
$$

This series has a certain convergence interval $I=\left(x_{0}-\Lambda, x_{0}+\Lambda\right)$. If for $x \in I$ the residues in the Taylor formula (2) satisfy

$$
R_{n}\left(x, x_{0}\right) \rightarrow 0, \quad n \rightarrow \infty,
$$

then the function $f(x)$ has the Taylor series representation

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}, \quad x \in\left(x_{0}-\Lambda, x_{0}+\Lambda\right) .
$$

The Taylor series with $x_{0}=0$ is called the Maclaurin series.
Sample problem 2: : Write the Taylor-Maclaurin series representation for the function $f(x)=\frac{1}{1+x}$.
Solution: Writing $f(x)=(1+x)^{-1}$, we can calculate the derivatives:

$$
\begin{gathered}
f^{\prime}(x)=-(1+x)^{-2}, \quad f^{\prime \prime}(x)=(-1)(-2)(1+x)^{-3}=2(1+x)^{-3}, \ldots, \\
f^{(n)}(x)=(-1)(-2) \ldots(-n)(1+x)^{-n-1}=(-1)^{n} n!(1+x)^{-n-1}, \ldots
\end{gathered}
$$

Then the Taylor series at $x_{0}=0$ has the form

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

and its follows from (4) that the radius of convergence $\Lambda=1$. Using the formula for the sum of an infinite geometric progression, we get that, for any $x \in(-1,1)$,

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{n}=\sum_{n=0}^{\infty}(-x)^{n}=\frac{1}{1-(-x)}=\frac{1}{1+x}
$$

i.e. $f(x)=\frac{1}{1+x}$ has the Taylor-Maclaurin representation

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

Sample problem 3: : Write the Taylor-Maclaurin series representation for the function $f(x)=$ $\sin x$.

Solution: Calculate the derivatives:

$$
f^{\prime}(x)=\cos x, \quad f^{\prime \prime}(x)=-\sin x, \quad f^{\prime \prime \prime}(x)=-\cos x, \quad f^{(4)}(x)=\sin x=f(x),
$$

and then all the higher order derivatives can be calculated cyclically:

$$
f^{(4 k+j)}(x)=\quad f^{(j)}(x), \quad j=0,1,2,3, \quad k \geq 1
$$

Since $\sin (0)=0, \cos (0)=1$, the Taylor-Maclaurin series has the form

$$
0+1 x+\frac{1}{2} 0 x^{2}+\frac{1}{6}(-1) x^{3}+\ldots
$$

The even terms in the sum are zero, while an odd term with the number n (i.e., with the overall number $2 n-1$) equals $(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}$. That is, after eliminating the zero terms and renumbering the series has the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}
$$

The sequence

$$
\left|(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}\right|=\frac{|x|}{1} \cdot \frac{|x|}{2} \cdots \frac{|x|}{2 n-1}, \quad n \geq 1
$$

is bounded for any x, hence the radius of convergence $\Lambda=\infty$.
Finally, since

$$
\left|R_{n}(x)\right|=\frac{1}{(n+1)!}\left|f^{(n+1)}(\theta)\right| \leq \frac{1}{(n+1)!} \rightarrow 0
$$

we have the Taylor-Maclaurin series representation

$$
\sin x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}
$$

Knowing the Taylor-Maclaurin series representation for some function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad x \in(-\Lambda, \Lambda)
$$

we can provide the representation for other functions, which are obtained from this one by natural transformations

1. Scaling of the argument: if $g(x)=f(c x)$, then

$$
g(x)=\sum_{n=0}^{\infty} a_{n} c^{n} x^{n}, \quad x \in\left(-\frac{\Lambda}{c}, \frac{\Lambda}{c}\right)
$$

2. Shift of the argument: if $g(x)=f(x-b)$, then

$$
g(x)=\sum_{n=0}^{\infty} a_{n}(x-b)^{n}, \quad x \in\left(b-\frac{\Lambda}{c}, b+\frac{\Lambda}{c}\right)
$$

3. Multiplying by a monomial: if $g(x)=x^{k} f(x)$, then

$$
g(x)=\sum_{n=0}^{\infty} a_{n} x^{n+k}=\sum_{n=k}^{\infty} a_{n-k} x^{n}, \quad x \in\left(-\frac{\Lambda}{c}, \frac{\Lambda}{c}\right) ;
$$

4. Differentiation: for $g(x)=f^{\prime}(x)$,

$$
f(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}, \quad x \in(-\Lambda, \Lambda) .
$$

5. Integration: for $g(x)=\int_{0}^{x} f(v) d v$,

$$
g(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}=\sum_{n=1}^{\infty} \frac{a_{n-1}}{n} x^{n}, \quad x \in(-\Lambda, \Lambda) .
$$

Sample problem 4: : Write the Taylor-Maclaurin series representation for the functions (1-$x)^{-1}, \ln (1-x)$.
Solution: We have by Sample problem 2

$$
(1-x)^{-1}=(1+(-x))^{-1}=\sum_{n=0}^{\infty}(-1)^{n}(-x)^{n}=\sum_{n=0}^{\infty} x^{n}, \quad x \in(-1,1) .
$$

Since

$$
\ln (1-x)=-\int_{0}^{x}(1-v)^{-1} d v
$$

after integration we get

$$
\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

Such transformations often makes it possible to calculate values of particular infinite sums.
Sample problem 5: : Find $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
Solution: We know that

$$
\sum_{n=0}^{\infty} x^{n}=(1-x)^{-1}
$$

and hence

$$
\sum_{n=1}^{\infty} n x^{n-1}=\left((1-x)^{-1}\right)^{\prime}=(1-x)^{-2}
$$

Then

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\left.\frac{1}{2} \sum_{n=1}^{\infty} n x^{n-1}\right|_{x=1 / 2}=\frac{1}{2}\left(1-\frac{1}{2}\right)^{-2}=2
$$

Knowing the Taylor-Maclaurin series representation of a function actually gives us a knowledge of all its derivatives at the point 0 :

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Longleftrightarrow a_{n}=\frac{1}{n!} f^{(n)}(0) \Longleftrightarrow f^{(n)}(0)=a_{n} n! \tag{5}
\end{equation*}
$$

Sample problem 6: : Find $f^{(1001)}(0), f^{(2020)}(0)$ for $f(x)=x^{5} \sin x$.
Solution: We have by Sample problem 3

$$
x^{5} \sin x=x^{5} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+4}}{(2 n-1)!} .
$$

To use (5), we have to return to find the coefficients a_{1001}, a_{2020} in the representation $f(x)=$ $\sum_{n=0}^{\infty} a_{n} x^{n}$. We have non-zero coefficients for the even terms starting from 6, only; that is, $a_{1001}=0$ and thus $f^{(1001)}(0)=0$. Next, to get the power $2 n+4=2020$, we have to take $n=1008$, hence

$$
a_{2020}=(-1)^{1007} \frac{1}{2015!}=-\frac{1}{2015!}, \quad f^{(2020)}(0)=-\frac{2020!}{2015!}=-2020 \cdot 2019 \cdot 2018 \cdot 2017 \cdot 2016 .
$$

Below, a table of several most important Taylor-Maclaurin series is given; the notation

$$
\binom{a}{n}=\frac{a(a-1) \ldots(a-n+1)}{n!}
$$

is used for the so called generalized binomial coefficient.

Name	Function	Series	Interval of convergence
Exponential	e^{x}	$\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$	\mathbb{R}
Sine	$\sin x$	$\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}$	\mathbb{R}
Cosine	$\cos x$	$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$	\mathbb{R}
Generalized Binomial	$(1+x)^{a}$	$\sum_{n=0}^{\infty}\binom{a}{n} x^{n}$	$(-1,1)$
Generalized Binomial, $a=-1$	$(1+x)^{-1}$	$\sum_{n=0}^{\infty}(-1)^{n} x^{n}$	$(-1,1)$
Logarithm	$\ln (1+x)$	$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n}$	$(-1,1)$

Taylor-Maclaurin expansions can be used as a tool for solving difference equations. The key notion here is the generating function of a sequence, which is a discrete-value analogue of the Laplace transform.

Definition 4. Generating function of a sequence $\left\{a_{n}, n \geq 0\right\}$ is the sum of the power series

$$
G(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

The following property is straightforward.
Proposition 1. Let $p \in \mathbb{N}$, and $G_{\left\{a_{n}\right\}}(z)$ be the generating function for a sequence $\left\{a_{n}\right\}$. Then

$$
G_{\left\{a_{n+p}\right\}}(z)=z^{-p} G_{\left\{a_{n}\right\}}(z)-z^{-1} a_{p-1}-\cdots-z^{-p} a_{0} .
$$

Proof.

$$
z^{p} G_{\left\{a_{n+p}\right\}}(z)=z^{p} \sum_{n=0}^{\infty} a_{n+p} z^{n}=\sum_{n=0}^{\infty} a_{n+p} z^{n+p}=\sum_{n=0}^{\infty} a_{n} z^{n}-a_{0}-a_{1} z-\cdots-a_{p-1} z^{p-1}
$$

Sample problem 7: : Find the generating function of the sequence satisfying the difference equation

$$
x_{n+2}=x_{n+1}+x_{n}+1, \quad n \geq 0, \quad x_{0}=0, \quad x_{1}=1
$$

Knowing the generating function, find the sequence.
Solution: By Proposition 1,

$$
G_{\left\{x_{n+2}\right\}}(z)=z^{-2} G(z)-z^{-1}, \quad G_{\left\{x_{n+1}\right\}}(z)=z^{-1} G(z),
$$

where $G(z)=G_{\left\{x_{n}\right\}}(z)$ is the generating function we are looking for. The generating function for $a_{n}=1$ is $\frac{1}{1-z}$. Hence, calculating the generating function for both sides of identity we get

$$
z^{-2} G(z)-z^{-1}=z^{-1} G(z)+G(z)+\frac{1}{1-z}
$$

It is convenient to introduce temporarily the new variable $v=z^{-1}$, then

$$
G(z)\left(v^{2}-v-1\right)=v+\frac{1}{1-1 / v}=v+\frac{v}{v-1}=\frac{v^{2}}{v-1} .
$$

This gives the expression for the function $G(z)$:

$$
G(z)=\left.\frac{v^{2}}{\left(v^{2}-v-1\right)(v-1)}\right|_{v=z^{-1}} .
$$

To find the sequence $\left\{x_{n}\right\}$, we decompose the rational expression above into simple fractions:

$$
\frac{v^{2}}{\left(v^{2}-v-1\right)(v-1)}=\frac{A}{v-\lambda_{1}}+\frac{B}{v-\lambda_{2}}+\frac{C}{v-1}, \quad \lambda_{1,2}=\frac{1 \pm \sqrt{5}}{2} .
$$

The unknown coefficients satisfy the system

$$
\left\{\begin{array}{l}
A+B+C=1 \\
A\left(\lambda_{2}+1\right)+B\left(\lambda_{1}+1\right)+C\left(\lambda_{1}+\lambda_{2}\right)=0 \\
\lambda_{2} A+\lambda_{1} B+\lambda_{1} \lambda_{2} C=0
\end{array}\right.
$$

Solving this system, we get

$$
A=1+\frac{2}{\sqrt{5}}, \quad B=1-\frac{2}{\sqrt{5}}, \quad C=-1
$$

Then

$$
\begin{aligned}
G(z) & =\left(1+\frac{2}{\sqrt{5}}\right) \frac{z}{1-z \lambda_{1}}+\left(1-\frac{2}{\sqrt{5}}\right) \frac{z}{1-z \lambda_{2}}-\frac{z}{1-z} \\
& =\left(1+\frac{2}{\sqrt{5}}\right) z \sum_{n=0}^{\infty} z^{n}\left(\lambda_{1}\right)^{n}+\left(1-\frac{2}{\sqrt{5}}\right) z \sum_{n=0}^{\infty} z^{n}\left(\lambda_{2}\right)^{n}-z \sum_{n=0}^{\infty} z^{n} \\
& =\sum_{n=1}^{\infty}\left[\left(1+\frac{2}{\sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}+\left(1-\frac{2}{\sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}-1\right] z^{n}
\end{aligned}
$$

This gives the final answer for the sequence $x_{n}: x_{0}=0$ and

$$
x_{n}=\left(1+\frac{2}{\sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}+\left(1-\frac{2}{\sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}-1, \quad n \geq 1 .
$$

Problems to solve

1. Write the Taylor formula of the orders $n=2,3$ at the point $x_{0}=0$ for the given function, and estimate approximation errors on the given interval
(a) $f(x)=e^{3 x}, x \in[-1,1]$;
(b) $f(x)=\ln \left(1+x^{2}\right), x \in[-1 / 2,1 / 2]$.
2. Determine the Taylor-Maclaurin series for the given function
(a) $f(x)=\cos (4 x)$;
(b) $f(x)=x^{6} e^{2 x^{3}}$;
(c) $f(x)=x \cos 2 x^{3}$;
(d) $f(x)=\frac{x^{100}}{1+x^{3}}$.
3. For each function from the previous problem find $f^{(2020)}(0)$.
4. Determine the Taylor series for the given function $f(x)$ and x_{0}. Provide two solutions: using the formula for the coefficients and the change of variables.
(a) $f(x)=e^{-6 x}, x_{0}=-4$;
(b) $f(x)=\ln (3+4 x), x_{0}=1$;
(c) $f(x)=\frac{7}{x^{4}}, x_{0}=-3$;
5. For each of the series in the previous problem determine the interval of convergence.
6. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums
(a) $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$;
(b) $\sum_{n=2}^{\infty} \frac{2^{n}-n}{3^{n}}$;
(c) $\sum_{n=0}^{\infty} \frac{n(n+1)}{5^{n}}$;
(d) $\sum_{n=1}^{\infty} \frac{n}{(n+1) 2^{n}}$;
(e) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ (Hint: consider the limit of $\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+2)}$ as $x \nearrow 1$).
7. Using the Generalized Binomial function, determine the Taylor-Maclaurin series for the given function
(a) $f(x)=\sqrt{1-x^{2}}$;
(b) $f(x)=\frac{1}{\sqrt[3]{1+x^{3}}}$;
(c) $f(x)=\frac{x^{3}}{\sqrt{x^{2}+16}}$;
(d) $f(x)=\frac{x^{100}}{1+x^{3}}$.
8. Find the generating function of the sequence satisfying given difference equation. Knowing the generating function, find the sequence.
(a)

$$
x_{n+2}=x_{n+1}+x_{n}+2^{n}, \quad n \geq 0, \quad x_{0}=0, \quad x_{1}=1 ;
$$

(b)*

$$
x_{n+2}=x_{n+1}+x_{n}+n, \quad n \geq 0, \quad x_{0}=0, \quad x_{1}=1 .
$$

