
MATHEMATICAL ANALYSIS 2
Worksheet 7.

Taylor formula. Power series. Taylor-Maclaurin series

Theory outline and sample problems

We have seen that the derivative of the function can be used in order to approximate the function,
in a vicinity of a given point, by a linear function:

f(x) ≈ f(x0) + f ′(x0)(x− x0). (1)

The approximate identity sign ‘≈’ here can be understood various ways, most of them involving
an information about the approximation error, or the residual term

R(x, x0) = f(x)− f(x0)− f ′(x0)(x− x0)

Theorem 1. Let function f be differentiable on an interval [a, b] and x0 ∈ (a, b). Then

(a)
R(x, x0)
|x− x0|

→ 0, x→ x0;

(b) there exists a point θ, intermediate between points x and x0, such that

R(x, x0) = (f ′(θ)− f ′(x0))(x− x0), x ∈ [a, b].

Statement (a) in the above theorem tells us that, infinitesimally, i.e. when x − x0 is (infinitely)
small, the residue of the approximation is negligible w.r.t. the linear part. Statement (b) is of the
principal importance, because it gives a bound for the approximation error for the given pair of
points x, x0:

|R(x, x0)| ¬ |x− x0| sup
θ∈[x0,x]

|f ′(θ)− f ′(x0)|

Statement (b) is actually the Lagrange theorem, properly re-written; in its original form the La-
grange theorem (AKA the Mean Value theorem) states that

f(x)− f(x0) = f ′(θ)(x− x0).

The Taylor formula can be understood an extension of the above approximation formula, where
instead of linear functions polynomials are used as approximations.

Theorem 2. Let function f have n derivatives on an interval [a, b] and x0 ∈ (a, b). Then

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + · · ·+ 1

n!
f (n)(x0)(x− x0)n +Rn(x, x0),

where n! = 1 · 2 · · · · · n, and

(a)
Rn(x, x0)
|x− x0|n

→ 0, x→ x0;



(b) there exists a point θ, intermediate between points x and x0, such that

R(x, x0) =
1
n!

(f (n)(θ)− f (n)(x0))(x− x0)n.

If the function f have n derivatives on an interval [a, b], then there exists a point ϑ, intermediate
between points x and x0, such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + · · ·+ 1

n!
f (n)(x0)(x− x0)n +Rn(x, x0), (2)

Rn(x, x0) =
1

(n+ 1)!
f (n+1)(ϑ)(x− x0)n+1. (3)

Identities (2), (3) are called the Taylor formula of the order n with the residue in the Lagrange
form. These identities give a practical tool for approximating functions, with increasing accuracy,
by polynomials. The accuracy of approximation can be estimated using the formula

|Rn(x, x0)| ¬
1

(n+ 1)!
|x− x0|n+1 sup

y∈[a,b]
|f (n+1)(y)|.

Sample problem 1: : Write the Taylor formula of the orders n = 2, 3 at the point x0 = 0 for the
function f(x) = sinx2. Estimate respective approximation errors at the interval [−1, 1].

Solution: We have

f ′(x) = 2x cosx2, f ′′(x) = 2 cosx2 − 4x2 sinx2, f ′′′(x) = −12x sinx2 − 8x3 cosx2,

f (4)(x) = (14x4 − 12) sinx2 − 24(x2 + 1) cosx2,
and

f(0) = 0, f ′(0) = 0, f ′′(0) = 2, f ′′′(0) = 0.
In addition,

1! = 1, 2! = 2, 3! = 6, 4! = 24.
Then the 2-nd and the 3rd order Taylor formulae have the form

sin(x2) = 0 + 0(x− 0) +
1
2

2(x− 0)2 +R2(x, 0) = x2 +R2(x, 0),

sin(x2) = 0 + 0(x− 0) +
1
2

2(x− 0)2 +R3(x, 0).

Since

|f ′′′(x)| = |12x sinx2 + 8x3 cosx2| ¬ 20, |f (4)(x)| ¬ |14x4 − 12|+ 24(x2 + 1) ¬ 50, x ∈ [−1, 1],

we have
|R2(x, 0)| ¬ 20

6
||x− 0|3 =

10
3
|x|3,

|R3(x, 0)| ¬ 50
24
|x− 0|4 =

25
12
|x|4.

The above example shows clearly that, while n is increasing, the approximation accuracy for
the Taylor formula typically improves. The Taylor series appears when, in this approximation,
n→∞; in this setting, an approximation formula transforms to a true identity. To deal with such
an identity rigorously, we need to introduce several new notions.



Definition 1. (I) An infinite (number) series is a sum of the form
∑∞
n=0 an, where a0, a1, . . .

are real numbers. This infinite sum is defined as a limit, as N → ∞, of the partial sums
SN =

∑N
n=0 an.

(II) A functional series is a sum of the form
∑∞
n=0 fn(x) where f0(x), f1(x), . . . are functions

defined on some interval [a, b]. The infinite sum is obtained as a collection of sums of number
series in each point x ∈ [a, b].

(III) A power series is a functional series with fn(x) = an(x − x0)n, where a0, a1, . . . are real
numbers and x0 is a given number.

The notion of convergence of a functional series (that is, the sum of an infinite number of functions)
requires a certain accuracy. It is highly desirable for the standard operations of differentiation and
integration to be adjusted with this notion. It appears that the point-wise convergence introduced
above is not well adjusted with these basic analysis tools. This motivates the following

Definition 2. A functional series
∑∞
n=0 fn(x) converges uniformly to a function f(x) on a segment

[a, b] if

sup
x∈[a,b]

∣∣∣∣∣f(x)−
∞∑
n=0

fn(x)

∣∣∣∣∣→ 0, N →∞.

Theorem 3. (I) Let functional series
∑∞
n=0 fn(x) converge uniformly to a function f(x) on a

segment [a, b]. Then for every [c, d] ⊂ [a, b],

∫ d

c
f(x) dx =

∞∑
n=0

∫ d

c
fn(x) dx

(II) Let functional series
∑∞
n=0 fn(x) converge to a function f(x), and the series

∑∞
n=0 f

′
n(x)

converge uniformly on a segment [a, b]. Then f(x) is differentiable and

f ′(x) =
∞∑
n=0

f ′n(x).

For a power series, it is quite easy to describe the interval of convergence.

Theorem 4. (The Cauchy-Hadamard theorem) For any power series
∑∞
n=0 an(x−x0)n there exists

unique number Λ ∈ [0,∞] such that the sequence |anλn| is bounded whenever |λ| < Λ and |anλn|
is unbounded whenever |λ| > Λ. The power series

∑∞
n=0 an(x − x0)n converges uniformly on any

segment [a, b] ⊂ (x0 − Λ, x0 + Λ) and diverges at any point x outside of [x0 − Λ, x0 + Λ].

The interval (x0−Λ, x0+Λ) is called the interval of convergence of the power series
∑∞
n=0 an(x−x0)n,

and Λ is caller the radius of convergence. Frequently, the radius of convergence can be calculated
as a limit, if of either of the following limits exists:

Λ = lim
n→∞

1
|an|1/n

, Λ = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣ . (4)

With these preliminaries made, we can proceed to the main topic of this section, which is the
Taylor-Maclaurin series.



Definition 3. The Taylor series of a function f(x) at a point x0 is the power series

f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + · · · =

∞∑
n=0

1
n!
f (n)(x0)(x− x0)n.

This series has a certain convergence interval I = (x0−Λ, x0+ Λ). If for x ∈ I the residues in the
Taylor formula (2) satisfy

Rn(x, x0)→ 0, n→∞,
then the function f(x) has the Taylor series representation

f(x) =
∞∑
n=0

1
n!
f (n)(x0)(x− x0)n, x ∈ (x0 − Λ, x0 + Λ).

The Taylor series with x0 = 0 is called the Maclaurin series.

Sample problem 2: : Write the Taylor-Maclaurin series representation for the function f(x) = 1
1+x .

Solution: Writing f(x) = (1 + x)−1, we can calculate the derivatives:

f ′(x) = −(1 + x)−2, f ′′(x) = (−1)(−2)(1 + x)−3 = 2(1 + x)−3, . . . ,

f (n)(x) = (−1)(−2) . . . (−n)(1 + x)−n−1 = (−1)nn!(1 + x)−n−1, . . . .

Then the Taylor series at x0 = 0 has the form

∞∑
n=0

(−1)nxn.

and its follows from (4) that the radius of convergence Λ = 1. Using the formula for the sum of
an infinite geometric progression, we get that, for any x ∈ (−1, 1),

∞∑
n=0

(−1)nxn =
∞∑
n=0

(−x)n =
1

1− (−x)
=

1
1 + x

,

i.e. f(x) = 1
1+x has the Taylor-Maclaurin representation

1
1 + x

=
∞∑
n=0

(−1)nxn

Sample problem 3: : Write the Taylor-Maclaurin series representation for the function f(x) = sin x.

Solution: Calculate the derivatives:

f ′(x) = cos x, f ′′(x) = − sinx, f ′′′(x) = − cosx, f (4)(x) = sinx = f(x),

and then all the higher order derivatives can be calculated cyclically:

f (4k+j)(x) = f (j)(x), j = 0, 1, 2, 3, k  1.



Since sin(0) = 0, cos(0) = 1, the Taylor-Maclaurin series has the form

0 + 1x+
1
2

0x2 +
1
6

(−1)x3 + . . . .

The even terms in the sum are zero, while an odd term with the number n (i.e., with the overall
number 2n− 1) equals (−1)n−1 x

2n−1

(2n−1)! . That is, after eliminating the zero terms and renumbering
the series has the form

∞∑
n=1

(−1)n−1
x2n−1

(2n− 1)!
.

The sequence ∣∣∣∣∣(−1)n
x2n−1

(2n− 1)!

∣∣∣∣∣ =
|x|
1
· |x|

2
. . .

|x|
2n− 1

, n  1

is bounded for any x, hence the radius of convergence Λ =∞.
Finally, since

|Rn(x)| = 1
(n+ 1)!

|f (n+1)(θ)| ¬ 1
(n+ 1)!

→ 0,

we have the Taylor-Maclaurin series representation

sinx =
∞∑
n=1

(−1)n−1
x2n−1

(2n− 1)!
.

Knowing the Taylor-Maclaurin series representation for some function

f(x) =
∞∑
n=0

anx
n, x ∈ (−Λ,Λ),

we can provide the representation for other functions, which are obtained from this one by natural
transformations

1. Scaling of the argument: if g(x) = f(cx), then

g(x) =
∞∑
n=0

anc
nxn, x ∈ (−Λ

c
,
Λ
c

);

2. Shift of the argument: if g(x) = f(x− b), then

g(x) =
∞∑
n=0

an(x− b)n, x ∈ (b− Λ
c
, b+

Λ
c

);

3. Multiplying by a monomial: if g(x) = xkf(x), then

g(x) =
∞∑
n=0

anx
n+k =

∞∑
n=k

an−kx
n, x ∈ (−Λ

c
,
Λ
c

);



4. Differentiation: for g(x) = f ′(x),

f(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1xn, x ∈ (−Λ,Λ).

5. Integration: for g(x) =
∫ x
0 f(v) dv,

g(x) =
∞∑
n=0

an
n+ 1

xn+1 =
∞∑
n=1

an−1
n

xn, x ∈ (−Λ,Λ).

Sample problem 4: : Write the Taylor-Maclaurin series representation for the functions (1 −
x)−1, ln(1− x).

Solution: We have by Sample problem 2

(1− x)−1 = (1 + (−x))−1 =
∞∑
n=0

(−1)n(−x)n =
∞∑
n=0

xn, x ∈ (−1, 1).

Since
ln(1− x) = −

∫ x

0
(1− v)−1 dv,

after integration we get

ln(1− x) = −
∞∑
n=0

xn+1

n+ 1
= −

∞∑
n=1

xn

n
.

Such transformations often makes it possible to calculate values of particular infinite sums.
Sample problem 5: : Find

∑∞
n=1

n
2n .

Solution: We know that ∞∑
n=0

xn = (1− x)−1,

and hence ∞∑
n=1

nxn−1 =
(
(1− x)−1

)′
= (1− x)−2.

Then
∞∑
n=1

n

2n
=

1
2

∞∑
n=1

nxn−1
∣∣∣∣
x=1/2

=
1
2

(
1− 1

2

)−2
= 2.

Knowing the Taylor-Maclaurin series representation of a function actually gives us a knowledge
of all its derivatives at the point 0:

f(x) =
∞∑
n=0

anx
n ⇐⇒ an =

1
n!
f (n)(0)⇐⇒ f (n)(0) = ann!. (5)

Sample problem 6: : Find f (1001)(0), f (2020)(0) for f(x) = x5 sinx.



Solution: We have by Sample problem 3

x5 sinx = x5
∞∑
n=1

(−1)n−1
x2n−1

(2n− 1)!
=
∞∑
n=1

(−1)n
x2n+4

(2n− 1)!
.

To use (5), we have to return to find the coefficients a1001, a2020 in the representation f(x) =∑∞
n=0 anx

n. We have non-zero coefficients for the even terms starting from 6, only; that is, a1001 = 0
and thus f (1001)(0) = 0. Next, to get the power 2n+ 4 = 2020, we have to take n = 1008, hence

a2020 = (−1)1007
1

2015!
= − 1

2015!
, f (2020)(0) = −2020!

2015!
= −2020 · 2019 · 2018 · 2017 · 2016.

Below, a table of several most important Taylor-Maclaurin series is given; the notation(
a
n

)
=
a(a− 1) . . . (a− n+ 1)

n!

is used for the so called generalized binomial coefficient.

Name Function Series Interval of convergence
Exponential ex

∑∞
n=0

1
n!x

n R
Sine sinx

∑∞
n=1(−1)n−1 x

2n−1

(2n−1)! R
Cosine cosx

∑∞
n=0(−1)n x2n

(2n)! R

Generalized Binomial (1 + x)a
∑∞
n=0

(
a
n

)
xn (−1, 1)

Logarithm ln(1 + x)
∑∞
n=0(−1)n x

n

n
(−1, 1)

Problems to solve

Part A
1. Determine the Taylor-Maclaurin series for the given function

(a) f (x) = cos (4x);

(b) f (x) = x6e2x
3
;

(c) f (x) = xcos2x 3;

(d) f (x) =
x100

1 + x3
.

2. For each function from the previous problem find f (2020)(0).

3. Determine the Taylor series for the given function f(x) and x0. Provide two solutions: using
the formula for the coefficients and the change of variables.

(a) f (x) = e−6x, x0 = −4;



(b) f (x) = ln (3 + 4x) , x0 = 1;

(c) f (x) =
7
x4
, x0 = −3;

4. For each of the series in the previous problem determine the interval of convergence.

5. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums

(a)
∞∑
n=1

1
n3n

;

(b)
∞∑
n=2

2n − n
3n

.

Part B

6. Write the Taylor formula of the orders n = 2, 3 at the point x0 = 0 for the given function, and
estimate approximation errors on the given interval

(a) f(x) = e3x, x ∈ [−1, 1];

(b) f(x) = ln(1 + x2), x ∈ [−1/2, 1/2].

7. Using the Generalized Binomial function, determine the Taylor-Maclaurin series for the given
function

(a) f (x) =
√

1− x2;

(b) f (x) =
1

3
√

1 + x3
;

(c) f (x) =
x3√

x2 + 16
;

(d) f (x) =
x100

1 + x3
.

8. Using the Taylor-Maclaurin series and differentiation/integration calculate the infinite sums

(a)
∞∑
n=0

n(n+ 1)
5n

;

(b)
∞∑
n=1

n

(n+ 1)2n
;

(c)∗
∞∑
n=1

1
n(n+ 2)

(Hint: consider the limit of
∞∑
n=1

xn

n(n+ 2)
as x↗ 1).


