MATHEMATICAL ANALYSIS 2
 Problems List 1.

Partial and directional derivatives. Gradient. Tangent plane. Approximate calculations

1. Calculate partial derivatives of the functions
(a) $f(x, y)=\frac{x^{2}+y^{3}}{x y^{2}}$,
(b) $f(x, y)=y \sqrt{x^{2}+y^{2}}$,
(c) $f(x, y)=\cos (x \sin y)$,
(d) $f(x, y)=e^{y^{2}} \log _{2}(1+x y)$,
(e) $f(x, y)=\ln \left(\sqrt[3]{x^{3}+y^{3}}-x\right)$
(f) $f(x, y)=\operatorname{tg}(x \operatorname{arctg}(y))$.
2. Calculate the directional derivatives of the functions in given directions
(a) $f(x, y)=\frac{x^{2}+y}{x^{3} y^{2}}, \vec{v}=(1,2)$,
(b) $f(x, y)=x \sqrt{x^{3}+y^{3}}, \vec{v}=(-1,1)$.
3. Calculate the gradients of the functions in given points
(a) $f(x, y)=x^{3}+x y^{2}+2,(-1,2)$,
(b) $f(x, y)=(1+x)^{y},(1,1)$,
(c) $f(x, y)=\sqrt{e^{x}}\left(x+y^{2}\right),(2,1)$,
(d) $f(x, y)=y-x^{2}+2 \ln (x y),(1,1)$.
4. Find the unit vector such that the function $f(x, y)=\sqrt{e^{x}}\left(x+y^{2}\right)$ at the point $(0,2)$ has the derivative in this direction equal 0 . Draw the picture.
5. Find the directional derivative of the function $f(x, y)=y-x^{2}+2 \ln (x y)$ at the point $(-1 / 2,-1)$ in the direction $\vec{v}(\alpha)$, which is the unit vector that constitutes the angle α with the positive $O X-$ semiaxis. Find the values of α for which the derivative takes its maximal and minimal values. Draw the picture.
6. The altitude $H=100 \mathrm{~mm}$ and the diameter of the base $D=50 \mathrm{~mm}$ of a cylinder are measured with the error $\pm 1 \mathrm{~mm}$. With which accuracy one can give the value for the volume of the cylinder?
7. The lengths of the sides of a rectangular box are measured with the error 5 mm each, and the values are 3,4 , and 5 cm . With which accuracy one can give the value
(a) of the volume of the box;
(b) of the surface area of the box?
8. Solve the previous problem if the measurement errors for the sides are 3,4 , and 5 mm respectively.
9. Write the general and the directional forms of equation of the tangent plane to the graph of the function in the given point
(a) $f(x, y)=x^{2} \sqrt{y^{3}+x^{2}},\left(1,2, z_{0}\right)$,
(b) $f(x, y)=e^{x+2 y},\left(2,-1, z_{0}\right)$,
(c) $f(x, y)=\frac{\arcsin x}{\arccos x},\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}, z_{0}\right)$.
10. Find the points on the graph of the function $f(x, y)=\ln \left(\frac{x+y}{y}\right)$ where the tangent plane is parallel to the plane $x+2 y-3 z=0$.
11. Find the tangent plane to the graph $f(x, y)=e^{\frac{x-y}{y}}$ where the tangent plane is parallel to the plane $x-y-2 z=0$.
12. Find the tangent plane to the graph of the function $f(x, y)=x^{2}+y^{2}$ which is orthogonal to the line $x=t, y=t, z=2 t, t \in \mathbf{R}$.
