
MATHEMATICAL ANALYSIS 2
Worksheet 6.

Applications of double and triple integrals in geometry and physics. Cylindrical and spherical
coordinates in R3

Theory outline and sample problems

Double integrals is a natural tool for calculation of a set of characteristics of planar and spatial
figures. In what follows, D is a planar domain, i.e. a domain on the plane R2

Formula 1. The area of a planar domain D is equal

S(D) =
∫∫

D
dxdy.

Formula 2. Let U be a body in R3, bounded between the graphs of two functions hlower(x, y) ¬
hupper(x, y), defined on the same planar domain D. The volume of the body U is equal

V (U) =
∫∫

D
(hupper(x, y)− hlower(x, y)) dxdy.

Formula 3. Let Γ be the surface z = f(x, y), (x, y) ∈ D; that is, Γ is the graph of the function
f(x, y) with the domain D. The area of the surface Γ is equal

S(Γ) =
∫∫

D

√
1 + (∂xf(x, y))2 + (∂yg(x, y))2 dxdy.

Sample problem 1: Calculate the volume of the ball B and the surface area of the sphere Γ of the
radius R.

Solution. We can represent the ball as the body between the graphs of the functions

hupper(x, y) =
√
R2 − x2 − y2, hlower(x, y) = −

√
R2 − x2 − y2

taken on the domain D = {(x, y) : x2 + y2 ¬ R2}. Thus

V (B) = 2
∫∫

x2+y2¬R2

√
R2 − x2 − y2 dxdy.

Changing the variables to polar, we calculate the volume of the ball:

V (B) = 2
∫ 2π

0
dφ
∫ R

0

√
R2 − ρ2ρdρ =

∣∣∣∣ ρ2 = v
2ρdρ = dv

∣∣∣∣ = 2π
∫ R2

0

√
R2 − v dv

= 2π
(
−2

3
(R2 − v)3/2

) ∣∣∣∣v=R2

v=0
=

4π
3
R3.

Next, the surface of the sphere consists of two equal parts which correspond to the upper and the
lower semi-spheres, i.e. the graphs of the functions hupper(x, y), hlower(x, y). We have

∂xhupper(x, y) = − x√
R2 − x2 − y2

, ∂yhupper(x, y) = − y√
R2 − x2 − y2

,



and

1 + (∂xhupper(x, y))2 + (∂yhupper(x, y))2 =
R2

R2 − x2 − y2
,

thus
S(Γ) = 2

∫∫
x2+y2¬R

R√
R2 − x2 − y2

dxdy.

Changing the variables to polar, we calculate the surface of the sphere:

S(Γ) = 2
∫ 2π

0
dφ
∫ R

0

R√
R2 − ρ2

ρ dρ =
∣∣∣∣ ρ2 = v

2ρdρ = dv

∣∣∣∣ = 2π
∫ R2

0

R√
R2 − v

dv

= 2π
(
− 2R(R2 − v)1/2

)∣∣∣∣v=R2

v=0
= 4πR2.

The volume of a ball and the surface area of a sphere are well known and can be found in various
handbooks. However, the method of the calculation explained above is quite general and allows
one to consider much more sophisticated geometric shapes. Let us consider two more examples.

Sample problem 2: Find the surface area obtained by cutting from the sphere with the radius R
two cylinders x2 + y2 ±Rx ¬ 0.

Answer: 8R2. This is a remarkable example of a figure on the sphere, whose surface area is a
rational expression, i.e. does not involve irrational coefficients like 4π in the formula for the area
of the entire sphere. This is the Viviani problem, named by Vincentio Viviani who posed it in 1692
and proposed the construction of the required figure, but did not give a proof. The calculation
below easily verifies that Viviani’s construction is correct.

Solution: The same calculation as in the previous problem gives us the formula for the surface
area

S(Γ) = 2
∫∫

D

R√
R2 − x2 − y2

dxdy,

where the domain D now has the form of the circle {x2 + y2 ¬ R} with two circular holes cutted
out:

{x2+y2+Rx ¬ 0} ⇐⇒ {(x+R/2)2+y2 ¬ (R/2)2}, {x2+y2−Rx ¬ 0} ⇐⇒ {(x−R/2)2+y2 ¬ (R/2)2}.

Let us divide D in two symmetric parts D+ = D∩{x > 0}, D− = D∩{x < 0}. Since the function
under the integral is even w.r.t. x, we have

S(Γ) = 4
∫∫

D+

R√
R2 − x2 − y2

dxdy.

Now, let us change the variables to polar. The domain D+ does not have the form of a rectangle in
the polar coordinates, but still we can describe it efficiently. Namely, a point x = ρ cosφ, y = ρ sinφ
will belong to the positive semi-circle of the radius R if φ ∈ (−π

2 ,
π
2 ) and ρ ¬ R. For this point to

be outside the circle {x2 + y2 −Rx ¬ 0}, we need that

ρ2 cos2 φ+ ρ2 sin2 φ ­ Rρ cosφ⇐⇒ ρ ­ R cosφ.



Then, changing coordinates to polar, we get

S(Γ) = 4
∫∫

D+

R√
R2 − x2 − y2

dxdy = 4
∫ π
2

−π2
dφ
∫ R

R cosφ

R√
R2 − ρ2

ρ dρ

= 8
∫ π
2

0
dφ
∫ R

R cosφ

R√
R2 − ρ2

ρ dρ =
∣∣∣∣ ρ2 = v

2ρdρ = dv

∣∣∣∣
= 4

∫ π
2

0
dφ
∫ R2

R2 cos2 φ

R√
R2 − v

dv

= 4
∫ π
2

0
dφ
(
− 2R(R2 − v)1/2

)∣∣∣∣v=R2

v=R2 cos2 φ

= 8R2
∫ π
2

0

√
1− cos2 φ dφ = 8R2

∫ π
2

0
sinφ dφ = 8R2(− cosφ)

∣∣∣∣φ=π
2

φ=0
= 8R2.

Sample problem 3: Find the area of the part of the surface z2 = 2xy, cutted off by the planes
x+ y = 1, x = 0, y = 0.

Comment and a control question: Equation z2 = 2xy defines a hyperbolic cone, you can imagine
the shape of this surface by drawing its intersections with the planes z = c. What are the shapes
of these intersections, considered as the curves in the (x, y)-plane?

Solution: The surface contains symmetric two parts, each of them being a graph of a function:
z =
√

2xy, z = −
√

2xy. We have for the first function

∂xz =
√
y

2x
, ∂yz =

√
x

2y
,

then

1 + (∂xz)2 + (∂yz)2 = 1 +
y

2x
+

x

2y
=

2xy + y2 + x2

2xy
=

(x+ y)2

2xy
,

and

S(Γ) = 2
∫∫

D

√
(x+ y)2

2xy
dxdy =

√
2
∫∫

D

(√
x
√
y

+
√
y√
x

)
dxdy,

where the domain D is bounded by the lines x+ y = 1, x = 0, y = 0. Representing this domain as
x-normal

D = {(x, y) : 0 ¬ x ¬ 1, 0 ¬ y ¬ 1− x},
we write the above double integral as an iterated one:

S(Γ) =
√

2
∫ 1

0
dx
∫ 1−x

0

(√
x
√
y

+
√
y√
x

)
dy

√
2
∫ 1

0

(
2
√
x
√

1− x+
2
3

(1− x)
3
2

1√
x

)
dx.

The calculation of the integral in x requires some mastery. First, observe that(2
3

(1− x)
3
2

)′
= −
√

1− x, (2
√
x)′ =

1√
x
,



hence integrating by parts gives us

S(Γ) = 4
√

2
∫ 1

0

√
x
√

1− x dx.

Second, making the change of variables x = sin2 t, we have dx = 2 sin t cos t, 1− x = cos2 t, hence

S(Γ) = 4
√

2
∫ π
2

0
sin t cos t(2 sin t cos t) dt = 2

√
2
∫ π
2

0
sin2 2t dt

=
∣∣∣∣2t = s| =

√
2
∫ π

0
sin2 s ds =

√
2

2

∫ π

0
(1− cos 2s) ds =

√
2

2

(
1− 1

2
cos 2s)

∣∣∣∣s=π
s=0

=
π√
2
.

The area of the domain D can be physically interpreted as the mass of a thin material plate of the
shape D, provided that the density of the material is constant and equals 1. The integral formula
for the area can be extended to the situation, where the density of the material is non-constant,
and is given by a continuous function γ(x, y) ­ 0.

Formula 4. The mass of a planar figure D with the density γ(x, y) equals

M(D) =
∫∫

D
γ(x, y) dxdy.

In the same spirit, the following mechanical characteristics can be calculated.

Formula 5. The center of mass of a planar figure D with the density γ(x, y) is the point C(D)
with the coordinates

xC =
1

M(D)

∫∫
D
xγ(x, y) dxdy, yC =

1
M(D)

∫∫
D
yγ(x, y) dxdy.

The static moments w.r.t. axes Ox,Oy are given by

MSx(D) =
∫∫

D
yγ(x, y) dxdy, MSy(D) =

∫∫
D
xγ(x, y) dxdy.

Formula 6. The moments of inertia of a planar figure D with the density γ(x, y) w.r.t. axes
Ox,Oy are given by

Ix(D) =
∫∫

D
y2γ(x, y) dxdy, Iy(D) =

∫∫
D
x2γ(x, y) dxdy.

The moment of inertia w.r.t. the origin is given by

Io(D) =
∫∫

D
(x2 + y2)γ(x, y) dxdy.

Sample problem 4: Let D be a right triangle with the right angle located at the origin and the
legs located on the positive Ox,Oy semi-axes and having the lengths 1 and 2, respectively. The
density function is γ(x, y) = x. Find the mass of D, its center of mass, its static moments and
moments of inertia.



Solution: Parametrise the triangle D as an x-normal domain: D = {(x, y), 0 ¬ x ¬ 1, 0 ¬ y ¬
2− 2x}. Then

M(D) =
∫ 1

0
dx
∫ 2−2x

0
x dy =

∫ 1

0
x(2− 2x) dx = (x2 − 2

3
x3)

∣∣∣∣1
0

=
1
3
,

MSx(D) =
∫ 1

0
dx
∫ 2−2x

0
xy dy =

1
2

∫ 1

0
x(2− 2x)2 dx = 2

(
x2

2
− 2x3

3
+
x4

4

)∣∣∣∣1
0

=
1
6
,

MSy(D) =
∫ 1

0
dx
∫ 2−2x

0
x2 dy =

∫ 1

0
x2(2− 2x) dx = 2

(
x3

3
− x4

4

)∣∣∣∣1
0

=
1
6
,

and thus

xC =
MSy(D)
M(D)

=
1
2
, yC =

MSx(D)
M(D)

=
1
2
.

The moments of inertia w.r.t. axes Ox,Oy are equal

Ix(D) =
∫ 1

0
dx
∫ 2−2x

0
xy2 dy =

1
3

∫ 1

0
x(2− 2x)3 dx

=
8
3

∫ 1

0
x(1− 3x+ 3x2 − x3) dx

=
8
3

(
x2

2
− 3x3

3
+

3x4

4
− x5

5

)∣∣∣∣1
0

=
8
3

1
20

=
2
15
,

Iy(D) =
∫ 1

0
dx
∫ 2−2x

0
x3 dy = 2

∫ 1

0
x3(1− x) dx

= 2
(
x4

4
− x5

5

)∣∣∣∣1
0

=
1
10
.

Then the moment of inertia w.r.t. the origin is

Io(D) = Ix(D) + Iy(D) =
2
15

+
1
10

=
7
30

The above formulae have natural extension from the planar (thin) figures D to spatial bodies U .
Such extensions will involve triple integrals over U , which are treated in the same fashion with
the double integrals we have studied so far. Let us briefly outline corresponding definitions and
main facts. The triple integral ∫∫∫

U
f(x, y, z) dxdydz

is defined as a limit of integral sums, and is typically calculated by transforming it to an iterated
integral. The body U is called xy-normal, if it can be represented in the form

U = {(x, y, z) : (x, y) ∈ D, hlower(x, y) ¬ z ¬ hupper(x, y)}
with some domain D and functions hlower(x, y), hupper(x, y) (That is, the body U is bounded
between the graphs of two functions, likewise to the one in Formula 2). For an xy-normal body U
and continuous function f(x, y, z), the triple integral can be written as∫∫∫

U
f(x, y, z) dxdydz =

∫∫
D

[∫ hupper(x,y)

hlower(x,y)
f(x, y, z) dz

]
dxdy =

∫∫
D
dxdy

∫ hupper(x,y)

hlower(x,y)
f(x, y, z) dz.

(1)
The following formula for the volume of a body is analogous to Formula 1; for xy-normal domains,
it is obviously equivalent to Formula 2.



Formula 7. The volume of a body U is equal

V (U) =
∫∫∫

U
dxdydz.

The following formulae give spatial versions of the Formulae 4 – 6.

Formula 8. The mass of a body U with the density γ(x, y, z) equals

M(U) =
∫∫∫

U
γ(x, y, z) dxdydz.

Formula 9. The center of mass of a body U with the density γ(x, y, z) is the point C(U) with the
coordinates

xC =
1

M(U)

∫∫∫
U
xγ(x, y, z) dxdydz, yC =

1
M(U)

∫∫∫
U
yγ(x, y, z) dxdydz,

zC =
1

M(U)

∫∫∫
U
zγ(x, y, z) dxdydz.

The static moments w.r.t. planes Oxy,Oxz,Oyz are given by

MSxy(U) =
∫∫∫

U
zγ(x, y, z) dxdydz, MSxz(U) =

∫∫∫
U
yγ(x, y, z) dxdydz,

MSyz(U) =
∫∫∫

U
xγ(x, y, z) dxdydz

Formula 10. The moments of inertia of a body U with the density γ(x, yz) w.r.t. axes Ox,Oy,Oz
are given by

Ix(U) =
∫∫∫

U
(y2 + z2)γ(x, y, z) dxdydz, Iy(U) =

∫∫∫
U

(x2 + z2)γ(x, y, z) dxdydz,

Iz(U) =
∫∫∫

U
(x2 + y2)γ(x, y, z) dxdydz.

The moment of inertia w.r.t. the origin is given by

Io(U) =
∫∫∫

U
(x2 + y2 + z2)γ(x, y, z) dxdydz.

Sample problem 5: Find the mass of the sphere U with the radius R and the density function
γ(x, y, z) = x2 + y2 + z2.

Solution: We can represent the body U as xy-normal with D = {x2 + y2 ¬ R} and

hlower(x, y) = −
√
R2 − x2 − y2, hupper(x, y) =

√
R2 − x2 − y2.

Then by (1) we have

M(U) =
∫∫∫

U
(x2 + y2 + z2) dxdydz =

∫∫
D

(
2(x2 + y2)

√
R2 − x2 − y2 +

2
3

(
√
R2 − x2 − y2)3

)
dxdy



Changing the variables to polar we transform the disk D into a rectangle, which gives

M(U) =
∫ 2π

0
dφ
∫ R

0

(
2ρ2 +

2
3

(R2 − ρ2)
)√

R2 − ρ2ρ dρ = 2π
∫ R

0

(2
3
R2 +

4
3
ρ2
)√

R2 − ρ2ρ dρ

Change the variables ρ = R sin t, then dρ = R cos t and

M(U) = 2πR5
∫ π
2

0

(2
3

+
4
3

sin2 t
)

sin t cos2 t dt = 2πR5
∫ π
2

0

(
2− 4

3
cos2 t

)
sin t cos2 t dt

= 2πR5
∫ π
2

0

(
2 cos2 t− 4

3
cos4 t

)
sin t dt = 2πR5

(
− 2

3
cos3 t+

4
15

cos5 t
)∣∣∣∣t=π

2

t=0
=

4π
5
R5

In many cases, calculation of a triple integral can be simplified if a proper change of variables is
performed. The change of variables formula for triple integrals have the form∫∫∫

U
f(x, y, z) dxdydz =

∫∫∫
Ω
f(F1(u, v, w), F2(u, v, w)) |JF (u, v, w)| dudvdw, (2)

where U is obtained as a one-to-one image of a body Ω under the mapping F (u, v, w), which has
the Jacobian matrix

DF (u, v, w) =

 ∂uF1(u, v, w) ∂vF1(u, v, w) ∂wF1(u, v, w)
∂uF2(u, v, w) ∂vF2(u, v, w) ∂wF2(u, v, w)
∂uF3(u, v, w) ∂vF3(u, v, w) ∂wF3(u, v, w)


and the Jacobian determinant

JF (u, v, w) = det

 ∂uF1(u, v, w) ∂vF1(u, v, w) ∂wF1(u, v, w)
∂uF2(u, v, w) ∂vF2(u, v, w) ∂wF2(u, v, w)
∂uF3(u, v, w) ∂vF3(u, v, w) ∂wF3(u, v, w)


Let us introduce two coordinate systems frequently used to perform the change of variables in the
triple integrals.
The cylindrical coordinates are ρ ­ 0, φ ∈ [0, 2π], z ∈ R, with the change of variables formula x = ρ cosφ

y = ρ sinφ
z = z

,

which actually means that the coordinates (x, y) are changed to the polar form, while the coor-
dinate z remains unchanged. The Jacobian matrix and the Jacobian determinant for cylindrical
change of variables are

DC(ρ, φ, z) =

 cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

 , JC(ρ, φ, z) = ρ.

That is, the particular version of the change of variables formula for the cylindrical coordinates is∫∫∫
U
f(x, y, z) dxdydz =

∫∫∫
Ω
f(ρ cosφ, ρ sinφ, z)ρ dρdφdz. (3)



The spherical coordinates ρ ­ 0, φ ∈ [0, 2π], ψ ∈ [−π
2 ,

π
2 ], with the change of variables formula x = ρ cosφ cosψ

y = ρ sinφ cosψ
z = ρ sinψ

,

Here ρ =
√
x2 + y2 + z2 is the distance form the point (x, y, z) to the origin. The angles φ, ψ have

the following geometric meaning: ψ is the angle between the vector (x, y, z) and the plane Oxy,
which is taken positive when z > 0 and negative otherwise. Taking the projection of the vector
(x, y, z), we can determine then the polar coordinates of the projection in this plane; the angular
coordinate of the projection is exactly the angle φ.
The Jacobian matrix and the Jacobian determinant for spherical change of variables are

DS(ρ, φ, ψ) =

 cosφ cosψ −ρ sinφ cosψ −ρ cosφ sinψ
sinφ cosψ ρ cosφ cosψ −ρ sinφ sinψ

sinψ 0 ρ cosψ

 ,
JS(ρ, φ, ψ) = sinψ(ρ2 sin2 φ cosψ sinψ + ρ2 cos2 φ cosψ sinψ)

+ ρ cosψ(ρ cos2 φ cos2 ψ + ρ sin2 φ cos2 ψ)
= ρ2 cosφ.

That is, the particular version of the change of variables formula for the spherical coordinates is∫∫∫
U
f(x, y, z) dxdydz =

∫∫∫
Ω
f(ρ cosφ cosψ, ρ sinφ cosψ, ρ sinψ)ρ2 cosψ dρdφdψ. (4)

Spherical coordinates are particularly convenient when the domain of integration has the shape
of a part of a sphere. To illustrate the benefits, let us recalculate the Sample Problem 4.

Sample problem 4’: Solve Sample Problem 4 using spherical coordinates.

Solution: In the spherical coordinates, the sphere U has the simple form Ω = {(ρ, φ, ψ) : ρ ¬
R, φ ∈ [0, 2π], ψ ∈ [−π

2 ,
π
2 ]}; that is, only the radial variable is assumed to be bounded by R, and

the angular variables are not restricted. Then, performing the change of variables, we get

M(U) =
∫∫∫

U
(x2 + y2 + z2) dxdydz =

∫∫∫
[0,R]×[0,2π]×[−π2 ,

π
2 ]
ρ2ρ2 cosψ dρdφdψ

=
R5

5
(2π)

∫ −π2
−π2

cosψ dψ =
R5

5
(2π)(sinψ)

∣∣∣∣−π2
−π2

=
4π
5
R5.

We see that the calculation of the integral after the change to the spherical coordinates is much
simpler than the direct computation based on representation of the sphere as a normal body.
Let us give one more example of such kind.

Sample problem 5: For the ellipsoid

U = {(x, y, z) :
x2

a2
+
y2

b2
+
z2

c2
¬ 1}

with the density function γ(x, y, z) = 1 find the mass and the moment of inertia w.r.t. the axis
Ox.



Solution: Change the variables x = au, y = bv, z = cw, then the Jacobian of the transformation is

JF (u, v, w) =

∣∣∣∣∣∣
a 0 0
0 b 0
0 0 c

∣∣∣∣∣∣ = abc,

and
M(U) =

∫∫∫
U
dxdydz = abc

∫∫∫
u2+v2+w2¬1

dudvdw.

Performing the change to spherical coordinates, we get further

M(U) = abc
∫∫∫

[0,1]×[0,2π]×[−π2 ,
π
2 ]
ρ2 cosψ dρdφdψ

= abc
[∫ 1

0
ρ2
]

(2π)
[∫ π

2

−π2
cosψ dψ

]

= abc
1
3

(2π)2 =
4π
3
abc.

Similarly,

Ix(U) =
∫∫∫

U
(y2 + z2) dxdydz = abc

∫∫∫
u2+v2+w2¬1

(b2v2 + c2w2) dudvdw

= abc
∫∫∫

[0,1]×[0,2π]×[−π2 ,
π
2 ]

(b2ρ2 sin2 φ cos2 ψ + c2ρ2 sin2 ψ)ρ2 cosψ dρdφdψ

=
abc

5

∫ π
2

−π2
dψ

∫ 2π

0
(b2 sin2 φ cos3 ψ + c2 sin2 ψ cosψ) dφ

=
abc

5

∫ π
2

−π2
(πb2 cos3 ψ + 2πc2 sin2 ψ cosψ) dψ

=
4π
15
abc(b2 + c2).



Problems to solve

In the problems below, a, b, c, A,B,C, . . . are fixed positive numbers.

Part A

1. Find the area of the part of the sphere x2 +y2 +z2 = R2, cutted off by the cylinder x2 +y2 = r2

(r < R).

2. Find the area of the part of the cone z2 = x2 + y2, cutted off by the cylinder x2 + y2 = 2x.

3. For a given plate D and density function γ(x, y), find the mass of D, its center of mass, its
static moments and moments of inertia:

(a) D is a rectangle with the sides A,B from which a smaller rectangle with the sides a, b is
cutted in the middle. All the sides are parallel to the axes, and the centers of the rectangles
coincide and are located in the origin. The density function γ(x, y) = 1.

(b) D is the quarter of a circle of the radius R, located symmetrically w.r.t. the Ox axis with
the center placed at the origin; the density function γ(x, y) = 1.

(c) D is the ellipse
x2

a2
+
y2

b2
¬ 1, the density function γ(x, y) = 1 + c(x2 + y2).

Part B

4. Find the area of the part of the surface z2 = 1
2(x2 − y2), cutted off by the planes x + y =

±1, x− y = ±1.

5. Find the area of the part of the surface z = axy, cutted off by the cylinder x2 + y2 = b.

6. For a given body D with the density function γ(x, y, z) = 1, find the mass of U and its center
of mass:

(a) U is a right parallelepiped with the sides A,B,C from which a smaller parallelepiped with
the sides a, b, c is cutted in the middle. All the sides are parallel to the coordinate planes,
and the centers of the rectangles coincide and are located at the origin.

(b) U is a cutted straight circular cone with the height h and the radii of the bases r, R. The
larger base is located on the Oxy plane, with the center placed at the origin.

(c) U is the half of the sphere of the radius R centered at the origin, located at the upper
half-space {z ­ 0}.


