
MATHEMATICAL ANALYSIS 2
Worksheet 6.

Ordinary differential equations of the first order. Existence, uniqueness and extending solutions.
Basic methods of solving of differential equations.

Theory outline and sample problems

Differential equations are the equations, where the unknown function is related to its derivatives.
Such equations appear quite commonly in various mathematical and real life models.

Examples. 1. Let certain quantity grow with the speed proportional to the quantity itself. Then
this quantity, as a function f(t) of time t, will satisfy

f ′(t) = af(t), (1)

where a ∈ R is the coefficient of proportionality. Differential equation (1) with negative a used
e.g. in physics to describe the process of radioactive decay; with positive a the same equation
describes the basic financial and biological effects, such as inflation and a non-restricted growth
of polpulation (‘the Malthusian growth model’).
2. Let the acceleration of a material point be proportional to the deviation of the point from the
origin. Since the acceleration is the derivative of the velocity, and thus the second derivative of
the deviation, the deviation as a function x(t) of time t, will satisfy

x′′(t) = ax(t). (2)

With a < 0, this is the equation of small oscillations of a pendulum, known also as ‘harmonic
oscillator’.
General differential equation has the form

F (x, y, y′, . . . , y(k)) = 0, (3)

where

• x is an independent variable;

• y = y(x) is the unknown function;

• F (x, y0, . . . , yn) is a given function.

Often, when the independent variable has a natural interpretation as time, it is denoted by t and
then the unknown function can be taken x = x(t). The highest order k of the derivative involved
into equation (3) is called the order of the differential equation.
Examples. Equation (1) is of the form

F (t, f, f ′) = 0, F (t, f, f ′) = f ′ − af,

and thus is the differential equation of the first order. Equation (2) is of the form

F (t, x, x′, x′′) = 0, F (t, x, x′, x′′) = x′′ − ax,

and thus is the equation of the second order. In this worksheet, we focus on the first order
differential equations, only.



The simplest type of a differential equation you are already familiar with has the form

y′(x) = f(x),

where f(x) is a given function which does not depend on unknown y(x). The solution to this
equation is the anti-derivative, or the indefinite integral for f(x),

y(x) =
∫
f(x) dx+ C.

For much more general differential equations, the structure of the set of solutions shows resem-
blance to the simple one above. In particular, there is typically a parametric set of the solutions
rather than a fixed solution. Because of such analogy, terminology ‘to integrate the differential
equation’ (too solve), ‘integral curve’ (one solution), etc. is frequently used.
Generally, the question how to integrate the differential equation (i.e., to determine all its solu-
tions) is quite complicated. In our course we will focus on particular classes of equations which
an algorithm for integration. The first, practically quite important class constitutes of separable
equations, which by the definition are the differential equations of the form

y′(x) =
M(x)
N(y)

(4)

Multiplying the both sides by N(y) and changing the notation y′(x) = dy
dx

, we write the separable
equation in its canonic form

N(y)
dy

dx
= M(x). (5)

Now it is easy to solve the equation (4). Integrate (5) w.r.t. x:∫
N(y)

dy

dx
dx =

∫
M(x) dx+ C, (6)

here C is an arbitrary constant (recall that indefinite integral is determined up to a constant).
Changing the variable u = y(x), we transform the left hand side to∫

N(u) du
∣∣∣∣
u=y(x)

.

Let F,G be anti-derivatives for M,N , then (6) can be written as

G(y(x)) = F (x) + C.

Taking the inverse function to G, we get finally the solution to (4):

y(x) = G−1(F (x) + C).

This argument is mathematically rigorous, but somewhat too cumbersome, thus its shortened
version is often used. Write (5) in the differential form

N(y) dy = M(x) dx (7)



and integrate the left-and right-hand sides w.r.t. to y and x, respectively. This will give∫
N(y) dy =

∫
M(x) dx+ C ⇐⇒ G(y) = F (x) + C =⇒ y = G−1(F (x) + C).

The identity (7) is not easy to justify, but it is quite convenient to use. It also helps one to
memorise the main issue of the method, that we have to separate all the terms of the equation
dependent on x, y and collect them at the left hand side (at dy) and the right hand side (at dx).

Example. Let us solve the differential equation (1). Assume for a while that we know that f(t) > 0.
Then, dividing (1) by f and (formally) multiplying by dt, we transform it to the form (7)

df

f
= a dt.

Integrating both sides, we get
ln f = at+ C,

here we have used our knowledge that f > 0. Resolving this equation w.r.t. f (i.e., inverting the
function ln f) we get

f(t) = eCeat.

Changing the notation C̃ = eC , we get

f(t) = C̃eat, (8)

where C̃ is an arbitrary positive constant. Taking C̃ negative, we cover the case f(t) < 0. Finally,
the identical solution f(t) ≡ 0 is covered by the above formula with C̃ = 0. Thus all the solutions
of (1) are given by (8) with C̃ ∈ R.
The above example well illustrates the fact that, for a differential equation, an entire family of
solutions is available, depending on free parameter(s) which have the same spirit as the constant C
in the indefinite integral. On the other hand, in various applications these parameters are uniquely
specified by additional information available, e.g. about the initial value of the solution.

The Cauchy problem (the other name is the initial value problem) for the first order differential
equation

F (x, y, y′) = 0

it the pair of this equation and the identity y(x0) = x0, which fixes the initial value y0 of the
unknown function y(x) at the given point x0. The standard notation is{

F (x, y, y′) = 0,
y(x0) = x0

(9)

or
F (x, y, y′) = 0, y(x0) = x0.

Example. Let us find the solution to (1) which satisfies the initial condition f(t0) = f0. The general
solution has the form

f(t) = Ceat,

thus by the initial condition
f(t0) = Ceat0 ⇐= C = f0e

−at0 .



This gives finally
f(t0) = f0e

a(t−t0).

Sample problem 1: In a jar which contains 10 liters of water, a solution of salt is continuously
added with the speed of 2 liters/min, and with the same speed the liquid from the jar is removed.
One liter of the solution contains 0.3 kg of salt. How much salt will be contained in the jar in 5
minutes?

Solution: Let independent variable be time t, and the unknown function be m(t) (the mass of salt
in the jar at the time t). By a small time interval 4t, the jar receives 2 × (0.3) × 4t kg of salt
from the input flow. At the same time interval, the jar looses 2× (current concentration)×4t kg
of salt from the output flow. The current concentration equals m(t)

10 . Thus m(t) should satisfy the
differential equation

m′(t) = lim
4t→0

4m(t)
4t

= 2× (0.3)− 2× m(t)
10

= 0.6− 0.2m(t)

Separating the coefficients, we get
dm

3−m
= 0.2dt,

which gives
3−m(t) = Ce−0.2t ⇐= m(t) = 3− Ce−0.2t.

Taking into account the initial condition m(0) = 0, we get C = 3 and thus

m(t) = 3− 3e−0.2t.

The final answer is
m(5) = 3− 3e−1 ≈ 1, 9 kg.

Some types of differential equations can be reduced to separable, and then solved. For instance,
for an equation of the form

y′ = F (ax+ by),

changing z = ax+ by we get a separable differential equation for the new variable z = z(x):

z′ = a+ bF (ax+ by).

Sample problem 2: Solve
y′ = sin2(x− y)

Solution: Taking z = x− y, we get
z′ = 1− sin2 z.

For sin2 z 6= 1, this separable equation can be written as

dz

1− sin2 z
= dx,

which after integration gives∫ dz

1− sin2 z
=
∫ dz

cos2 z
= x+ C ⇐⇒ tg z = x+ C ⇐⇒ z(x) = arctg (x+ C) + kπ, k ∈ Z.



The exceptional case sin2 z = 1 gives solutions

z(x) ≡ π

2
+ kπ, k ∈ Z.

For the original function y(x), we have

y(x) = x− z(x) =
[
x− arctg (x+ C) + kπ

x− π
2 + kπ, k ∈ Z.

An important subclass of differential equations is given by linear differential equations where
function F in (3) depends on unknown function y(x) and its derivatives linearly. The linear
differential equations of the first order have the form

y′(x) = a(x)y(x) + b(x). (10)

Linear differential equation (10) is called homogeneous if b(x) ≡ 0, and non-homogeneous other-
wise. Homogeneous equation is separable and thus easily solvable. Indeed, we have

dy

y
= a(x) dx⇐⇒ y(x) = CeA(x),

where A(x) a fixed antiderivative for a(x) (i.e., any fixed version of the indefinite integral
∫
a(x) dx).

To solve non-homogeneous linear equation, the following method of variation of the unknown
constant is useful. Namely, write the unknown function in the form

y(x) = C(x)eA(x),

where C(x) is a new unknown function. That is, we write y(x) as the solution of the associated
homogeneous equation, but now C is not an unknown constant, but a new unknown function.
Taking the derivative and recalling that A(x)′ = a(x), we get

y′(x) = C ′(x)eA(x) + C(x)a(x)eA(x) = C ′(x)eA(x) + a(x)y(x),

i.e. equation (10) for y(x) is equivalent to equation

C ′(x)eA(x) = b(x)⇐⇒ C ′(x) = b(x)e−A(x)

for C(x). The latter equation is solved simply by integration:

C(x) =
∫
b(x)e−A(x) dx+ C,

which gives finally
y(x) = CeA(x) + eA(x)

∫
b(x)e−A(x) dx.

Sample problem 3: Find the solution of the following Cauchy problem:

ty′ + 2y = t2 − t+ 1, t > 0, y(1) =
1
2
.



Solution: Write the equation in the form

y′ = a(t) + b(t), a(t) = −2
t
, b(t) = t− 1− 1

t
.

We have ∫
a(t) dt = −

∫ 2
t
dt = −2 ln |t|+ C = −2 ln t+ C,

because t > 0. Then we can take A(t) = −2 ln t, which gives

y(t) = C(t)e−2 ln t = C(t)t−2

with

C(t) =
∫ (

t− 1− 1
t

)
e−A(t) dt =

∫ (
t− 1− 1

t

)
t2 dt =

∫ (
t3 − t2 − t

)
dt =

t4

4
− t3

3
− t2

2
+ C.

Then

y(t) = C(t)t−2 =
t2

4
− t

3
− 1

2
+
C

t2
.

Substituting the initial value condition y(1) = 1
2 , we get C = 1

12 , which gives finally

y(t) =
t2

4
− t

3
− 1

2
+

1
12t2

.

The question whether a given differential equation uniquely defines the unknown function, is
answered by the following fundamental theorem.

Theorem 1. (Picard’s theorem on existence and uniqueness of the solution to a Cauchy problem)
Let function f(x, y) be a function defined on the rectangle R = {|x − x0| ¬ a, |y − y0| ¬ b} and
such that f(x, y) is continuous and f ′y(x, y) is bounded on R. Denote m = max(x,y)ıR |f(x, y)|,
d = min(a, b

m
. Then on the interval [x0 − d, x0 + d] there exists a unique solution to the Cauchy

problem
y′ = f(x, y), y(x0) = y0. (11)

The solution to the Cauchy problem in the Picard theorem is given constructively, as a limit of
the Picard approximations

yk(x)′ = f(x, yk−1(x)), yk(x0) = y0, k ­ 1, y0(x) ≡ 0.

Thus each Cauchy problem, under proper conditions on the coefficients, can be approximatively
solved by successive iteration, where each step requires an integration.

Sample problem 4: Find two successive approximations (apart of the initial one) for the solution
of the following Cauchy problem:

y′(x) = x− y2, y(0) = 0.



Solution: We have y0 ≡ 0,

y1(x) =
∫
xdx =

x2

2
+ C, y1(0) = 0 =⇒ y1(x) =

x2

2
,

y1(x) =
∫ (

x− x2

2

)
dx =

x2

2
− x3

6
+ C, y2(0) = 0 =⇒ y2(x) =

x2

2
− x3

6
.

The interval, provided by Theorem (1) where the solution is uniquely defined is not the maximal
possible one. While reaching the endpoints x0 ± d, one can recalculate the rectangle R using the
endpoint and respective value of the solution as the new points x̃0, ỹ0 and extend the solution on
the larger interval. Such a procedure is called the extension of the solution. By means of such a
procedure, the following statement can be achieved.

Theorem 2. Let function f(x, y) be continuous and have bounded derivative f ′y(x, y) on each
bounded subset of R×R. Assume also that, for a given segment [α, β] the following linear growth
condition holds true: for some K > 0,

|f(x, y)| ¬ K(1 + |y|), x ∈ [α, β], y ∈ R.

Then for any x0 ∈ [α, β], y0 ∈ R there exists unique solution to (11), defined for all x ∈ [α, β].

The following two sample problems show two typical troubles caused by the violation of the
conditions of the above theorems.

Sample problem 5: Find two different solutions to the Cauchy problem

y′ =
√
|y|, y(0) = 0.

The function f(x, y) =
√
|y| is not differentiable at the point y0 = 0, hence the Picard theorem

is not applicable. One obvious solution of the above Cauchy problem is y(0) ≡ 0. To get another
one, solve the differential equation separating the variables:

dy =
√
|y|dx⇐⇒ dy√

|y|
= dx⇐⇒ 2

√
|y|sgn(y) = x+ C ⇐⇒ y = ±1

2
(x+ C)2,

and substituting C = 0 we get another solution y(x) = x2

2 .

Sample problem 6: Find the maximal interval where the solution to the the Cauchy problem

y′ = y2, y(0) = y0

is well defined.

The function f(x, y) = y2 does not have a linear growth bound, thus it may happen that, in finite
time, the solution will reach ∞; such an effect is called an ‘explosion’. In the particular case, we
have by separation of variables

dy = y2dx⇐⇒ dy

y2
= dx⇐⇒ 1

y
= −x+ C,



From the initial condition,
1
y0

= C,

which gives C = 1
y0

. Hence we have three cases:

1. y0 > 0, then the solution y(t) = (y−1
0 − x)−1 is well defined on the interval (−∞, y−1

0 );

2. y0 < 0, then the solution y(t) = (y−1
0 − x)−1 is well defined on the interval (y−1

0 ,∞)

3. y0 = 0, then the solution y(t) ≡= 0 is well defined on entire (−∞,∞).

Problems to solve

1. Solve the following differential equations:

• xy dx+ (x+ 1) dy = 0;

•
√
y2 + 1 dx = xy dy;

• y′ = 2x+y;

• y′ − y = 2x− 3;

• y′ =
√

4x+ 2y − 1.

2. Solve the following Cauchy problems:

• (x2 − 1)y′ + 2xy2 = 0, y(0) = 1;

• xy′ + y = y2, y(1) = 1
2 ;

• (x+ 2y)y′ = 1, y(0) = −1.

3. Find two successive approximations (apart of the initial one) for the solution of the following
Cauchy problems:

(a)
y′(x) = y2 + 3x2 − 1, y(1) = 1;

(b)
y′(x) = y + ey−1, y(0) = 1;

(c)
y′(x) = 1 + x sin y, y(π) = 2π.



4. A body is cooling with the velocity proportional to the difference between its temperature and
the external temperature. With external temperature 20◦, a body have been cooled from 100◦ to
60◦ in 10 minutes. How long will it take to cool it down to 25◦?

5. A boat is resisted by the water, with the force (and thus the negative acceleration) proportional
to the velocity of the boat. The boat started its motion with the velocity 1.5 meters/sec., and
after 4 seconds had the velocity 1 meter/sec. When the velocity will be 1 cm/sec.? What is the
total length of the path the boat can go?

6. A cylindrical tank has a hole in the bottom, where the liquid flows off with the velocity
proportional to the square root of the remaining volume of the liquid. At the beginning the tank
was full, and after 5 minutes it is half empty. How long will it take until the tank become completely
empty?
7. Solve the Cauchy problem

2y′ − y = 4 sin(3t), y(0) = y0.

Determine for which values y0 the solution y(t)

(a) tends to +∞ when t→ +∞;

(b) tends to −∞ when t→ +∞;

(c) remains bounded when t→ +∞.

8. Find two different solutions to the Cauchy problem

y′ = 3
√
y, y(0) = 0.

9. Find the maximal interval where the solution to the following Cauchy problem is well defined:

y′ = y3, y(0) = 1.


