MATHEMATICAL ANALYSIS 2

Worksheet 2.

Second and higher order derivatives. Convexity. Sylvester's criterion.

Theory outline and sample problems

The higher order partial derivatives are defined iteratively; that is, for a given function $f(x, y)$ its second order partial derivatives are defined as the partial derivatives of the first order partial derivatives $f_{x}^{\prime}(x, y), f_{y}^{\prime}(x, y)$, considered as new functions. For a function of two variables $f(x, y)$, there exist two partial derivatives of the first order $f_{x}^{\prime}(x, y), f_{y}^{\prime}(x, y)$, and four $(2 \times 2=4)$ partial derivatives of the second order: $f_{x x}^{\prime \prime}(x, y), f_{x y}^{\prime \prime}(x, y), f_{y x}^{\prime \prime}(x, y), f_{y y}^{\prime \prime}(x, y)$. Not all of them are different, though, due to the following

Theorem 1. (The Schwartz theorem). Let for a function $f(x, y)$ the mixed derivative $f_{x y}^{\prime \prime}$ and $f_{y x}^{\prime \prime}$ be well defined at the point $\left(x_{0}, y_{0}\right)$ and $f_{x y}^{\prime \prime}$ be continuous at this point. Then $f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right)=$ $f_{y x}^{\prime \prime}\left(x_{0}, y_{0}\right)$.

In other words, if the mixed derivatives are well defined and one of them is continuous, then they coincide. The continuity condition is quite mild and is typically satisfied; that is, there are typically 3 different partial derivatives of the second order for a given function $f(x, y)$.

Control question: How many different partial derivatives of the second order has a function $f(x, y, z)$? Answer: 6. Explain, why!
The partial derivatives of the 3 -rd, 4 -th, \ldots orders are defined similarly, and for them the analogue of the Schwartz theorem is true; that is, the mixed derivatives taken with the various order of variables coincide, provided they are well defined and continuous. For instance, the third order derivatives $f_{x x y}^{\prime \prime \prime}(x, y)$ and $f_{x y x}^{\prime \prime \prime}(x, y)$ coincide.

Control question: How many different partial derivatives of the third order has a function $f(x, y)$? A function $f(x, y, z)$? Answers: 4,10. Explain, why!

Sample problem 1: Calculate all partial derivatives of the 2nd order of the function $f(x, y)=\cos \left(x^{2}+y^{2}\right)$
Solution: Calculate first the 1st order partial derivatives:

$$
\begin{aligned}
& f_{x}^{\prime}(x, y)=-\sin \left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)_{x}^{\prime}=-2 x \sin \left(x^{2}+y^{2}\right), \\
& f_{y}^{\prime}(x, y)=-\sin \left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)_{y}^{\prime}=-2 y \sin \left(x^{2}+y^{2}\right),
\end{aligned}
$$

where we have used the chain rule and the table of derivatives. Then similarly calculate, using in addition the product formula,

$$
\begin{gathered}
f_{x x}^{\prime \prime}(x, y)=\left(-2 x \sin \left(x^{2}+y^{2}\right)\right)_{x}^{\prime}=-2 \sin \left(x^{2}+y^{2}\right)-2 x \cos \left(x^{2}+y^{2}\right)(2 x)=-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right), \\
f_{x y}^{\prime \prime}(x, y)=\left(-2 x \sin \left(x^{2}+y^{2}\right)\right)_{y}^{\prime}=-2 x \cos \left(x^{2}+y^{2}\right)(2 y)=-4 x y \cos \left(x^{2}+y^{2}\right), \\
f_{y y}^{\prime \prime}(x, y)=\left(-2 y \sin \left(x^{2}+y^{2}\right)\right)_{y}^{\prime}=-2 \sin \left(x^{2}+y^{2}\right)-4 y^{2} \cos \left(x^{2}+y^{2}\right) .
\end{gathered}
$$

The function $f_{y}^{\prime}(x, y)$ is differentiable in y; that is, $f_{y x}^{\prime \prime}(x, y)$ is well defined; in addition $f_{x y}^{\prime \prime}(x, y)$ is continuous. Then by the Schwartz theorem

$$
f_{y x}^{\prime \prime}(x, y)=f_{x y}^{\prime \prime}(x, y)=-4 x y \cos \left(x^{2}+y^{2}\right) .
$$

Definition 1. The Hessian of the function $f\left(x_{1}, \ldots, x_{n}\right)$ at the point $\left(x_{0}, y_{0}\right)$ is the matrix

$$
H_{f}\left(x_{0}, y_{0}\right)=\left(f_{x_{i} x_{j}}^{\prime \prime}\left(x_{0}, y_{0}\right)\right)_{i, j=1}^{n}
$$

For example, for the function $f(x, y)$ in the sample problem 1

$$
H_{f}(x, y)=\left(\begin{array}{cc}
-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right) & -4 x y \cos \left(x^{2}+y^{2}\right) \\
-4 x y \cos \left(x^{2}+y^{2}\right) & -2 \sin \left(x^{2}+y^{2}\right)-4 y^{2} \cos \left(x^{2}+y^{2}\right)
\end{array}\right)
$$

Note that the Hessian is a symmetric matrix, provided that its entries are continuous; this is just the Schwartz theorem.

The reason why it is natural to place the partial derivatives of second order into a matrix becomes clear when one looks at various one-dimensional sections (or traces) of the function. Recall that, for the function of two ${ }^{1}$ variables $f(x, y)$ its section in the direction $\mathbf{v}=(a, b)$ at the point $\left(x_{0}, y_{0}\right)$ is the function $F_{\left(x_{0}, y_{0}\right), \mathbf{v}}(t)=f\left(x_{0}+a t, y_{0}+b t\right), t \in \mathbb{R}$. The derivative of this function at the point $t=0$ equals to the directional derivative of f in the direction \mathbf{v} at the point $\left(x_{0}, y_{0}\right)$, and is equal

$$
\left.\frac{d}{d t} F_{\left(x_{0}, y_{0}\right), \mathbf{v}}(t)\right|_{t=0}=\nabla f\left(x_{0}, y_{0}\right) \cdot \mathbf{v}=f_{x}^{\prime}\left(x_{0}, y_{0}\right) a+f_{y}^{\prime}\left(x_{0}, y_{0}\right) b
$$

where $\nabla f=\left(f_{x}^{\prime}, f_{y}^{\prime}\right)$ is the gradient, or the vector derivative of the function. For the second derivative, the similar formula is available, which involves the Hessian:

$$
\left.\frac{d^{2}}{d t^{2}} F_{\left(x_{0}, y_{0}\right), \mathbf{v}}(t)\right|_{t=0}=\mathbf{v} H_{f}\left(x_{0}, y_{0}\right) \mathbf{v}^{\top}=f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right) a^{2}+2 f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right) a b+f_{y y}^{\prime \prime}\left(x_{0}, y_{0}\right) b^{2}
$$

The second derivative of a function $F(t)$ is a convenient tool for description of convexity/concavity of this function. Recall that $F(t)$ is said to be convex on an interval $\left(t_{0}, t_{1}\right)$ if for any $s, t \in\left(t_{0}, t_{1}\right)$ and any $\alpha \in(0,1)$

$$
F(\alpha s+(1-\alpha) t) \leqslant \alpha F(s)+(1-\alpha) F(t) ;
$$

for the function to be concave the inequality should be ' \geqslant '. Geometrically, the function is convex/concave if the the horde connecting two points on the graph (points $\left(t_{0}, F\left(t_{0}\right)\right)$ and $\left(t_{1}, F\left(t_{1}\right)\right)$ is located over/under the graph. The point t is called a convexity/concavity point for the function $F(t)$ if this function is convex/concave at some neighbourhood $(t-\epsilon, t+\epsilon)$ of the point t. Sufficient condition for convexity (concavity) is that $F^{\prime \prime}(t)>0\left(\right.$ resp. $\left.F^{\prime \prime}(t)<0\right)$.

For a function $f(x, y)$ we say that a point $\left(x_{0}, y_{0}\right)$ is a convexity/concavity point in a direction \mathbf{v} if, for the section of f in this direction, the point $t=0$ is a convexity/concavity point.

Sample problem 2: Find the points of convexity and concavity for the function $f(x, y)=x^{3}+y^{3}-3 x y$ in the direction $\mathbf{v}=(-1,1)$.
Solution: Calculate the gradient and the Hessian of the function:

$$
\nabla f(x, y)=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right), \quad H_{f}(x, y)=\left(\begin{array}{cc}
6 x & -3 \\
-3 & 6 y
\end{array}\right) .
$$

The second derivative of the section function in the direction \mathbf{v} :

$$
\mathbf{v} H_{f}\left(x_{0}, y_{0}\right) \mathbf{v}^{\top}=6 x_{0}(-1)^{2}+2(-1) 1(-3)+6 y_{0} 1^{2}=6 x_{0}+6 y_{0}+6
$$

Then

$$
\begin{cases}\left(x_{0}, y_{0}\right) \text { is a concavity point, } & x_{0}+y_{0}<-1 \\ \left(x_{0}, y_{0}\right) \text { is a convexity point, } & x_{0}+y_{0}>-1\end{cases}
$$

The boundary case $x_{0}+y_{0}=-1$ is not covered by the sufficient condition, and should be studied separately. Note that \mathbf{v} is the direction vector for the line $\ell=\{x+y=1\}$, thus if $\left(x_{0}, y_{0}\right) \in \ell$ then for any $t \in \mathbb{R}$ the point $\left(x_{0}, y_{0}\right)+t \mathbf{v} \in \ell$. Therefore for such $\left(x_{0}, y_{0}\right)$ one has $\frac{d^{2}}{d t^{2}} F_{\left(x_{0}, y_{0}\right), \mathbf{v}}(t) \equiv 0$, which means that the section $F_{\left(x_{0}, y_{0}\right), \mathbf{v}}(t)$ is a linear function of t. The linear function is both convex and concave, hence the final answer is

$$
\begin{cases}\left(x_{0}, y_{0}\right) \text { is a concavity point, } & x_{0}+y_{0}<-1 \\ \left(x_{0}, y_{0}\right) \text { is a convexity point, } & x_{0}+y_{0}>-1 \\ \left(x_{0}, y_{0}\right) \text { is both a concavity and a convexity point, } & x_{0}+y_{0}=-1\end{cases}
$$

${ }^{1}$ For simplicity of notation, only; the same relations hold true for arbitrary number of variables

Definition 2. A set $D \subset \mathbb{R}^{2}$ is convex if, for any two points $X, Y \in D$, the segment $[X, Y]$ connecting these points belongs to D. Function $f(x, y),(x, y) \in D$ is called convex if D is convex and for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in D$ and any $\alpha \in(0,1)$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}, \alpha y_{1}+(1-\alpha) y_{2}\right) \leqslant \alpha f\left(x_{1}, y_{1}\right)+(1-\alpha) f\left(x_{2}, y_{2}\right)
$$

for the function to be concave the inequality should be ' \geqslant '.
Geometric meaning of this definition is the same as for the above one-dimensional one: for a function to be convex/concave, any horde connecting two points on the graph has to be located over/under the graph; note however that now the graph is a surface, not a curve. The requirement that the domain D is convex, from this point of view, is just the requirement that for each point on the horde there should be a point on the graph to compare with.
The point $\left(x_{0}, y_{0}\right)$ is called a convexity/concavity point for the function $f(x, y)$ if this function is convex/concave when restricted to some (small) ball $B_{\epsilon}\left(x_{0}, y_{0}\right)$ centered at this point, $B_{\epsilon}\left(x_{0}, y_{0}\right)=$ $\left\{(x, y): \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\epsilon\right\}$. For $\left(x_{0}, y_{0}\right)$ to be a convexity/concavity point it is equivalent that $\left(x_{0}, y_{0}\right)$ is a convexity/concavity point at each direction \mathbf{v}. This leads to the useful sufficient condition for convexity in the terms of the Hessian.
Definition 3. A symmetric $n \times n$-matrix A is called

- positive definite, if $\mathbf{v} A \mathbf{v}^{\top}>0$ for any $\mathbf{v} \neq 0$;
- negative definite, if $\mathbf{v} A \mathbf{v}^{\top}<0$ for any $\mathbf{v} \neq 0$.

Theorem 2. For $\left(x_{0}, y_{0}\right)$ to be a convexity/concavity point for a function $f(x, y)$ it is sufficient that the Hessian of the function in this point is positive/negative definite.

There exists a convenient criterion for a matrix to be positive/negaitive definite.
Theorem 3. (The Sylvester criterion) For a symmetric matrix A to be positive defined it is necessary and sufficient that for each sub-matrix A_{k} of the size $k \times k, k=1, \ldots, n$, which has the same upper left corner with the original matrix, the determinant is positive.
For the matrix to be negative defined, the determinants of A_{k} should have the signs $-1,+1,-1, \ldots$ for $k=1,2,3, \ldots$.

Sample problem 3: Study if the following matrix is positive/negative definite: $\left(\begin{array}{ll}3 & 3 \\ 3 & 4\end{array}\right)$.
Solution: We have

$$
\operatorname{det} A_{1}=\operatorname{det}(3)=3>0, \quad \operatorname{det} A_{2}=\operatorname{det}\left(\begin{array}{ll}
3 & 3 \\
3 & 4
\end{array}\right)=3>0,
$$

hence the matrix is positive definite.
Sample problem 4: Write the Hessian of the function and specify the domains where the Hessian is positively/negatively defined, $f(x, y)=\cos \left(x^{2}+y^{2}\right)$.
Solution: We have already calculated the Hessian,

$$
H_{f}(x, y)=\left(\begin{array}{cc}
-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right) & -4 x y \cos \left(x^{2}+y^{2}\right) \\
-4 x y \cos \left(x^{2}+y^{2}\right) & -2 \sin \left(x^{2}+y^{2}\right)-4 y^{2} \cos \left(x^{2}+y^{2}\right)
\end{array}\right)
$$

For the Hessian to be either positive or negative defined it is necessary that the second minor is positive, i.e.

$$
\begin{aligned}
\operatorname{det} H_{f}(x, y) & =\left(2 \sin \left(x^{2}+y^{2}\right)+4 x^{2} \cos \left(x^{2}+y^{2}\right)\right)\left(2 \sin \left(x^{2}+y^{2}\right)+4 y^{2} \cos \left(x^{2}+y^{2}\right)\right)-16 x^{2} y^{2} \cos \left(x^{2}+y^{2}\right)^{2} \\
& =4 \sin \left(x^{2}+y^{2}\right)^{2}+8\left(x^{2}+y^{2}\right) \sin \left(x^{2}+y^{2}\right) \cos \left(x^{2}+y^{2}\right)>0
\end{aligned}
$$

If this condition is satisfied, then the Hessian is positive definite if $-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+\right.$ $\left.y^{2}\right)>0$, and negative definite if the sign is $<$. Thus, the answer is that $H_{f}(x, y)$ is positive defined if

$$
\left\{\begin{array}{l}
4 \sin \left(x^{2}+y^{2}\right)^{2}+8\left(x^{2}+y^{2}\right) \sin \left(x^{2}+y^{2}\right) \cos \left(x^{2}+y^{2}\right)>0 \\
-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right)>0
\end{array}\right.
$$

and is negative defined if

$$
\left\{\begin{array}{l}
4 \sin \left(x^{2}+y^{2}\right)^{2}+8\left(x^{2}+y^{2}\right) \sin \left(x^{2}+y^{2}\right) \cos \left(x^{2}+y^{2}\right)>0, \\
-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right)<0 .
\end{array}\right.
$$

Concavity/convexity naturally applies for the study of local extrema of the functions of several variables.

Definition 4. A point $\left(x_{0}, y_{0}\right)$ is a local maximum of a function $f(x, y)$ if there exists a (small) ball $B_{\epsilon}\left(x_{0}, y_{0}\right)$ centered at this point, such that

$$
f(x, y) \leqslant f\left(x_{0}, y_{0}\right), \quad(x, y) \in B_{\epsilon}\left(x_{0}, y_{0}\right)
$$

A point $\left(x_{0}, y_{0}\right)$ is a local minimum, if

$$
f(x, y) \geqslant f\left(x_{0}, y_{0}\right), \quad(x, y) \in B_{\epsilon}\left(x_{0}, y_{0}\right)
$$

Local extremum point is a point of either local maximum or local minimum.
Theorem 4. I (Necessary condition of a local extremum) If $\left(x_{0}, y_{0}\right)$ is the interior point of the domain of a differentiable function $f(x, y)$ and $\left(x_{0}, y_{0}\right)$ is a local extremum, then

$$
\begin{equation*}
\nabla f\left(x_{0}, y_{0}\right)=\overrightarrow{0} \tag{*}
\end{equation*}
$$

Any point $\left(x_{0}, y_{0}\right)$ satisfying $\left({ }^{*}\right)$ is called a critical point of the function $f(x, y)$.
II (Sufficient condition of a local extremum) If $\left(x_{0}, y_{0}\right)$ is a critical point and a point of convexity/concavity for $f(x, y)$, then it is a local minimum/maximum.

The following classification of the critical points on a plane is standard: if $\operatorname{det} H_{f}\left(x_{0}, y_{0}\right) \neq 0$, the eigenvalues λ_{1}, λ_{2} of this matrix is non-zero, and the following three possibilities are available, only:

- $\lambda_{1}, \lambda_{2}>0, H_{f}\left(x_{0}, y_{0}\right)$ is positive definite, $\left(x_{0}, y_{0}\right)$ is a convexity point and a local minimum;
- $\lambda_{1}, \lambda_{2}<0, H_{f}\left(x_{0}, y_{0}\right)$ is negative definite, $\left(x_{0}, y_{0}\right)$ is a concavity point and a local maximum;
- λ_{1}, λ_{2} have different signs, f is convex/concave in different directions (namely, eigenvectors for $\left.H_{f}\left(x_{0}, y_{0}\right)\right)$, in this case $\left(x_{0}, y_{0}\right)$ is called a saddle point

Sample problem 5: Find and classify all the critical points of $f(x, y)=4+x^{3}+y^{3}-3 x y$. Solution: To find the critical points, we have to solve $\left(^{*}\right)$. Calculate the gradient:

$$
\nabla f(x, y)=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right)
$$

Then $\left({ }^{*}\right)$ is equivalent to the system of equations

$$
\left\{\begin{array} { l }
{ 3 x ^ { 2 } - 3 y = 0 } \\
{ 3 y ^ { 2 } - 3 x = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ y = x ^ { 2 } } \\
{ x = y ^ { 2 } }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ y = x ^ { 2 } } \\
{ x = x ^ { 4 } }
\end{array} \Longleftrightarrow \left[\begin{array}{l}
(x, y)=(0,0) \\
(x, y)=(1,1)
\end{array}\right.\right.\right.\right.
$$

We have

$$
H_{f}(x, y)=\left(\begin{array}{cc}
6 x & -3 \\
-3 & 6 y
\end{array}\right)
$$

and $H_{f}(1,1)$ is positive definite, while $H_{f}(0,0)$ is neither positive nor negative definite and $\operatorname{det} H_{f}(0,0)=-9 \neq 0$. Thus $(1,1)$ is a local minimum, $(0,0)$ is a saddle point, and there is no other critical points.

Problems to solve

1. Calculate all partial derivatives of the 2 nd order of the functions
(a) $f(x, y)=\sin \left(x^{3}-y^{2}\right)$,
(b) $f(x, y)=y e^{x^{2}+y^{2}}$,
(c) $f(x, y)=\operatorname{tg} x+\frac{y^{3}}{x}$,
(d) $f(x, y)=\ln 1+x y$,
(e) $f(x, y, z)=\frac{x}{\sqrt{x^{2}+z^{2}+z^{2}}}$
(f) $f(x, y, z)=\ln \left(1+x^{2}+y^{3}+z^{4}\right)$.
2. Write the Hessian of the function and specify the domains where the Hessian is positive/negative definite.
(a) $f(x, y)=\sin \left(x^{2}+y^{2}\right)$,
(b) $f(x, y)=x y e^{x+y}$,
(c) $f(x, y)=x+\frac{y}{x^{2}}$,
(d) $f(x, y)=\ln 1+x y$,
(e) $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$
(f) $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$.
3. Study the following matrices for being positive/negative definite.
(a) $\left(\begin{array}{cc}-3 & 3 \\ 3 & -4\end{array}\right)$,
(b) $\left(\begin{array}{cc}-1 & 2 \\ 2 & 4\end{array}\right)$,
(c) $\left(\begin{array}{ccc}-1 & 2 & 4 \\ 2 & 2 & 2 \\ 4 & 2 & 1\end{array}\right)$,
(d) $\left(\begin{array}{ccc}3 & 4 & 1 \\ 4 & 5 & 2 \\ 1 & 2 & 17\end{array}\right)$,
(e) $\left(\begin{array}{lll}5 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 6\end{array}\right)$,
(f) $\left(\begin{array}{cccc}2 & 2 & -3 & -1 \\ 2 & 5 & 1 & 2 \\ -3 & 1 & -2 & 3 \\ -1 & 2 & 3 & 4\end{array}\right)$.
4. Find the points of convexity/concavity for the function $f(x, y)=x^{4}+y^{4}-4 x y$ in the direction $\mathbf{v}=(1,1)$.
5. Find and classify all the critical points of $f(x, y)=2 x^{2}+y^{2}-3 x y$.
6. Find and classify all the critical points of $f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}$.
7. Find and classify all the critical points of $f(x, y)=2 x y-y^{2}+x^{3}+x^{2}$.
8. Calculate all partial derivatives of the 3rd order of the functions
(a) $f(x, y)=\cos \left(x^{2}+y^{2}\right)$
(b) $f(x, y)=e^{x y}$
(c) $f(x, y)=\sqrt{x+y}$.
