MATHEMATICAL ANALYSIS 2
Worksheet 7.
Taylor formula. Power series. Taylor-Maclaurin series

Theory outline and sample problems

We have seen that the derivative of the function can be used in order to approximate the function,
in a vicinity of a given point, by a linear function:

f(@) & (o) + f'(2o)(z — 20). (1)

The approximate identity sign ‘=’ here can be understood various ways, most of them involving
an information about the approzimation error, or the residual term

R(z,x0) = f(z) — f(x0) — [(20) (2 — 20)
Theorem 1. Let function f be differentiable on an interval [a,b] and x¢ € (a,b). Then
(a)
R(x,x0)

— 0, x — zg;
|z — z¢

(b) there exists a point 6, intermediate between points x and xq, such that
R(z,z0) = (f'(0) = ['(0))(x — m0), x € [a,b].

Statement (a) in the above theorem tells us that, infinitesimally, i.e. when x — x, is (infinitely)
small, the residue of the approximation is negligible w.r.t. the linear part. Statement (b) is of the
principal importance, because it gives a bound for the approximation error for the given pair of

points x, xg:
|R(x, 20)| < [z — 2] GS[UP | |f'(0) — f(2o)]
€lxo,x

Statement (b) is actually the Lagrange theorem, properly re-written; in its original form the La-
grange theorem (AKA the Mean Value theorem) states that

f(@) = f(zo) = f/(0)(x — xo).

The Taylor formula can be understood an extension of the above approximation formula, where
instead of linear functions polynomials are used as approximations.

Theorem 2. Let function f have n derivatives on an interval [a,b] and xo € (a,b). Then

£(0) = Fa0) + @0} = m0) + 30" (@u) i = a0)? + -+ - f O o) = 0)" + R 20,

wheren! =1-2-----n, and
(a)
Rn(xer)

T—aor O T



(b) there exists a point 0, intermediate between points x and xq, such that
1
R(z,x0) = ﬁ(f(n)(e) — [ (o)) (w — mo)".

If the function [ have n derivatives on an interval a,b], then there exists a point ¥, intermediate
between points x and xq, such that

F(a) = Fa0) + £ o)x — 0) + 3 (o) (& — o)+ + - F o) — w0)" + Rl 0), (2)
1
(n+1)!

Identities (2), (3) are called the Taylor formula of the order n with the residue in the Lagrange
form. These identities give a practical tool for approximating functions, with increasing accuracy,
by polynomials. The accuracy of approximation can be estimated using the formula

Ry (,20) = FUEV) (@ — o). (3)

|z — @o["™ sup [F"TD(y)].

R,(z,x)| < ———
| B o)\\<n+1), s

Sample problem 1: : Write the Taylor formula of the orders n = 2,3 at the point xqg = 0 for the
function f(x) = sinz?. Estimate respective approximation errors at the interval [—1, 1].

Solution: We have
f'(x) = 2xcosx?, f"(x) = 2cosa® — 4z?sin 2?,

f9(z) = (142* — 12) sin2® — 24(2® + 1) cos 22,

" (x) = =12z sinz* — 82 cos 2%,

and

f0)=0, f(0)=0, f'(0)=2, f"(0)=0.

=1, 20=2, 3=6, 4 =24
Then the 2-nd and the 3rd order Taylor formulae have the form

In addition,

1

sin(z?) = 0+ 0(x — 0) + 52(33 —0)? 4 Ry(2,0) = 2° 4+ Ry(x,0),
1

sin(z®) = 0+ 0(x — 0) + 52(:c —0)? + R3(z,0).

Since
| (z)| = [12x sin 2% 4 823 cos 22| < 20,  |fW(z)| < [142* — 12| + 24(2* + 1) < 50, =z € [-1,1],

we have

20 10
| Ra(,0)] < g”fﬁ — 0’ = §|37’37
B0 o= 2B

The above example shows clearly that, while n is increasing, the approximation accuracy for
the Taylor formula typically improves. The Taylor series appears when, in this approximation,
n — 00; in this setting, an approximation formula transforms to a true zdentzty To deal with such
an 1dent1ty rigorously, we need to introduce several new notions.



Definition 1. (I) An infinite (number) series is a sum of the form Y>°°  a,, where ag,ay, ...
are real numbers. This infinite sum is defined as a limit, as N — oo, of the partial sums

N

(IT) A functional series is a sum of the form Y 0°, f.(x) where fo(z), fi(z),... are functions
defined on some interval [a, b]. The infinite sum is obtained as a collection of sums of number
series in each point x € [a, b].

(ITT) A power series is a functional series with f,(x) = a,(x — x¢)", where ag,a;,... are real
numbers and x( is a given number.

The notion of convergence of a functional series (that is, the sum of an infinite number of functions)
requires a certain accuracy. It is highly desirable for the standard operations of differentiation and
integration to be adjusted with this notion. It appears that the point-wise convergence introduced
above is not well adjusted with these basic analysis tools. This motivates the following

Definition 2. A functional series >_0° , fn(z) converges uniformly to a function f(z) on a segment
a, ] if

sup —0, N — o0.
z€[a,b]

fa) i fula)

Theorem 3. (I) Let functional series Yo% fu(x) converge uniformly to a function f(zx) on a
segment [a,b]. Then for every [c,d] C [a,b],

d o d
/Cf(x)darzz fo(z) dx

n=0"¢

(II) Let functional series Y00 fn(x) converge to a function f(x), and the series Yo% fl(z)
converge uniformly on a segment [a,b]. Then f(x) is differentiable and

f(x) = ff fi(a).

For a power series, it is quite easy to describe the interval of convergence.

Theorem 4. (The Cauchy-Hadamard theorem) For any power series > oo, an(x—1x0)" there exists
unique number A € [0, 00] such that the sequence |a,A\"| is bounded whenever |\ < A and |a,\"|
is unbounded whenever |\| > A. The power series > o> an(x — xo)" converges uniformly on any
segment [a,b] C (xg — A, zo + A) and diverges at any point x outside of [xg — A, xo + A].

The interval (zo—A, xo+A) is called the interval of convergence of the power series Y-°° ; a,(x—x¢)",
and A is caller the radius of convergence. Frequently, the radius of convergence can be calculated
as a limit, if of either of the following limits exists:

A= lim# A = lim @n

n—oo ‘an‘l/rﬂ n—oo

(4)

Ap+1

With these preliminaries made, we can proceed to the main topic of this section, which is the
Taylor-Maclaurin series.



Definition 3. The Taylor series of a function f(z) at a point z, is the power series
! 1 " > 1 n
f(xo) + f'(xo)(x — 20) + §f (o) (x — x0)* + - Z ; (x — x0)".

This series has a certain convergence interval I = (zg — A, xo + A). If for € I the residues in the
Taylor formula (2) satisfy
R,(x,z0) — 0, n — oo,

then the function f(x) has the Taylor series representation
o 1 "
Zn— o)z —x0)", x€(xog— AN zo+A).

The Taylor series with xq = 0 is called the Maclaurin series.

Sample problem 2: : Write the Taylor-Maclaurin series representation for the function f(z) = T

Solution: Writing f(x) = (1+ z)~!, we can calculate the derivatives:
flla)==1+2)" f'2)=(-)(=2)A+2)" =2(1+2)7,. ..,

() = (=1)(=2)...(=n)A +z)™ = (=1)"n!(1 +2)™ L, ...
Then the Taylor series at ¢ = 0 has the form

o0

> o (=1)ra™

n=0

and its follows from (4) that the radius of convergence A = 1. Using the formula for the sum of
an infinite geometric progression, we get that, for any = € (—1,1),

—1)"z" = —x)" = = ,
= L =y T
i.e. f(z) = ;77 has the Taylor-Maclaurin representation

-

Sample problem 3: : Write the Taylor-Maclaurin series representation for the function f(x) = sin .

Solution: Calculate the derivatives:
f'(x) =cosx, f"(x)=—sinz, f"(z)=—cosz, fP(z)=sinz=f(x),
and then all the higher order derivatives can be calculated cyclically:

[ () = fU(2), j=0,1,2,3, k>1.



Since sin(0) = 0, cos(0) = 1, the Taylor-Maclaurin series has the form

1 1
0+1x+§0x2+6(—1)x3—|—....

The even terms in the sum are zero, while an odd term with the number n (i.e., with the overall
2n—1

number 2n — 1) equals (—1)”*1h. That is, after eliminating the zero terms and renumbering
the series has the form
00 (_1)n_1 xQn—l
n=1 (271/ - 1)' ‘
The sequence
z ! |z || ]
" =— . —... > 1
‘( Van—oi| T T 2 et "7
is bounded for any x, hence the radius of convergence A = oo.
Finally, since
1 " 1
Ru@)] = g 0O < gy =0
we have the Taylor-Maclaurin series representation
00 x2n—1
: — -1 nfli'
sin x nz::l( ) Gn=1)

Knowing the Taylor-Maclaurin series representation for some function
o0
f(@)=> a2, =z (=AN),
n=0

we can provide the representation for other functions, which are obtained from this one by natural
transformations

1. Scaling of the argument: if g(x) = f(cz), then

s A A
g(x) = Z apc'z", x € (——,—);
= ¢ c
2. Shift of the argument: if g(x) = f(z — b), then
> A A
g(:E):Zan(m_b)n? :L‘G(b—*,b—i—*);
= c c
3. Multiplying by a monomial: if g(z) = 2% f(x), then
9(x) =Y a2t = ap 2", zeE(—=,>);
n=0 n=k ¢ c



4. Differentiation: for g(x) = f'(x),

f(QT) = Z nanxn_l = Z(n + 1)an+1$n, x € (—A, A)
n=1 n=0
5. Integration: for g(z) = [5 f(v) dv,
- an n+1 ad an—l n
= = —AA).
g(x) ,;)n—i-lx nz::lnx, x € (=M A)

Sample problem 4: : Write the Taylor-Maclaurin series representation for the functions (1 —
)" In(1 — x).

Solution: We have by Sample problem 2

(1= 2) = (14 (—2))" = 2(-1)”(—:5)” _ inx ve(—1,1).

Since

In(l—z) = —/Ox(l — ) d,

after integration we get

0o LEn+1 00 "
In(l—z) =— =Y =
n 7) nz:%n—l—l nz::l

Such transformations often makes it possible to calculate values of particular infinite sums.
Sample problem 5: : Find Y °° ;| o

n=1 gn"
Solution: We know that

doat=(1- r)~h
n=0

and hence

> nat = ((1 - x)_l), =(1—2)2
n=1
Then

>n 1

o) - 1 1 —2
n 2~ a=1/2 2 2

Knowing the Taylor-Maclaurin series representation of a function actually gives us a knowledge
of all its derivatives at the point 0:

flz) = i ap " = a, = ;f(")(O) — f(0) = a,n!. (5)

n=0

Sample problem 6: : Find f1%0D(0), £2029(0) for f(x) = 2°sinz.



Solution: We have by Sample problem 3
2n+4

2n—1)!'

2n—1

ORI -1 7T =
x’sinxy =z nZ::l( 1) 2n=1) Z::

To use (5), we have to return to find the coefficients ajgo1, az020 in the representation f(x) =
Y onr o apx”. We have non-zero coefficients for the even terms starting from 6, only; that is, ajgo1 = 0

and thus f(1%0(0) = 0. Next, to get the power 2n + 4 = 2020, we have to take n = 1008, hence

2020!
2015

w07 1 _ 1

(2020) _
2015!  2015!" / (0)=-

—2020 - 2019 - 2018 - 2017 - 2016.

aspe0 = (—1)

Below, a table of several most important Taylor-Maclaurin series is given; the notation

<Z>:a(a—1)..ﬁ§a—n+1)

is used for the so called generalized binomial coefficient.

Name Function Series Interval of convergence
Exponential e’ 20" R
Sine sinz | X0, (— 1)” ! (“’SZ 711) R
Cosine cos T < (=1 (2: R
Generalized Binomial | (14 x)* ) " (—1,1)
Logarithm In(1 + z) flo o(—1)"E (—1,1)

Problems to solve

Part A
1. Determine the Taylor-Maclaurin series for the given function

(a) f(x) = cos(4z);
(b) f(x) =a%e™";
(c) f(z) = zcos2z?®;

IIOO

(d) f(x) = 11 23

2. For each function from the previous problem find f(2029)(0).

3. Determine the Taylor series for the given function f(x) and zg. Provide two solutions: using
the formula for the coefficients and the change of variables.

(a) f(2)=e " @0 = —4;



(b) f(z) =In(3+4x),z0 = 1;

(©) f ()= pm=—3

4. For each of the series in the previous problem determine the interval of convergence.
5. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums

> 1

—an)
—n3

(a)

Sn

Part B

6. Write the Taylor formula of the orders n = 2,3 at the point xy = 0 for the given function, and
estimate approximation errors on the given interval

(a) f(z) =e3 xe|-1,1];
(b) f(z) =In(1l +2?), z € [-1/2,1/2].

7. Using the Generalized Binomial function, determine the Taylor-Maclaurin series for the given
function

(a) f(z)=v1—a?
1
(b) f(x) = ﬁ;

3

(C) f (33) = m;
@) f ) = 2

o
R

8. Using the Taylor-Maclaurin series and differentiation /integration calculate the infinite sums

(@) 3t D,

n
n=0 o

(b) > m;

n=1

n

1

() > (Hint: consider the limit of »

n=1 n(n + 2) n=1 n(n + 2) o / 1)



