MATHEMATICAL ANALYSIS 2
 Problems List 2.

Second and higher order derivatives. Convexity. Sylvester's criterion. Local and global extrema. Conditional extrema.

1. Calculate all partial derivatives of the 2 nd order of the functions
(a) $f(x, y)=\sin \left(x^{3}+y^{3}\right)$,
(b) $f(x, y)=y e^{x y}$,
(c) $f(x, y)=x^{2}+\frac{y^{3}}{x}$,
(d) $f(x, y)=y \ln \frac{x}{y}$,
(e) $f(x, y, z)=\frac{y}{\sqrt{1+x^{2}+z^{2}}}$
(f) $f(x, y, z, w)=\ln \left(x+y^{2}+z^{3}+w^{4}+1\right)$.
2. Write the Hessian of the function and specify the domains where the Hessian is positively/negatively defined.
(a) $f(x, y)=\sin \left(x^{2}+y^{2}\right)$,
(b) $f(x, y)=x e^{x y}$,
(c) $f(x, y)=x^{3}+\frac{y^{2}}{x}$,
(d) $f(x, y)=x \ln \frac{y}{x}$,
(e) $f(x, y)=\frac{y}{\sqrt{1+x^{2}}}$
(f) $f(x, y)=\ln \left(x+y^{2}+1\right)$.
3. Study the following matrices for being positively/negatively definite or semi-definite.
(a) $\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$,
(b) $\left(\begin{array}{cc}-1 & 2 \\ 2 & 3\end{array}\right)$,
(c) $\left(\begin{array}{ccc}-1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 1\end{array}\right)$,
(d) $\left(\begin{array}{ccc}2 & 4 & 3 \\ 4 & 5 & 4 \\ 3 & 4 & 12\end{array}\right)$,
(e) $\left(\begin{array}{lll}3 & 1 & 5 \\ 1 & 1 & 2 \\ 5 & 2 & 7\end{array}\right)$,
(f) $\left(\begin{array}{llll}2 & 2 & 3 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4\end{array}\right)$.
4. Find and classify all the critical points of $f(x, y)=4+x^{3}+y^{3}-3 x y$.
5. Find and classify all the critical points of $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+5$.
6. Find and classify all the critical points of $f(x, y)=3 x y-\frac{1}{2} y^{2}+2 x^{3}+\frac{9}{2} x^{2}$.
7. Given the objective function $f(x, y)=x^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+y^{2}-4 x-2 y-15$ find extremal points.
8. Determine the point on the plane $4 x-2 y+z=1$ that is closest to the point $(-2,-1,5)$.
9. On the surface $x^{2}+y^{2}+z^{2}-x y-x z+x+y-z=1$ find the points of maximal and minimal values for x. Check that the surface is bounded.
10. Find the global extrema of $f(x, y)=x^{2}+4 y^{2}$ on the domain bounded by the curves $x^{2}+(y+$ $1)^{2}=4, y=-1$, and $y=x+1$.
11. Find the global extrema of $f(x, y)=x^{2}+y^{2}-6 x+6 y$ on the disk of radius 2 , centred at the origin.
12. Find the maximal and the minimal values of the functions on the given domains:
(a) $f(x, y)=2 x^{3}+4 x^{2}+y^{2}-2 x y, D=\left\{(x, y): x^{2} \leqslant y \leqslant 4\right\}$;
(b) $f(x, y)=\sqrt{y-x^{2}}+\sqrt{x-y^{2}}, D=\left\{(x, y): y \geqslant x^{2}, x \geqslant y^{2}\right\}$;
(c) $f(x, y)=\sqrt{1-x^{2}}+\sqrt{4-x^{2}-y^{2}}, D=\left\{(x, y): x^{2} \leqslant 1, x^{2}+y^{2} \leqslant 4\right\}$;
(d) $f(x, y)=x^{2}-y^{2}, D$ is the triangle with the vertices $(0,1),(0,2),(1,2)$;
(e) $f(x, y)=x^{4}+y^{4}, D=\left\{(x, y): x^{2}+y^{2} \leqslant 9\right\}$
13. Krzysztof and Szymon consume two products. If x and y are the quantities of the products (respectively), then Krzysztof's utility function is $U(x, y)=\ln x+2 \ln y$, and Szymon's is $U(x, y)=$ $x y^{2}$. The prices of the products per unit are: $P_{x}=5 \mathrm{zł}$ and $P_{y}=2 \mathrm{zł}$. Krzysztof and Szymon have identical incomes, of 90 z each. Find the optimal consumed quantity from each of the two products, for each of Krzysztof and Szymon.
