SELF-PREPARATION TABLES FOR THE COURSE MATHEMATICAL ANALYSIS 1

Table 1
Functions: general definitions.

Domain of a function	Range of a function
Function is even if	Function is odd if
Graph of even function is symmetric w.r.t.	Graph of odd function is symmetric w.r.t.
Graph $y=f(x)+c$ is obtained from graph $y=f(x)$ by	Graph $y=f(x+c)$ is obtained from graph $y=f(x)$ by
Inverse function f^{-1} is defined as	Graph $y=f^{-1}(x)$ is obtained from graph $y=f(x)$ by
Function is injective if	Function is surjective if
Function is bijective if	Function is monotone if

Table 2
Elementary functions

Function	Domain and range	Parity	Relations/properties
$f(x)=x^{n}$ $n \in \mathbf{N}$ is odd	$D_{f}=\mathbf{R}, R_{f}=\mathbf{R}$	odd	$(x y)^{n}=x^{n} y^{n}$
$f(x)=x^{n}$ $n \in \mathbf{N}$ is even			
$\begin{gathered} f(x)=x^{-n} \\ n \in \mathbf{N} \text { is odd } \end{gathered}$			
$\begin{gathered} f(x)=x^{-n} \\ n \in \mathbf{N} \text { is even } \end{gathered}$			
$\begin{gathered} f(x)=x^{a} \\ a \in \mathbf{R} \end{gathered}$			
$f(x)=\sin x$			$\sin x=\frac{2 \operatorname{tg}(x / 2)}{1+\operatorname{tg}^{2}(x / 2)}$
$f(x)=\cos x$			
$f(x)=\operatorname{tg} x$			
$\begin{aligned} & f(x)=a^{x} \\ & a \in(0, \infty) \end{aligned}$			
$\begin{gathered} f(x)=\log _{a} x \\ a \in \square \end{gathered}$			
$f(x)=\arcsin x$			
$f(x)=\arccos x$			
$f(x)=\operatorname{arctg} x$			

Table 3
Limits of sequences

Definition: $a_{n} \rightarrow a \in \mathbf{R}, n \rightarrow \infty$	For each $\varepsilon>0$ there exists N such that $\left\|a_{n}-a\right\|<\varepsilon, n \geqslant N$
Definition: $a_{n} \rightarrow+\infty, n \rightarrow \infty$	
Definition: $a_{n} \rightarrow-\infty, n \rightarrow \infty$	
The Boltzano-Weierstrass theorem:	if $\left\{a_{n}\right\}$ is \square and \square then $\left\{a_{n}\right\}$ converges
Theorem about three sequences:	
Theorem about two sequences:	
Theorem about arithmetic operations under the limit:	
$\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=$	
$a \in \mathbf{R}, b>1, \quad \lim _{n \rightarrow \infty} \frac{n^{\alpha}}{b^{n}}=$	
$a>1, b>0, \quad \lim _{n \rightarrow \infty} \frac{\log _{a} n}{n^{b}}=$	
$a<b, \quad \lim _{n \rightarrow \infty} \frac{a^{n}}{b^{n}}=$	
$a<b, \quad \lim _{n \rightarrow \infty} \frac{n^{a}}{n^{b}}=$	

Table 4
Limits of functions. Continuity

Definition: $f(x) \rightarrow a \in \mathbf{R}, x \rightarrow x_{0}$	
Definition: $f(x) \rightarrow \pm \infty, x \rightarrow x_{0}$	
Definition: $f(x) \rightarrow a \in \mathbf{R}, x \rightarrow x_{0} \pm$	
Definition: $f(x) \rightarrow \pm \infty, x \rightarrow x_{0} \pm$	
Definition: f is continuous at x_{0} if	
Properties of continuous functions: 1. $2 .$ 3.	
Theorems about three/two functions:	
Theorem about arithmetic operations on functions under the limit:	
$a<b, \quad \lim _{x \rightarrow \infty} \frac{x^{a}}{x^{b}}=$	
$a<b, \quad \lim _{x \rightarrow 0} \frac{x^{a}}{x^{b}}=$	
$\lim _{x \rightarrow \infty}\left(1+\frac{c}{x}\right)^{x}=$	
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=$	
$a>0, \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=$	
$a>0, a \neq 1, \lim _{x \rightarrow 0} \frac{\log _{a} x}{x}=$	
$p \in \mathbf{R}, \lim _{x \rightarrow 0} \frac{(1+x)^{p}-1}{x}=$	

Table 4
Derivatives

Definition: $f^{\prime}(x)=$	
$(f g)^{\prime}(x)=$ Give two examples	
$\left(\frac{f}{g}\right)^{\prime}(x)=$ Give two examples	
$[f(g)]^{\prime}(x)=$ Give two examples	
$\left[f^{-1}\right]^{\prime}(x)=$ Give two examples	
Lagrange's theorem:	
Taylor's formula:	
L'Hospital rule:	
$\left(x^{a}\right)^{\prime}=$	
$\left(a^{x}\right)^{\prime}=$	
$(\sin x)^{\prime}=$	
$(\cos x)^{\prime}=$	
$(\operatorname{tg} x)^{\prime}=$	
$(\operatorname{ctg} x)^{\prime}=$	
$\left(\log _{a} x\right)^{\prime}=$	
$(\operatorname{arctg} x)^{\prime}=$	
$(\operatorname{arcctg} x)^{\prime}=$	

After filling the table, calculate:

$(\arcsin x)^{\prime}=$	
$(\arccos x)^{\prime}=$	

