
MATHEMATICAL ANALYSIS 2
Worksheet 8.

Systems of differential equations

Theory outline and sample problems

System of a differential equations relates derivatives of several unknown functions with the values
of these functions: 

d
dt
y1(t) = F1(t, y1(t), . . . , yk(t));

d
dt
y2(t) = F2(t, y1(t), . . . , yk(t));

...
d
dt
yk(t) = Fk(t, y1(t), . . . , yk(t)).

(1)

System (1) can be seen as one equation for the vector-valued function

y(t) =


y1(t)
y2(t)
...
yk(t)

 .
Namely, in the vector notation (1) has the form

y(t) = F (t,y(t)), (2)

where the function transforms a pair t ∈ R,y ∈ Rk into a vector in Rk. From this perspective,
systems of differential equations can be treated in the way quite familiar to differential equations
of the first order. In particular, the Cauchy problem (⇐⇒ the initial value problem) for the system
(1) is (1) combined with the conditions

y1(t0) = y01, . . . , yk(t0) = y0k,

where t0, y01, . . . , y
0
k are given numbers. In the vector notation, this Cauchy problem has a natural

form

y(t) = F (t,y(t)), y(t) = y0 =

 y01
...
y0k

 . (3)

All the general theory of the first order differential equations extends, with minor modifications,
to differential equations for vector-valued functions, and thus for systems of differential equations.
In particular, the Picard theorem (on local existence and uniqueness of the solution to the Cauchy
problem) and the extension procedure under the linear growth condition are available for a vector-
valued Cauchy problem (3), and thus for a system of differential equations (1).
On the other hand, systems of differential equations have close relation to differential equations
of higher order. A differential equation of the order k

y(k)(t) = F (t, y(t), . . . , y(k−1)(t)) (4)

can be transformed to a system of (first order) differential equations if we introduce k unknown
functions

y1(t) = y(t), y2(t) = y′(t), . . . , yk(t) = y(k−1)(t).



Then (4) is equivalent to the system
d
dt
y1(t) = y2(t);

...
d
dt
yk−1(t) = yk(t);

d
dt
yk(t) = F (t, y1(t), . . . , yk(t)).

(5)

On the other hand, it is often that a given system of differential equations can be reduced to one
differential equation of higher order. The standard method here is the elimination method, where
we eliminate some of the unknown functions from the equation by expressing them through other
unknowns.

Sample Problem 1: Using the elimination method, reduce the Cauchy problem{
x′ = −y;
y′ = −x− 2y; x(0) = 1, y(0) = 1

to a Cauchy problem for a second order differential equation, and then solve it.

Solution: Using the first equation of the system, we express unknown y as y = −x′. Substituting
this to the second equation, we get −x′′ = −x + 2x′. From the initial condition, we have x(0) =
1, x′(0) = −y(0) = −1. That is, for the unknown x we have the second order Cauchy problem

x′′ + 2x′ − x = 0, x(0) = 1, x′(0) = −1.

The characteristic polynomial and its roots are

P (λ) = λ2 + 2λ− 1, λ1 = −1−
√

2, λ2 = −1 +
√

2,

hence
x(t) = C1e

−t−
√
2t + C2e

−t−
√
2t.

From the initial conditions,

C1 + C2 = 1, (−1−
√

2)C1 + (−1 +
√

2)C2 = −1 =⇒ C1 = C2 =
1
2
,

and thus
x(t) =

1
2
e−t−

√
2t +

1
2
e−t−

√
2t.

Recalling that y = −x′, we get

y(t) =
1 +
√

2
2

e−t−
√
2t +

1−
√

2
2

e−t−
√
2t.

Definition 1. System of linear differential equations has the form
d
dt
y1(t) = a11(t)y1(t) + . . . a1k(t)yk(t) + b1(t);

d
dt
y2(t) = a21(t)y1(t) + . . . a2k(t)yk(t) + b2(t);

...
d
dt
yk(t) = ak1(t)y1(t) + . . . akk(t)yk(t) + bk(t).

(6)



In the vector notation, system (6) has the form

d

dt
y(t) = A(t)y(t) + b(t), (7)

where

A(t) =

 a11(t) . . . a1k(t)
... . . . ...
ak1(t) . . . akk(t)

 , b(t) =

 b1(t)
...
bk(t)


are the matrix of coefficients and vector of free terms, respectively.

The theory of systems of linear differential equations has many similarities with the theory of
linear differential equations of higher orders; please compare the definitions and facts listed below
with their analogues from the previous list.

System of linear equations (7) is called homogeneous if b(t) ≡ 0, and non-homogeneous otherwise.

Proposition 1. 1. The family of solutions of a homogeneous system of k linear differential
equations is a vector space w.r.t. the point-wise operations of addition and multiplication by
a constant. This vector space has dimenstion k.

2. Any solution to a non-homogeneous system of k linear differential equations can be obta-
ined as a sum of a fixed solution to the non-homogeneous system and some solution to the
associated homogeneous system.

A basis in the set of the solutions to a homogeneous system of linear differential equations is called
a fundamental system of solutions.

Proposition 2. Let y1(t), . . . ,yk(t) be solutions to a homogeneous system of k linear differential
equations. For y1(t), . . . ,yk(t) to be a fundamental system of solutions it is necessary and sufficient
that, at any given point t0, the k × k-matrix y11(t0) · · · yk1(t0)

... . . . ...
y1k(t0) . . . ykk(t0)

 =
(

y1(t0) · · · yk(t0)
)

is non-degenerate.

The above matrix is called the fundamental matrix, and its determinant is called the Wronskian
of the system y1(t), . . . , yk(t) at the point x0; notation

W (t0) =

∣∣∣∣∣∣∣
y11(t0) · · · yk1(t0)

... . . . ...
y1k(t0) . . . ykk(t0)

∣∣∣∣∣∣∣ =
∣∣∣ y1(t0) · · · yk(t0)

∣∣∣
System y1(t), . . . ,yk(t) is fundamental if, and only if, W (t0) 6= 0 for some (and then for any)
t0. This gives a practical tool for choosing a fundamental system of solutions: consider a linearly
independent system of vectors v1, . . . ,vk in Rk, and take y1(t), . . . ,yk(t) as the solutions to the
Cauchy problem with the initial values v1, . . . ,vk:

d

dt
yj(t) = A(t)yj(t), yj(t0) = vj, j = 1, . . . , k.



Given a fundamental system of solutions y1(t), . . . ,yk(t) to a homogeneous system of linear diffe-
rential equations, we can express a general solution as

y(t) = C1y1(t) + · · ·+ Ckyk(t),

where C1, . . . Ck are real parameters. Lets consider a typical example.

Sample Problem 2: Find the fundamental system and the general solution for t > 0 of the system
of linear differential equations {

tx′ = −x+ ty;
t2y′ = −2x+ ty.

Solution: We use the elimination method: from the 1st equation, y = x′ + x
t
.Then

y′ = x′′ +
x′

t
− x

t2
,

and from the 2nd equation we get

t2x′′ + tx′ − x = −2x+ tx′ + x⇐⇒ t2x′′ = 0.

This is the Euler equation, which by the change of variables t = eτ transforms to a 2nd order
linear differential equation with constant coefficients:

x′′ττ − x′τ = 0.

The characteristic polynomial of this equation and its roots are

P (λ) = λ2 − λ, λ1 = 0, λ2 = 1,

hence the general solution to this equation has the form

x(τ) = C1 + C2e
τ .

Changing the variables back, we get

x(t) = C1 + C2t,

and recalling that y = x′ + x
t
, we get

y(t) = C2 + C1t
−1 + C2 = C1t

−1 + 2C2.

Thus the general solution has the form(
x(t)
y(t)

)
= C1

(
1
t−1

)
+ C2

(
t
2

)
Fundamental system of solutions can be taken in the form(

1
t−1

)
,

(
t
2

)
.



The method of elimination reduces a system of linear differential equations to one linear equation
of higher order. However, there are often good reasons to keep the system in the vector notation.
One of such reasons is that, in the vector notation, the method of variation of unknown constants
for solving a non-homogeneous equation takes a particulary simple form.
Consider a non-homogeneous system (7), and assume that a fundamental system of solutions
y1(t), . . . ,yk(t) to the associated homogeneous system is fixed. Denote

V(t) =

 y11(t) · · · yk1(t)
... . . . ...

y1k(t) . . . ykk(t)

 =
(

y1(t) · · · yk(t)
)
,

the fundamental matrix of the system at the point t.

Proposition 3. The function
y(t) = V(t)c(t)

solves the non-homogeneous system (7) if, and only if, the vector-valued function c(t) solves

V(t)c′(t) = b(t)⇐⇒ c′(t) = V(t)−1b(t), (8)

where the derivative is understood component-wise.

Note that
det V(t) = W (t) 6= 0,

and thus V(t)−1 is well defined. The of the above relation uses essentialy the same argument as
for usual linear differential equations of the 1st order. Namely, because each column of the matrix
V(t) is a solution to the homogeneous system, we have

d

dt
V(t) = A(t)V(t),

again, the derivative is understood component-wise. Then for y(t) = V(t)c(t),

y′(t) = (V(t)c(t))′ = A(t)V(t)c(t) + V(t)c′(t) = A(t)y(t) + V(t)c′(t),

and for (7) to hold true it is necessary and sufficient that (8) holds.

Sample Problem 3: Find the general solution for t > 0 of the system of linear differential equations{
tx′ = −x+ ty +

√
t;

t2y′ = −2x+ ty + 3
√
t;

x(1) = 1, y(1) = 0.

Solution: The fundamental system for the associated homogeneous system is found in the previous
problem, and the corresponding fundamental matrix is

V(t) =
(

1 t
t−1 2

)
.

The Wronskian and the inverse matrix are

W (t) = 1, V(t) =
(

2 −t
−t−1 1

)
.



The free term is

b(t) =
( √

t
3
√
t

)
,

hence the function c(t) satisfies

c′(t) =
(

2 −t
−t−1 1

)( √
t
3
√
t

)
=
(

2t1/2 − t4/3
−t−1/2 + t1/3

)

Integrating each component of the vector we get

c(t) =
( ∫

(2t1/2 − t4/3) dt∫
(−t−1/2 + t1/3) dt

)
=
(
4
3t
3/2 − 37t

7/3 + C1
−2t1/2 + 3

4t
4/3 + C2

)
.

Thus the general solution is

V(t)c(t) =
(

1 t
t−1 2

)( 4
3t
3/2 − 37t

7/3 + C1
−2t1/2 + 3

4t
4/3 + C2

)

=
(

1 t
t−1 2

)( 4
3t
3/2 − 37t

7/3

−2t1/2 + 3
4t
4/3

)
+ C1

(
1
t−1

)
+ C2

(
t
2

)

=
(
−23t

3/2 + 9
28t
7/3

−83t
3/2 + 15

14t
7/3

)
+ C1

(
1
t−1

)
+ C2

(
t
2

)

Let us consider separately systems of linear equations with constant coefficients. In the vector

notation, such systems have the form

d

dt
y(t) = Ay(t) + b(t), (9)

where the matrix of coefficients A does not depend on t. For such systems, the fundamental system
of solutions often can be found easily using the Euler method, which we will now describe. The

Euler method is based on the following simple observation. Let v be an eigenvector for the matrix
A with the eigenvalue λ. Then, by definition,

Av = λv.

Hence, if we consider a vector-valued function v(t) = eλtv, then

v′(t) = (eλt)′v = λeλtv = eλtAv = A(eλtv) = Av(t);

that is, this function solves the homogeneous system of linear equations with the matrix of coef-
ficients A. Thus, in the ideal situation where the matrix A admits an eigenbasis v1, . . . ,vk, the
corresponding system of functions

v1(t) = eλ1v1, . . . ,vk(t) = eλkvk

forms a fundamental system of equations to the homogeneous system above.



Sample Problem 4: Find the fundamental solution for the system

d

dt
y(t) = Ay(t), A =

 3 −1 −1
−1 5 −1

1 −1 3

 .
Solution: The characteristic polynomial of the matrix A equals

PA(λ) =

∣∣∣∣∣∣
3− λ −1 −1
−1 5− λ −1

1 −1 3− λ

∣∣∣∣∣∣ = −(λ3 − 11λ2 + 36λ− 36),

and has three real roots
λ1 = 2, λ2 = 3, λ3 = 6.

These roots are the eigenvalues of the matrix A; the corresponding eigenvectors are

v1 =

 −1
0
1

 , v2 =

 1
1
1

 , v3 =

 1
−2

1

 .
Hence a fundamental system can be chosen in the form

v1(t) =

 −e2t0
e2t

 , v2(t) =

 e3t

e3t

e3t

 , v3(t) =

 e6t

−e6t
e6t

 .
It may happen that some roots of the characteristic polynomial PA(λ) are complex; in that case,
we actually have pairs of mutually conjugate complex roots. In that case, the Euler method should
be modified as follows: if λ1, λ2 = λ1 is a pair of complex roots, then there exists an eigenvector v1
(possibly, with complex coordinates) with the eigenvalue λ1, and the following pair of functions
should be added to the fundamental system:

v1(t) = Re(eλ1tv1), v2(t) = Im(eλ1tv1).

Sample Problem 5: Find the fundamental solution for the system

d

dt
y(t) = Ay(t), A =

 0 8 0
0 0 −2
2 8 −2

 .
Solution: The characteristic polynomial of the matrix A equals

PA(λ) =

∣∣∣∣∣∣
−λ 8 0

0 −λ −2
2 8 −2− λ

∣∣∣∣∣∣ = −(λ+ 2)(λ2 + 16),

and has three roots
λ1 = −2, λ2 = 4i, λ3 = −4i.



The first eigenvalue corresponds to eigenvector

v1 =

 −4
1
1

 ,
which gives one element of the fundamental system

v1(t) =

 −4e−2t
e−2t

e−2t

 .
Two other elements are obtained from the eigenvector

v2 =

 2
i
2

 ,
which corresponds to the eigenvalue λ2 = 4i. Namely, we get

v2(t) = Re

 2e4it
ie4it

2e4it

 = Re

 2(cos 4t+ i sin 4t)
i(cos 4t+ i sin 4t)
2(cos 4t+ i sin 4t)

 =

 2 cos 4t
− sin 4t
2 cos 4t

 ,

v3(t) = Im

 2(cos 4t+ i sin 4t)
i(cos 4t+ i sin 4t)
2(cos 4t+ i sin 4t)

 =

 2 sin 4t
cos 4t

2 sin 4t

 .
Thus the required fundamental system is

v1(t) =

 −4e−2t
e−2t

e−2t

 , v2(t) =

 2 cos 4t
− sin 4t
2 cos 4t

 , v3(t) =

 2 sin 4t
cos 4t

2 sin 4t

 .



Problems to solve

1. Using the elimination method, solve the Cauchy problems for the system of linear differential
equations d

dt
y(t) = A(t)y(t):

a) A(t) = A =
(

1 3
−1 5

)
,y(0) =

(
3
1

)
;

b) A(t) = A =
(

3 −2
4 7

)
,y(0) =

(
1
0

)
;

c) A(t) = A =
( −1 2
−2 −5

)
,y(0) =

(
0
1

)
;

d)∗ A(t) =
( −t−1 t
−2t−3 t−1

)
,y(0) =

( 1
2 +
√

2

)
.

2. Using the Euler method, find the general solutions to the following homogeneous systems of
linear differential equations (ẋ denotes dx

dt
etc.):

a)
{
ẋ = 2x+ y
ẏ = 3x+ 4y ;

b)
{
ẋ = x+ y
ẏ = 3y − 2x ;

c)

 ẋ = x− 2y − z
ẏ = y − x+ z
ż = x− z

;

d)

 ẋ = 3x− y + z
ẏ = x+ y + z
ż = 4x− y + 4z

;

e)

 ẋ = x− y − z
ẏ = x+ y
ż = 3x+ z

;

f)

 ẋ = x− y − z
ẏ = x+ y
ż = 3x+ z

;

g)

 ẋ = 4x− y − z
ẏ = x+ 2y − z
ż = x− y + 2z

.

3. Find the general solution to the following non-homogeneous systems of linear differential equ-
ations:

a)
{
ẋ = y + 2et
ẏ = x+ t2

;



b)
{
ẋ = 2x+ y + 2et
ẏ = x+ 2y − 3e4t ;

c)
{
ẋ = y + tg2 t− 1
ẏ = x+ tg t ;

d)
{
ẋ = 2y − x
ẏ = 4y − 3x+ e3t

e2t+1
;

e)
{
ẋ = −4x− 2y + 2

et−1
ẏ = 6x+ 3y − 3

et−1
;

f)
{
ẋ = x− y + 1

cos t
ẏ = 2x− y ;

g)
{
ẋ = 3x− 2y
ẏ = 2x− y + 15et

√
t

.


