SELF-PREPARATION TABLES FOR THE COURSE MATHEMATICAL ANALYSIS 1

Domain of a function	Range of a function
Function is even if	Function is odd if
Graph of even function	Graph of odd function
is symmetric w.r.t.	is symmetric w.r.t.
Graph $y = f(x) + c$	Graph $y = f(x + c)$
is obtained from	is obtained from
graph $y = f(x)$ by	graph $y = f(x)$ by
Inverse function f^{-1} is defined as Function	Graph $y = f^{-1}(x)$ is obtained from graph $y = f(x)$ by Function
is injective if	is surjective if
Function	Function
is bijective if	is monotone if

Table 1Functions: general definitions.

After filling the table, give examples

Table 2Elementary functions

Function	Domain and range	Parity	Relations/properties
$f(x) = x^n$	$D_f = \mathbf{R}, R_f = \mathbf{R}$	odd	$(xy)^n = x^n y^n$
$n \in \mathbf{N}$ is odd			
$f(x) = x^n$			
$n \in \mathbf{N}$ is even			
$f(x) = x^{-n}$			
$n \in \mathbf{N}$ is odd			
$f(x) = x^{-n}$			
$n \in \mathbf{N}$ is even			
$f(x) = x^a$			
$a \in \mathbf{R}$			
$f(x) = \sin x$			$\sin x = \frac{2 \operatorname{tg}(x/2)}{1 + \operatorname{tg}^2(x/2)}$
$f(x) = \cos x$			
$f(x) = \operatorname{tg} x$			
$f(x) = a^x$			
$a \in (0, \infty)$			
$f(x) = \log_a x$			
$a \in \square$			
$f(x) = \arcsin x$			
$f(x) = \arccos x$			
$f(x) = \operatorname{arctg} x$			

Table 3Limits of sequences

Definition: $a_n \to a \in \mathbf{R}, n \to \infty$	For each $\varepsilon > 0$ there exists N
	such that $ a_n - a < \varepsilon, n \ge N$
Definition: $a_n \to +\infty, n \to \infty$	
Definition: $a_n \to -\infty, \ n \to \infty$	
The Boltzano-Weierstrass theorem:	if $\{a_n\}$ is and
	then $\{a_n\}$ converges
Theorem about three sequences:	
Theorem about two sequences:	
Theorem about arithmetic operations	
under the limit:	
$\lim_{n \to \infty} \left(1 + \frac{c}{n} \right)^n =$	
$a \in \mathbf{R}, b > 1, \lim_{n \to \infty} \frac{n^a}{b^n} =$	
$a > 1, b > 0, \lim_{n \to \infty} \frac{\log_a n}{n^b} =$	
$a < b$, $\lim_{n \to \infty} \frac{a^n}{b^n} =$	
$a < b$, $\lim_{n \to \infty} \frac{n^a}{n^b} =$	

Table 4Limits of functions. Continuity

Definition: $f(x) \to a \in \mathbf{R}, x \to x_0$	
Definition: $f(x) \to \pm \infty, x \to x_0$	
Definition: $f(x) \to a \in \mathbf{R}, x \to x_0 \pm$	
Definition: $f(x) \to \pm \infty, x \to x_0 \pm$	
Definition: f is continuous at x_0 if	
Properties of continuous functions: 1.	
2.	
3.	
Theorems about three/two functions:	
Theorem about arithmetic operations	
on functions under the limit:	
$a < b$, $\lim_{x \to \infty} \frac{x^a}{x^b} =$	
$a < b$, $\lim_{x \to 0} \frac{x^a}{x^b} =$	
$\lim_{x \to \infty} \left(1 + \frac{c}{x} \right)^x =$	
$\lim_{x \to 0} \frac{\sin x}{x} =$	
$a > 0, \lim_{x \to 0} \frac{a^x - 1}{x} =$	
$a > 0, a \neq 1, \lim_{x \to 0} \frac{\log_a x}{x} =$	
$p \in \mathbf{R}, \lim_{x \to 0} \frac{(1+x)^p - 1}{x} =$	

Table 4Derivatives

Definition: $f'(x) =$	
(fg)'(x) =	
Give two examples	
Give two examples	
$\left(\frac{f}{a}\right)'(x) =$	
G	
Give two examples	
[f(q)]'(x) =	
Give two examples	
$[f^{-1}]'(r) -$	
Give two examples	
Lagrango's theorem:	
Lagrange 5 theorem.	
Taylor's formula:	
L'Hospital rule:	
$(x^{a})' =$	
$(a^x)' =$	
$(\sin x)^{r} =$	
$(\cos x)' =$	
(000 %)	
$(\operatorname{tg} x)' =$	
$(\operatorname{ctg} x)' =$	
$(\log x)' -$	
$(\log_a x) =$	
$(\log_a x)' =$	
$\frac{(\log_a x)' =}{(\operatorname{arctg} x)' =}$	
$(\log_a x)' =$ $(\operatorname{arctg} x)' =$ $(\operatorname{arcctg} x)' =$	

After filling the table, calculate:

$(\arcsin x)' =$	
$(\arccos x)' =$	