
MATHEMATICAL ANALYSIS 2
Worksheet 6.

Bernoulli differential equations, homogeneous differential equations. Higher order differential
equations. Linear higher order differential equations.

Theory outline and sample problems

In the theory of differential equations, it is typical that some particular class of equations is
considered separately, because the particular structure of an equation form that class admits a
special strategy of its solution. We have already considered two examples of such classes: separable
equations and linear differential equations of the 1st order. We begin this section considering two
more classes of that type.

Definition 1. The Bernoulli differential equation is an equation of the form

y′ + p(t)y = q(t)yr,

where r 6= 0, 1 is a real number.

In the exclusive cases r = 0, 1 the above equation is a linear equation of the 1st order (homogeneous
for r = 1, non-homogeneous for r = 0), and thus is easy to solve. In all the other cases, the
Bernoulli equation can be reduced to a linear equation by the substitution z = y1−r. Indeed, we
have z′ = (1− r)y−ry′, which gives

yrz′ = (1− r)y′ = −(1− r)p(t)y + (1− r)q(t)yr ⇐⇒ z′ + (1− r)p(t)z = (1− r)q(t).

That is, the new function z satisfies a 1st order linear non-homogeneous equation

z′ + (1− r)p(t)z = (1− r)q(t).

Sample Problem 1: Solve the differential equation y′ − 2ty = 2ty2. Solution: This is a Bernoulli

equation with r = 2. Hence 1− r = −1 and the function z = y−1 solves the equation

z′ + 2tz = −2t.

To find z, we use the method of variation of the unknown constant (the Lagrange method):

z = Ce−t
2 − e−t2

∫
2tet

2
dt = Ce−t

2 − e−t2
∫
ses ds

∣∣∣∣
s=t2

= Ce−t
2 − 1.

Then the function y is obtained by solving the equation z = y−1:

y =
1
z

=
1

Ce−t2 − 1
.

Definition 2. Homogeneous differential equation is an equation of the form

y′ = f
(
y

t

)
.



Caution: Please mind that the word ‘homogeneous’ here is not to be mixed with the one in
‘homogeneous linear (system of) equations’.
By the substitution y = ut, homogeneous equation is transformed to a separable differential
equation

tu′ = f(u)− u.

Sample Problem 2: Solve the differential equation y′ =
t+ y

t
.

Solution: This is a homogeneous equation:

y′ = 1 +
y

t
,

hence u = y
t

satisfies

tu′ = 1 + u− u = 1⇐⇒ du =
dt

t
⇐= u = C + ln |t|.

Hence
y = tu = t(C + ln |t|).

Let us proceed with the study of the higher order differential equations, which have the form

F (x, y, y′, . . . , y(k)) = 0 (1)

with k > 1. The general theory of such equations is quite similar to the theory of the 1st order
equations (k = 1), with appropriate changes. One most notable change is that, for an equation of
the k-th order the initial data, used in the Cauchy problem, should involve the values of the function
itself and all the derivatives of the orders < k. With this natural modification, the Picard theorem
(on local existence and uniqueness of the solution to the Cauchy problem) and the extension
procedure under the linear growth condition are available for the equations of arbitrary order.
Though, the problem to solve a particular differential equation is typically more sophisticated for
equations of higher orders. Below, we will discuss in details one particularly important class of
higher order differential equations, which admits algorithms of a solution.

Definition 3. Linear differential equation of the order k  1 is an equation of the form

ak(t)y(k)(t) + · · ·+ a1(t)y′(t) + a0(t)y(t) = b(t).

Likewise to the linear equations of the 1st order, or systems of systems of linear equations in the
Linear Algebra, there is a sense in separating homogeneous and non-homogeneous higher order
linear equations (mind the word ‘linear’ !), which correspond to the cases b(t) ≡ 0 and b(t) 6≡ 0,
respectively.
The following statements are quite analogous to those from the theory of systems of linear equ-
ations in the Linear Algebra.

Proposition 1. 1. The family of solutions of a homogeneous linear differential equation is a
vector space w.r.t. the point-wise operations of addition and multiplication by a constant.

2. Any solution to a non-homogeneous linear differential equation can be obtained as a sum
of a fixed solution to the non-homogeneous equation and some solution to the associated
homogeneous equation.



A basis in the set of the solutions to a homogeneous linear differential equation is called the
fundamental system of solutions. It is known that, provided that ak(x) 6= 0, the length of any
such basis coincides with the order k of the equation; that is, the dimension of the space of the
solutions to a linear homogeneous differential equation equals to the order of the equation.

Proposition 2. Let y1(t), . . . , yk(t) be solutions to a homogeneous linear differential equations
of the order k with ak(t) 6= 0. For y1(t), . . . , yk(t) to be a fundamental system of solutions it is
necessary and sufficient that, at any given point t0, the k × k-matrix

y1(t0) · · · yk(t0)
... . . . ...

y
(k−1)
1 (t0) . . . y

(k−1)
1 (t0)


is non-degenerate.

The above matrix is called the fundamental matrix, and its determinant is called the Wronskian
of the system y1(t), . . . , yk(t) at the point x0; notation

W (t0) =

∣∣∣∣∣∣∣∣
y1(t0) · · · yk(t0)

... . . . ...
y
(k−1)
1 (t0) . . . y

(k−1)
1 (t0)

∣∣∣∣∣∣∣∣ .
Clearly, the system y1(t), . . . , yk(t) is fundamental if, and only if, W (t0) 6= 0 for any t0. This
gives a practical tool for describing the set of solutions to a given linear differential equation. Lets
consider a typical example.

Sample Problem 3: Solve the differential equation y′′ + y = t.

Solution: This is a non-homogeneous linear equation of the 2nd order. First, let us guess a fixed
solution: taking y∗(t) we get y′′∗ ≡ 0 and thus y′′∗ + y∗ = t. Then, let us describe all the solutions to
associated homogeneous equation y′′ + y = 0. Its a direct calculation to check that y1(t) = sin t,
y2(t) = cos t solve the homogeneous equation. Their Wronskian at a point t equals

W (0) =
∣∣∣∣ sin t cos t

cos t − sin t

∣∣∣∣ = − sin2 t− cos2 t = −1 6= 0,

hence {sin t, cos t is a fundamental system of solutions. Thus it is a basis in the set of the solutions,
and any solution to the homogeneous equation has the form

y(t) = C1 sin t+ C2 cos t, C1, C2 ∈ R.

Thus all the solutions to the original equation are given by the formula

y(t) = t+ C1 sin t+ C2 cos t, C1, C2 ∈ R.

The general solution to a linear equation of the order k depends on k parameters; see the abo-
ve example where there are two free constants (parameters) C1, C2. While solving the Cauchy
problem, we will typically find these constants using the initial conditions.

Sample Problem 4: Solve the Cauchy problem y′′ + y = t, y(0) = 1, y′(0) = 1.



Solution: We already know the formula for the general solution:

y(t) = t+ C1 sin t+ C2 cos t,

which yields
y′(t) = 1 + C1 cos t− C2 sin t.

Substituting the initial conditions, we get{
1 = 0 + C10 + C21
1 = 1 + C11− C20 =⇒ C1 = 0, C2 = 1,

which gives the answer y(t) = t+ cos t.
In the above examples, two principal questions are hidden:

• how to find the fundamental system of solutions to a homogeneous system?

• how to find a fixed solution to a hon-homogeneous system?

In what follows, we discuss some ways to resolve these questions. The first one has a simple answer
in the important partial case of a homogeneous linear equation with constant coefficients :

aky
(k) + · · ·+ a1y

′ + a0y = 0, (2)

where a0, . . . , ak are fixed numbers and ak 6= 0. For the equation (2), the following characteristic
polynomial is very useful:

P (λ) = akλ
k + · · ·+ a1λ+ a0. (3)

The polynomial (3) keeps enough information to construct a fundamental system of solutions for
the original equation (2); before we discuss the general case let us give such a construction for an
equation of the second order.
For k = 2, equation (2) and the characteristic polynomial (3) have the forms

ay′′ + by′ + cy = 0, (4)

and
P (λ) = aλ2 + bλ+ cλ (5)

respectively. Quadratic equation P (λ) = 0, also called the characteristic equation, reveals three
different cases according to the value of ∆ = b2 − 4ac.

Case I: ∆ > 0, the characteristic equation has two different real roots λ1 6= λ2. In this case, the pair
of functions

y1(t) = eλ1t, y2(t) = eλ2t

gives a fundamental system of solutions to the original equation.

Case II: ∆ < 0, the characteristic equation has two mutually conjugate complex roots λ1 = λ0 +
iω, λ2 = λ0 − iω. In this case, the pair of functions

y1(t) = eλ0t sinωt, y2(t) = eλ0t cosωt

gives a fundamental system of solutions to the original equation.



Case III: ∆ = 0, the characteristic equation has one root λ0 of multiplicity 2. In this case, the pair of
functions

y1(t) = eλ0t, y2(t) = teλ0t

gives a fundamental system of solutions to the original equation.

Note that the cases I and II are quite analogous, if we recall the complex variable notation for the
trigonometric functions:

sinωt =
1
2i

(eiωt − e−iωt), cosωt =
1
2

(eiωt + e−iωt).

That is, in both these cases the fundamental system of solutions can be chosen in the form

y1(t) = eλ1t, y2(t) = eλ2t,

where λ1, λ2 are two different roots of the characteristic equation.

Sample Problem 5: Solve the Cauchy problem y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = 1.

Solution: The characteristic equation and the roots are

λ2 + λ− 2λ = 0, λ1 = −2, λ = 1.

Then the general solution to the equation has the form

y(t) = C1e
−2t + C2e

t.

Substituting the initial values we get{
1 = C1 + C2
1 = (−2)C1 + C2

=⇒ C1 = 0, C2 = 1,

hence the answer is y(t) = et.
Let us consider one more problem of that type, now with two complex roots for the characteristic
polynomial.

Sample Problem 6: Solve the Cauchy problem y′′ + y′ + y = 0, y(0) = −1, y′(0) = 1.

Solution: The characteristic equation and the roots are

λ2 + λ+ 1 = 0, λ1 = −1
2

+

√
3

2
i, λ1 = −1

2
−
√

3
2
i.

To illustrate the ‘complex exponents’ technique, let us consider two different ways to complete the
solution. First, write the general solution in the form

y(t) = C1e
− t2 sin

√
3

2
t+ C2e

− t2 cos

√
3

2
t,

then

y′(t) =
(
−1

2

)
C1e

− t2 sin

√
3

2
t+
(√3

2

)
C1e

− t2 cos

√
3

2
t+
(
−1

2

)
C2e

− t2 cos

√
3

2
t−
(√3

2

)
C1e

− t2 sin

√
3

2
t.



Substituting the initial values, we get

0C1 + C2 = −1 =⇒ C2 = −1,(√3
2

)
C1 +

(
− 1

2

)
C2 = 0 =⇒ C1 =

C2√
3

= − 1√
3
.

This gives the answer

y(t) = − 1√
3
e−

t
2 sin

√
3

2
t− e−

t
2 cos

√
3

2
t.

Alternatively, we can write the general equation in the form

y(t) = C1e
λ1t + C2e

λ2t,

note that now the constants are different from those calculated above. We have

y′(t) = λ1C1e
λ1t + λ2C2e

λ2t,

which gives the system{ −1 = C1 + C2
1 = λ1C1 + λ2C2

=⇒ C1 = − λ2 + 1
λ2 − λ1

, C2 =
λ1 + 1
λ2 − λ1

.

This gives the answer

y(t) = − λ2 + 1
λ2 − λ1

eλ1t +
λ1 + 1
λ2 − λ1

eλ2t,

which yet has to be transformed from the complex-valued notation to the real-valued one. We
have

λ2 + 1
λ2 − λ1

=
1
2 −

√
3
2 i

−
√

3i
=

1
2

+
1

2
√

3
i,

λ1 + 1
λ2 − λ1

=
1
2 +

√
3
2 i

−
√

3i
= −1

2
+

1
2
√

3
i,

y(t) = −
(

1
2

+
1

2
√

3
i

)(
e−

t
2 cos

√
3

2
t+ ie−

t
2 sin

√
3

2
t

)
+
(
−1

2
+

1
2
√

3
i

)(
e−

t
2 cos

√
3

2
t− ie−

t
2 sin

√
3

2
t

)

= − 1√
3
e−

t
2 sin

√
3

2
t− e−

t
2 cos

√
3

2
t.

Now, let us proceed to the general case k ∈ N. Let the characteristic polynomial to have the form

P (λ) = ak(λ− λ1)m1(λ− λr)mr ,

where λ1, . . . , λr are different roots of P (λ) which have multiplicities m1, . . . ,mr, respectively.
Then a fundamental system of solutions to the equation (2) can be obtained as a sets of functions
obtained by the collection of:

• for each real root λj, the functions

eλjt, . . . , tmj−1eλjt;



• for each pair of complex conjugate imaginary roots λj = aj+ iωj, λj = aj− iωj, the functions

eλjt sinωjt, eλjt cosωjt, . . . , tmj−1eλjt sinωjt, tmj−1eλjt cosωjt.

In the complex exponent notation, each root λj (probably, complex) of multiplicity mj generates
the set of solutions

eλjt, . . . , tmj−1eλjt.

Sample Problem 7: Solve the Cauchy problem y′′′ − y = 0, y(0) = −1, y′(0) = 1, y′′(0) = 0.

Solution: The characteristic equation and the roots are

λ3 − 1 = 0, λ1 = 1, λ2 = −1
2

+

√
3

2
i, λ3 = −1

2
−
√

3
2
i.

The general solution has the form

y(t) = C1e
−t + C2e

− t2 sin

√
3

2
t+ C2e

− t2 cos

√
3

2
t,

and

y(0) = C1 + C3, y′(0) = −C1 + C2

√
3

2
+ C3

(
−1

2

)
, y′′(0) = C1 − C2

√
3

2
− C3

1
2
.

This gives
C1 = 0, C2 =

√
3, C3 = −1,

and

y(t) =
√

3e−
t
2 sin

√
3

2
t− e−

t
2 cos

√
3

2
t.

The above considerations show that, for homogeneous linear differential equations the fundamen-
tal system of solutions can be found efficiently, provided we are able to find the roots of the
characteristic polynomial. This practically answer the first question posed above. For the second
question, about a construction of a fixed solution to a non-homogeneous equation, there exist
several possible approaches. Here we will discuss one of them, the method of unknown coefficients.
The method of unknown coefficients applies in the case where

• the equation has the form

aky
(k) + · · ·+ a1y

′ + a0y = b(t); (6)

that is, its homogeneous part has constant coefficients;

• the right hand side term b(t) has a special form, namely, it is a linear combination of the
functions of the form

tjeat sinωt, tleat cosωt, j, l ¬ m. (7)

In this case, the candidate for being a solution is written in a prescribed form with certain known
functions multiplied by unknown coefficients. Then the unknown coefficients are found from a
system of linear equations. To formulate the recipe more explicitly, we have to perform a case
study. There are two cases to be treated separately; this classification depends on the control
constant σ = a+ iω (here a, ω are same as in (7)).



I. (Non-resonance case). Let P (σ) 6= 0, i.e. σ is not a root of the characteristic polynomial for
the homogeneous part of the equation. Then the solution to (6) can be found in the form

[Amtm + . . . A0]eat sinωt+ [Bmt
m + . . . B0]eat cosωt.

II. (Resonance case). Let σ be a root of multiplicity r of the characteristic polynomial for the
homogeneous part of the equation. Then the solution to (6) can be found in the form

[Amtm+r + . . . A0t
r]eat sinωt+ [Bmt

m+r + . . . B0t
r]eat cosωt.

Let us consider several examples.

Sample Problem 8: Solve the differential equation y′′ + y = sin 2t.

Solution: this is a non-homogeneous linear differential equation with the characteristic polynomial
of the homogeneous part

P (λ) = λ2 + 1

and corresponding roots λ1 = i, λ2 = −i. The free term has the special form (7) with m = 0 and
the control constant σ = 2i, which is not a root of P (λ). Thus we should look for a solution to
the non-homogeneous equation in the form

y(t) = A sin 2t+B cos 2t.

We have

y′′(t) = −4A sin 2t− 4B cos 2t⇐⇒ y′′(t) + y(t) = −3A sin 2t− 3B cos t,

and from the equation on y(t) we have the system of equations on the coefficients A,B :{ −3A = 1
−3B = 0 =⇒ A = −1

3
, B = 0,

and one solution to the non-homogeneous equation is

y(t) = −1
3

sin 2t.

The general solution then is given by

y(t) = −1
3

sin 2t+ C1 sin t+ C2 cos t.

The previous problem may mislead you, because the answer contains the function sin 2t only,
likewise to the right hand side in the original equation. The next example shows that in general
this is not the case, and we have to take into account the terms with (say) cosωt even if they are
not present in the original equation.

Sample Problem 9: Solve the differential equation y′′ + y = et sin t.

Solution: The characteristic polynomial is the same as above, and the control constant σ = 1 + i
is not a root. Thus we should look for a solution to the non-homogeneous equation in the form

y(t) = Aet sin t+Bet cos t.



Since
(et sin t)′ = et sin t+ et cos t, (et cos t)′ = −et sin t+ et cos t,

(et sin t)′′ = (et sin t+ et cos t)′ = 2et cos t, (et cos t)′′ = (−et sin t+ et cos t)′ = −2et sin t,
we have

y′′(t) + y(t) = 2Aet cos t− 2Bet sin t+ Aet sin t+Bet cos t.

Thus from the equation on y(t) we have the system of equations on the coefficients A,B :{
A− 2B = 1
2A+B = 0 =⇒ A =

1
5
, B = −2

5
,

and one solution to the non-homogeneous equation is

y(t) =
1
5
et sin t− 2

5
et cos t

The general solution then is given by

y(t) =
1
5
et sin t− 2

5
et cos t+ C1 sin t+ C2 cos t.

Finally, let us consider one example of the resonance case.

Sample Problem 10: Solve the differential equation y′′ + y = sin t.

Solution: The characteristic polynomial is the same as above, and the control constant σ = i is
its root of multiplicity 1. Thus we should look for a solution to the non-homogeneous equation in
the form

y(t) = At sin t+Bt cos t.
We have

(t sin t)′ = t cos t+ sin t, (t cos t)′ = −t sin t+ cos t,

(t sin t)′′ = −t sin t+ 2 cos t, (t cos t)′ = −t cos t− 2 sin t.
Then

y′′(t) + y(t) = A(−t sin t+ 2 cos t) +B(−t cos t− 2 sin t) + At sin t+Bt cos t = 2A cos t− 2B sin t

Thus from the equation on y(t) we have the system of equations on the coefficients A,B :{
2A = 0
−2B = 1 =⇒ A = 0, B = −1

2
,

and one solution to the non-homogeneous equation is

y(t) = − t
2

cos t.

The general solution then is given by

y(t) = − t
2

cos t+ C1 sin t+ C2 cos t.

At the end of this chapter, let us discuss shortly one type of linear differential equations with
varying coefficients which, by proper change of variables, can be transformed to linear differential
equations with constant coefficients.



Definition 4. The Euler differential equation is a linear differential equation of the form

tky(k) + ak−1t
k−1y(k−1) + · · ·+ a1ty

′(t) + a0y(t) = 0, (8)

where a0, . . . , an are given constants.

It is known that by a substitution t = eτ (for t > 0) or t = −eτ (for t < 0) equation (8) can be
transformed to a linear differential equations with constant coefficients. In particular, the second
order equation

t2y′′ + pty′ + qy = 0 (9)

after such a change is transformed to

d2y

dτ 2
+ (p− 1)

dy

dτ
+ qy = 0. (10)

This makes it possible to construct fundamental systems of solutions for such equations.

Sample Problem 11: Solve the Cauchy problem t2y′′ + ty′ + y = t, y(1) = 0, y′(1) = 1.

Solution: This is a linear non-homogeneous differential equation with the homogeneous part being
the Euler equation. Change the variables t = eτ (we will look for the solution for t > 0), then the
equation transforms to

y′′ττ + y = eτ .

The characteristic polynomial is P (λ) = λ2 + 1, and the fundamental system of solutions is
sin τ, cos τ . The right hand side term has a special form (7) with m = 0 and the control variable
σ = 1 not being a root for P (λ). Thus a fixed solution to the equation can be found in the form

y(τ) = Beτ ,

(note that eτ = eτ cos 0t, and the function et sin 0τ ≡ 0 does not appear) and we easily find that
B = 1

2 . Hence we have the general solution

y(τ) =
1
2
eτ + C1 sin τ + C2 cos τ.

Changing the variables back τ = ln t, we get the general solution

y(t) =
1
2
t+ C1 sin ln t+ C2 cos ln t.

Then
y′(t) =

1
2

+ C1
cos ln t
t
− C2

sin ln t
t

,

and by the initial condition {
1
2 + C2 = 0
1
2 + C1 = 1 =⇒ C1 =

1
2
, C2 = −1

2
,

and the answer is
y(t) =

1
2
t+

1
2

sin ln t− 1
2

cos ln t, t > 0.



At the end, let us give an observation which simplifies a lot calculations in the problems related
to the linear differential equations with constant coefficients. We have seen that it is often needed
to calculate the higher order derivatives of the functions of the form eat sinωt, eat cosωt, or the
same functions multiplied by tr. Such calculations appear either when the solution to the Cauchy
problem is found (we have then to calculate the derivatives up to the order k− 1 of the functions
from the fundamental system at the given point), or the non-homogeneous equation is solved
by the method of unknown coefficients. Each of the functions eat, sinωt, cosωt, tr can be easily
differentiated to arbitrary order:

(eat)(k) = akeat, (tr)(k) = k(k − 1) . . . (k − r − 1)tk−r,

(sinωt)(k) =
{

(−ω2)l sinωt, k = 2l
(−ω2)lω cosωt, k = 2l + 1, (cosωt)(k) =

{
(−ω2)l cosωt, k = 2l
−(−ω2)lω sinωt, k = 2l + 1.

To calculate the higher order derivatives of a product, the following Leibniz formula is quite useful:

(fg)k =
k∑
j=0

Cj
kf
(j)g(k−j), (11)

where Cj
k = k!

j!(k−j)! is the binomial coefficient. For k = 2, 3 this formula gives

(fg)′′ = f ′′g + 2f ′g′ + g′′, (fg)′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + g′′′.

For a product of more terms the following extension of the Leibniz formula is available:

(f1 . . .p)(k) =
∑

j1+...jp=k

k!
j1! . . . jp!

(f1)(j−1) . . . (fp)jp .

For k = 2, p = 3 this formula gives

(fgh)′′ = f ′′gh+ fg′′h+ fgh′′ + 2f ′g′h+ 2f ′gh′ + 2fg′h′.

Example.

(e2t sin 3t)′′ = 4e2t sin 3t+ 2(2e2t)(3 cos 3t) + e2t(−9 sin 3t)
= −5e2t sin 3t+ 6e2t cos 3t,

(e2t sin 3t)′′ = 4e2t sin 3t+ 3(4e2t)(3 cos 3t) + 3(2e2t)(−9 sin 3t) + e2t(−27 cos 3t)
= −50e2t sin 3t− 3e2t cos 3t,

(te2t sin 3t)′′ = t(e2t sin 3t)′′ + 2(e2t sin 3t)′

= −5te2t sin 3t+ 6te2t cos 3t+ 4e2t sin 3t+ 6e2t cos 3t.



Problems to solve

1. Find the general solution to the following differential equations:

a) y′′ + y′ − 2y = 0;

b) y′′ + 2y′ + y = 0;

c) y′′′ + 3y′′ − 4y′ = 0;

d) y′′′ + y′′ + y′ + y = 0;

e) y(4) − 5y′′ + 4y = 0;

f) y(4) + 8y′′ + 16y = 0;

g) y(7) + 2y(5) − y′′′ − 2y′ = 0.

2. Solve the following Cauchy problems:

a) y′′ − 4y′ + 3y = 0, y(0) = 7, y′(0) = 16;

b) 2y′′ + 4y′ − 6 = 0, y(0) = 4, y′(0) = 0;

c) y′′′ − y′′ + y′ − y = 0, y(0) = 0, y′(0) = 0, y′′(0) = 1.

3. Find the general solution to the following differential equations:

a) y′′ − 2y′ − 2y = et + t cos t;

b) y′′ − 8y′ + 20y = 5te4t sinx;

c) y′′ − 2y′ + 5y = 2tet + et sin 2t;

4. Solve the Cauchy problem y′′′ + y′ = sin t+ t sin t, y(0) = 1, y′(0) = 0, y′′(0) = 0.

5. Specify the particular class of differential equation and use proper substitution in order either
to find a general solution or to solve the Cauchy problem:

a) ty′ − y = t tg y
t
;

b) y′ + 2y = y2et;

c) ty′ =
√
t2 − y2 + y, y(1) = 0;

d) ty′ + 2y + t5y3et = 0, y(1) = 1;

e) ty′ = y + t(1 + e
y
t ), y(1) = 0;

f) y − y′ = y2 + ty′;

g) t2y′′ + ty′ − 9y = t;

h)∗ t3y′′′ − t2y′′ − 2ty′ + 6y =
√
t.


