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Foreword

The International Mathematical Olympiad is the largest and most prestigious
mathematics competition in the world. It is held each July, and the host city
changes from year to year. It has existed since 1959.

Originally it was a competition between students from a small group of commu-
nist countries, but by the late 1960s, social-democratic nations were starting to send
teams. Over the years the enthusiasm for this competition has built up so much
that very soon (I write in 2008) there will be an IMO with students participating
from over 100 countries. In recent years, the format has become stable. Each nation
can send a team of up to six students. The students compete as individuals, and
must try to solve 6 problems in 9 hours of examination time, spread over two days.

The nations which do consistently well at this competition must have at least
one (and probably at least two) of the following attributes:

(a) A large population.
(b) A significant proportion of its population in receipt of a good education.
(c) A well-organized training infrastructure to support mathematics competi-

tions.
(d) A culture which values intellectual achievement.

Alternatively, you need a cloning facility and a relaxed regulatory framework.

Mathematics competitions began in the Austro-Hungarian Empire in the 19th

century, and the IMO has stimulated people into organizing many other related
regional and world competitions. Thus there are quite a few opportunities to take
part in international mathematics competitions other than the IMO.

The issue arises as to where talented students can get help while they prepare
themselves for these competitions. In some countries the students are lucky, and
there is a well-developed training regime. Leaving aside the coaching, one of the
most important features of these regimes is that they put talented young math-
ematicians together. This is very important, not just because of the resulting
exchanges of ideas, but also for mutual encouragment in a world where interest in
mathematics is not always widely understood. There are some very good books
available, and a wealth of resources on the internet, including this excellent book
Infinity.

The principal author of Infinity is Hojoo Lee of Korea. He is the creator of many
beautiful problems, and IMO juries have found his style most alluring. Since 2001
they have chosen 8 of his problems for IMO papers. He has some way to go to catch
up with the sage of Scotland, David Monk, who has had 14 problems on IMO papers.
These two gentlemen are reciprocal Nemeses, dragging themselves out of bed every
morning to face the possibility that the other has just had a good idea. What they
each need is a framed picture of the other, hung in their respective studies. I will
organize this.
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The other authors of Infinity are the young mathematicians Tom Lovering of the
United Kingdom and Cosmin Pohoaţă of Romania. Tom is an alumnus of the UK
IMO team, and is now starting to read mathematics at Newton’s outfit, Trinity
College Cambridge. Cosmin has a formidable internet presence, and is a PEN ac-
tivist (Problems in Elementary Number theory).

One might wonder why anyone would spend their time doing mathematics, when
there are so many other options, many of which are superficially more attractive.
There are a whole range of opportunities for an enthusiastic Sybarite, ranging from
full scale debauchery down to gentle dissipation. While not wishing to belittle these
interesting hobbies, mathematics can be more intoxicating.

There is danger here. Many brilliant young minds are accelerated through ed-
ucation, sometimes graduating from university while still under 20. I can think
of people for whom this has worked out well, but usually it does not. It is not
sensible to deprive teenagers of the company of their own kind. Being a teenager
is very stressful; you have to cope with hormonal poisoning, meagre income, social
incompetance and the tyranny of adults. If you find yourself with an excellent
mathematical mind, it just gets worse, because you have to endure the approval of
teachers.

Olympiad mathematics is the sensible alternative to accelerated education. Why
do lots of easy courses designed for older people, when instead you can do math-
ematics which is off the contemporary mathematics syllabus because it is too in-
teresting and too hard? Euclidean and projective geometry and the theory of
inequalities (laced with some number theory and combinatorics) will keep a bright
young mathematician intellectually engaged, off the streets, and able to go school
discos with other people in the same unfortunate teenaged state.

The authors of Infinity are very enthusiastic about MathLinks, a remarkable in-
ternet site. While this is a fantastic resource, in my opinion the atmosphere of
the Olympiad areas is such that newcomers might feel a little overwhelmed by the
extraordinary knowledge and abilities of many of the people posting. There is a
kinder, gentler alternative in the form of the nRich site based at the University of
Cambridge. In particular the Onwards and Upwards section of their Ask a Mathe-
matician service is MathLinks for herbivores. While still on the theme of material
for students at the beginning of their maths competition careers, my accountant
would not forgive me if I did not mention A Mathematical Olympiad Primer available
on the internet from the United Kingdom Mathematics Trust, and also through the
Australian Mathematics Trust.

Returning to this excellent weblished document, Infinity is an wonderful training
resource, and is brim full of charming problems and exercises. The mathematics
competition community owes the authors a great debt of gratitude.

Dr. Geoff Smith (Dept. of Mathematical Sciences, Univ. of Bath, UK)

UK IMO team leader & Chair of the British Mathematical Olympiad

October 2008
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Overture

It was a dark decade until MathLinks was born. However, after Valentin Vornicu
founded MathLinks, everything has changed. As the best on-line community, Math-
Links helps young students around the worlds to develop problem-solving strategies
and broaden their mathematical backgrounds. Nowadays, students, as young math-
ematicians, use the LaTeX typesetting system to upload recent olympiad problems
or their own problems and enjoy mathematical friendship by sharing their creative
solutions with each other. In other words, MathLinks encourages and challenges
young people in all countries, foster friendships between young mathematicians
around the world. Yes, it exactly coincides with the aim of the IMO. Actually,
MathLinks is even better than IMO. Simply, it is because everyone can join Math-
Links!

In this never-ending project, which bears the name Infinity, we offer a delightful
playground for young mathematicians and try to continue the beautiful spirit of
IMO and MathLinks. Infinity begins with a chapter on elementary number theory
and mainly covers Euclidean geometry and inequalities. We re-visit beautiful well-
known theorems and present heuristics for elegant problem-solving. Our aim in this
weblication is not just to deliver must-know techniques in problem-solving. Young
readers should keep in mind that our aim in this project is to present the beautiful
aspects of Mathematics. Eventually, Infinity will admit bridges between Olympiads
Mathematics and undergraduate Mathematics.

Here goes the reason why we focus on the algebraic and trigonometric methods
in geometry. It is a cliché that, in the IMOs, some students from hard-training
countries used to employ the brute-force algebraic techniques, such as employing
trigonometric methods, to attack hard problems from classical triangle geometry or
to trivialize easy problems. Though MathLinks already has been contributed to the
distribution of the power of algebraic methods, it seems that still many people do
not feel the importance of such techniques. Here, we try to destroy such situations
and to deliver a friendly introduction on algebraic and trigonometric methods in
geometry.

We have to confess that many materials in the first chapter are stolen from PEN
(Problems in Elementary Number theory). Also, the lecture note on inequalities is
a continuation of the weblication TIN (Topic in INequalities). We are indebted to
Orlando Döhring and Darij Grinberg for providing us with TeX files including collec-
tions of interesting problems. We owe great debts to Stanley Rabinowitz who kindly
sent us his paper. We’d also like to thank Marian Muresan for his excellent collec-
tion of problems. We are pleased that Cao Minh Quang sent us various Vietnam
problems and nice proofs of Nesbitt’s Inequality.

Infinity is a joint work of three coauthors: Hojoo Lee (Korea), Tom Lovering
(United Kingdom), and Cosmin Pohoaţă (Romania). We would greatly appreciate
hearing about comments and corrections from our readers. Have fun!
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1. Number Theory

Why are numbers beautiful? It’s like asking why is Beethoven’s
Ninth Symphony beautiful. If you don’t see why, someone can’t
tell you. I know numbers are beautiful. If they aren’t beautiful,
nothing is.

- P. Erdős

1.1. Fundamental Theorem of Arithmetic. In this chapter, we meet various in-
equalities and estimations which appears in number theory. Throughout this sec-
tion, we denote N, Z, Q the set of positive integers, integers, rational numbers,
respectively. For integers a and b, we write a | b if there exists an integer k such
that b = ka. Our starting point In this section is the cornerstone theorem that
every positive integer n 6= 1 admits a unique factorization of prime numbers.

Theorem 1.1. (The Fundamental Theorem of Arithmetic in N) Let n 6= 1 be a
positive integer. Then, n is a product of primes. If we ignore the order of prime
factors, the factorization is unique. Collecting primes from the factorization, we
obtain a standard factorization of n:

n = p1
e1 · · · pl

el .

The distinct prime numbers p1, · · · , pl and the integers e1, · · · , el ≥ 0 are uniquely
determined by n.

We define ordp(n), the order of n ∈ N at a prime p,1 by the nonnegative integer
k such that pk | n but pk+1 6 | n. Then, the standard factorization of positive integer
n can be rewritten as the form

n =
∏

p : prime

pordp(n).

One immediately has the following simple and useful criterion on divisibility.

Proposition 1.1. Let A and B be positive integers. Then, A is a multiple of B if
and only if the inequality

ordp (A) ≥ ordp (B)
holds for all primes p.

Epsilon 1. [NS] Let a and b be positive integers such that

ak | bk+1

for all positive integers k. Show that b is divisible by a.

We now employ a formula for the prime factorization of n!. Let bxc denote the
largest integer smaller than or equal to the real number x.

Delta 1. (De Polignac’s Formula) Let p be a prime and let n be a nonnegative
integer. Then, the largest exponent e of n! such that pe | n! is given by

ordp (n!) =
∞∑

k=1

⌊
n

pk

⌋
.

1Here, we do not assume that n 6= 1.
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Example 1. Let a1, · · · , an be nonnegative integers. Then, (a1 + · · ·+ an)! is di-
visible by a1! · · · an!.

Proof. Let p be a prime. Our job is to establish the inequality

ordp ( (a1 + · · ·+ an)! ) ≥ ordp (a1!) + · · · ordp (an!) .

or ∞∑

k=1

⌊
a1 + · · ·+ an

pk

⌋
≥

∞∑

k=1

( ⌊
a1

pk

⌋
+ · · ·+

⌊
an

pk

⌋ )
.

However, the inequality

bx1 + · · ·+ xnc ≥ bx1c+ · · · bxnc ,

holds for all real numbers x1, · · · , xn. ¤
Epsilon 2. [IMO 1972/3 UNK] Let m and n be arbitrary non-negative integers. Prove
that

(2m)!(2n)!

m!n!(m + n)!
is an integer.

Epsilon 3. Let n ∈ N. Show that Ln := lcm(1, 2, · · · , 2n) is divisible by Kn :=(
2n
n

)
= (2n)!

(n!)2
.

Delta 2. (Canada 1987) Show that, for all positive integer n,

b√n +
√

n + 1c = b√4n + 1c = b√4n + 2c = b√4n + 3c.
Delta 3. (Iran 1996) Prove that, for all positive integer n,

b√n +
√

n + 1 +
√

n + 2c = b√9n + 8c.
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1.2. Fermat’s Infinite Descent. In this section, we learn Fermat’s trick, which
bears the name method of infinite descent. It is extremely useful for attacking
many Diophantine equations. We first present a proof of Fermat’s Last Theorem
for n = 4.

Theorem 1.2. (The Fermat-Wiles Theorem) Let n ≥ 3 be a positive integer. The
equation

xn + yn = zn

has no solution in positive integers.

Lemma 1.1. Let σ be a positive integer. If we have a factorization σ2 = AB for
some relatively integers A and B, then the both factors A and B are also squares.
There exist positive integers a and b such that

σ = ab, A = a2, B = b2, gcd(a, b) = 1.

Proof. Use The Fundamental Theorem of Arithmetic. ¤

Lemma 1.2. (Primitive Pythagoras Triangles) Let x, y, z ∈ N with x2 + y2 = z2,
gcd(x, y) = 1, and x ≡ 0 (mod 2) Then, there exists positive integers p and q such
that gcd(p, q) = 1 and

(x, y, z) =
(
2pq, p2 − q2, p2 + q2

)
.

Proof. The key observation is that the equation can be rewritten as
(x

2

)2

=
(

z + y

2

) (
z − y

2

)
.

Reading the equation x2 + y2 = z2 modulo 2, we see that both y and z are odd.
Hence, z+y

2 , z−y
2 , and x

2 are positive integers. We also find that z+y
2 and z−y

2 are
relatively prime. Indeed, if z+y

2 and z−y
2 admits a common prime divisor p, then

p also divides both y = z+y
2 − z−y

2 and
(

x
2

)2 =
(

z+y
2

) (
z−y
2

)
, which means that

the prime p divides both x and y. This is a contradiction for gcd(x, y) = 1. Now,
applying the above lemma, we obtain

(
x

2
,

z + y

2
,

z − y

2

)
=

(
pq, p2, q2

)

for some positive integers p and q such that gcd(p, q) = 1. ¤

Theorem 1.3. The equation x4 + y4 = z2 has no solution in positive integers.

Proof. Assume to the contrary that there exists a bad triple (x, y, z) of positive
integers such that x4 + y4 = z2. Pick a bad triple (A,B, C) ∈ D so that A4 +
B4 = C2. Letting d denote the greatest common divisor of A and B, we see that
C2 = A4 + B4 is divisible by d4, so that C is divisible by d2. In the view of(

A
d

)4
+

(
B
d

)4
=

(
C
d2

)2
, we find that (a, b, c) =

(
A
d , B

d , C
d2

)
is also in D, that is,

a4 + b4 = c2.

Furthermore, since d is the greatest common divisor of A and B, we have gcd(a, b) =
gcd

(
A
d , B

d

)
= 1. Now, we do the parity argument. If both a and b are odd, we find

that c2 ≡ a4 + b4 ≡ 1 + 1 ≡ 2 (mod 4), which is impossible. By symmetry, we may
assume that a is even and that b is odd. Combining results, we see that a2 and b2
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are relatively prime and that a2 is even. Now, in the view of
(
a2

)2 +
(
b2

)2 = c2,
we obtain (

a2, b2, c
)

=
(
2pq, p2 − q2, p2 + q2

)
.

for some positive integers p and q such that gcd(p, q) = 1. It is clear that p and q
are of opposite parity. We observe that

q2 + b2 = p2.

Since b is odd, reading it modulo 4 yields that q is even and that p is odd. If q and
b admit a common prime divisor, then p2 = q2 + b2 guarantees that p also has the
prime, which contradicts for gcd(p, q) = 1. Combining the results, we see that q
and b are relatively prime and that q is even. In the view of q2 + b2 = p2, we obtain

(q, b, p) =
(
2mn, m2 − n2, m2 + n2

)
.

for some positive integers m and n such that gcd(m,n) = 1. Now, recall that
a2 = 2pq. Since p and q are relatively prime and since q is even, it guarantees the
existence of the pair (P,Q) of positive integers such that

a = 2PQ, p = P 2, q = 2Q2, gcd(P,Q) = 1.

It follows that 2Q2 = 2q = 2mn so that Q = mn. Since gcd(m,n) = 1, this
guarantees the existence of the pair (M, N) of positive integers such that

Q = MN, m = M2, n = N2, gcd(M, N) = 1.

Combining the results, we find that P 2 = p = m2+n2 = M4+N4 so that (M, N, P )
is a bad triple. Recall the starting equation A4 + B4 = C2. Now, let’s summarize
up the results what we did. The bad triple (A, B,C) produces a new bad triple
(M, N, P ). However, we need to check that it is indeed new. We observe that
P < C. Indeed, we deduce

P ≤ P 2 = p < p2 + q2 = c =
C

d2
≤ C.

In words, from a solution of x4 + y4 = z2, we are able to find another solution
with smaller positive integer z. The key point is that this reducing process can be
repeated. Hence, it produces to an infinite sequence of strictly decreasing positive
integers. However, it is clearly impossible. We therefore conclude that there exists
no bad triple. ¤

Corollary 1.1. The equation x4 + y4 = z4 has no solution in positive integers.

Proof. Letting w = z2, we obtain x4 + y4 = w2. ¤

We now include a recent problem from IMO as another working example.

Example 2. [IMO 2007/5 IRN] Let a and b be positive integers. Show that if 4ab − 1

divides
`
4a2 − 1

´2
, then a = b.

First Solution. (by NZL at IMO 2007) When 4ab − 1 divides
(
4a2 − 1

)2 for two
distinct positive integers a and b, we say that (a, b) is a bad pair. We want to show
that there is no bad pair. Suppose that 4ab− 1 divides

(
4a2 − 1

)2. Then, 4ab− 1
also divides

b
(
4a2 − 1

)2 − a (4ab− 1)
(
4a2 − 1

)
= (a− b)

(
4a2 − 1

)
.
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The converse also holds as gcd(b, 4ab − 1) = 1. Similarly, 4ab − 1 divides (a −
b)

(
4a2 − 1

)2 if and only if 4ab − 1 divides (a− b)2. So, the original condition is
equivalent to the condition

4ab− 1 | (a− b)2 .

This condition is symmetric in a and b, so (a, b) is a bad pair if and only if (b, a)
is a bad pair. Thus, we may assume without loss of generality that a > b and that
our bad pair of this type has been chosen with the smallest possible vales of its first
element. Write (a− b)2 = m(4ab− 1), where m is a positive integer, and treat this
as a quadratic in a:

a2 + (−2b− 4ma)a +
(
b2 + m

)
= 0.

Since this quadratic has an integer root, its discriminant

(2b + 4mb)2 − 4
(
b2 + m

)
= 4

(
4mb2 + 4m2b2 −m

)

must be a perfect square, so 4mb2 + 4m2b2 −m is a perfect square. Let his be the
square of 2mb + t and note that 0 < t < b. Let s = b− t. Rearranging again gives:

4mb2 + 4m2b2 −m = (2mb + t)2

m
(
4b2 − 4bt− 1

)
= t2

m
(
4b2 − 4b(b− s)− 1

)
= (b− s)2

m(4bs− 1) = (b− s)2.
Therefore, (b, s) is a bad pair with a smaller first element, and we have a contra-
diction. ¤

Second Solution. (by UNK at IMO 2007) This solution is inspired by the solution of
NZL7 and Atanasov’s special prize solution at IMO 1988 in Canberra. We begin
by copying the argument of NZL7. A counter-example (a, b) is called a bad pair.
Consider a bad pair (a, b) so 4ab − 1| (4a2 − 1

)2. Notice that b
(
4a2 − 1

) − (4ab −
1)a = a− b so working modulo 4ab− 1 we have b2

(
4a2 − 1

) ≡ (a− b)2. Now, b2 an
4ab−1 are coprime so 4ab−1 divides

(
4a2 − 1

)2 if and only if 4ab−1 divides (a−b)2.
This condition is symmetric in a and b, so we learn that (a, b) is a bad pair if and
only if (b, a) is a bad pair. Thus, we may assume that a > b and we may as well
choose a to be minimal among all bad pairs where the first component is larger than
the second. Next, we deviate from NZL7’s solution. Write (a − b)2 = m(4ab − 1)
and treat it as a quadratic so a is a root of

x2 + (−2b− 4mb)x +
(
b2 + m

)
= 0.

The other root must be an integer c since a + c = 2b + 4mb is an integer. Also,
ac = b2 + m > 0 so c is positive. We will show that c < b, and then the pair (b, c)
will violate the minimality of (a, b). It suffices to show that 2b + 4mb < a + b, i.e.,
4mb < a− b. Now,

4b(a− b)2 = 4mb(4ab− 1)
so it suffices to show that 4b(a− b) < 4ab− 1 or rather 1 < 4b2 which is true. ¤
Delta 4. [IMO 1988/6 FRG] Let a and b be positive integers such that ab + 1 divides
a2 + b2. Show that

a2 + b2

ab + 1
is the square of an integer.
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Delta 5. (Canada 1998) Let m be a positive integer. Define the sequence {an}n≥0

by
a0 = 0, a1 = m, an+1 = m2an − an−1.

Prove that an ordered pair (a, b) of non-negative integers, with a ≤ b, gives a
solution to the equation

a2 + b2

ab + 1
= m2

if and only if (a, b) is of the form (an, an+1) for some n ≥ 0.

Delta 6. Let x and y be positive integers such that xy divides x2 + y2 + 1. Show
that

x2 + y2 + 1
xy

= 3.

Delta 7. Find all triple (x, y, z) of integers such that

x2 + y2 + z2 = 2xyz.

Delta 8. (APMO 1989) Prove that the equation

6
(
6a2 + 3b2 + c2

)
= 5n2

has no solutions in integers except a = b = c = n = 0.
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1.3. Monotone Multiplicative Functions. In this section, we study when multi-
plicative functions has the monotonicity.

Example 3. (Canada 1969) Let N = {1, 2, 3, · · · } denote the set of positive integers.
Find all functions f : N → N such that for all m, n ∈ N: f(2) = 2, f(mn) =
f(m)f(n), f(n + 1) > f(n).

First Solution. We first evaluate f(n) for small n. It follows from f (1 · 1) =
f(1) · f(1) that f(1) = 1. By the multiplicity, we get f(4) = f(2)2 = 4. It follows
from the inequality 2 = f(2) < f(3) < f(4) = 4 that f(3) = 3. Also, we compute
f(6) = f(2)f(3) = 6. Since 4 = f(4) < f(5) < f(6) = 6, we get f(5) = 5. We prove
by induction that f(n) = n for all n ∈ N. It holds for n = 1, 2, 3. Now, let n > 2
and suppose that f(k) = k for all k ∈ {1, · · · , n}. We show that f(n + 1) = n + 1.

Case 1. n + 1 is composite. One may write n + 1 = ab for some positive inte-
gers a and b with 2 ≤ a ≤ b ≤ n. By the inductive hypothesis, we have f(a) = a
and f(b) = b. It follows that f(n + 1) = f(a)f(b) = ab = n + 1.

Case 2. n + 1 is prime. In this case, n + 2 is even. Write n + 2 = 2k for
some positive integer k. Since n ≥ 2, we get 2k = n + 2 ≥ 4 or k ≥ 2. Since
k = n+2

2 ≤ n, by the inductive hypothesis, we have f(k) = k. It follows that
f(n + 2) = f(2k) = f(2)f(k) = 2k = n + 2. From the inequality

n = f(n) < f(n + 1) < f(n + 2) = n + 2

we conclude that f(n + 1) = n + 1. By induction, f(n) = n holds for all positive
integers n. ¤
Second Solution. As in the previous solution, we get f(1) = 1. We find that

f(2n) = f(2)f(n) = 2f(n)

for all positive integers n. This implies that, for all positive integers k,

f
(
2k

)
= 2k

Let k ∈ N. From the assumption, we obtain the inequality

2k = f
(
2k

)
< f

(
2k + 1

)
< · · · < f

(
2k+1 − 1

)
< f

(
2k+1

)
= 2k+1.

In other words, the increasing sequence of 2k + 1 positive integers

f
(
2k

)
, f

(
2k + 1

)
, · · · , f

(
2k+1 − 1

)
, f

(
2k+1

)

lies in the set of 2k + 1 consecutive integers {2k, 2k + 1, · · · , 2k+1 − 1, 2k+1}. This
means that f(n) = n for all 2k ≤ n ≤ 2k+1. Since this holds for all positive integers
k, we conclude that f(n) = n for all n ≥ 2. ¤

The conditions in the problem are too restrictive. Let’s throw out the condition
f(2) = 2.

Epsilon 4. Let f : N→ R+ be a function satisfying the conditions:
(a) f(mn) = f(m)f(n) for all positive integers m and n, and
(b) f(n + 1) ≥ f(n) for all positive integers n.

Then, there is a constant α ∈ R such that f(n) = nα for all n ∈ N.

We can weaken the assumption that f is completely multiplicative, but we bring
back the condition f(2) = 2.
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Epsilon 5. (Putnam 1963/A2) Let f : N → N be a strictly increasing function
satisfying that f(2) = 2 and f(mn) = f(m)f(n) for all relatively prime m and n.
Then, f is the identity function on N.

In fact, we can completely drop the constraint f(2) = 2. In 1946, P. Erdős
proved the following result in [PE]:

Theorem 1.4. Let f : N→ R be a function satisfying the conditions:
(a) f(mn) = f(m) + f(n) for all relatively prime m and n, and
(b) f(n + 1) ≥ f(n) for all positive integers n.

Then, there exists a constant α ∈ R such that f(n) = α ln n for all n ∈ N.

This implies the following multiplicative result.

Theorem 1.5. Let f : N→ R+ be a function satisfying the conditions:
(a) f(mn) = f(m)f(n) for all relatively prime m and n, and
(b) f(n + 1) ≥ f(n) for all positive integers n.

Then, there is a constant α ∈ R such that f(n) = nα for all n ∈ N.

Proof. 2 It is enough to show that the function f is completely multiplicative:
f(mn) = f(m)f(n) for all m and n. We split the proof in three steps.

Step 1. Let a ≥ 2 be a positive integer and let Ωa = {x ∈ N | gcd(x, a) = 1}.
Then, we find that

L := inf
x∈Ωa

f(x + a)
f(x)

= 1

and
f

(
ak+1

) ≤ f
(
ak

)
f(a)

for all positive integers k.

Proof of Step 1. Since f is monotone increasing, it is clear that L ≥ 1. Now,
we notice that f(k + a) ≥ Lf(k) whenever k ∈ Ωa. Let m be a positive integer.
We take a sufficiently large integer x0 > ma with gcd (x0, a) = gcd (x0, 2) = 1 to
obtain

f(2)f (x0) = f (2x0) ≥ f (x0 + ma) ≥ Lf (x0 + (m− 1)a) ≥ · · · ≥ Lmf (x0)

or
f(2) ≥ Lm.

Since m is arbitrary, this and L ≥ 1 force to L = 1. Whenever x ∈ Ωa, we obtain

f
(
ak+1

)
f(x)

f (ak)
=

f
(
ak+1x

)

f (ak)
≤ f

(
ak+1x + ak

)

f (ak)
= f (ax + 1) ≤ f

(
ax + a2

)

or
f

(
ak+1

)
f(x)

f (ak)
≤ f(a)f(x + a)

or
f(x + a)

f(x)
≥ f

(
ak+1

)

f(a)f (ak)
.

2We present a slightly modified proof in [EH]. For another short proof, see [MJ].
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It follows that

1 = inf
x∈Ωa

f(x + a)
f(x)

≥ f
(
ak+1

)

f(a)f (ak)
so that

f
(
ak+1

) ≤ f
(
ak

)
f(a),

as desired.

Step 2. Similarly, we have

U := sup
x∈Ωa

f(x)
f(x + a)

= 1

and
f

(
ak+1

) ≥ f
(
ak

)
f(a)

for all positive integers k.

Proof of Step 2. The first result immediately follows from Step 1.

sup
x∈Ωa

f(x)
f(x + a)

=
1

infx∈Ωa

f(x+a)
f(x)

= 1.

Whenever x ∈ Ωa and x > a, we have

f
(
ak+1

)
f(x)

f (ak)
=

f
(
ak+1x

)

f (ak)
≥ f

(
ak+1x− ak

)

f (ak)
= f (ax− 1) ≥ f

(
ax− a2

)

or
f

(
ak+1

)
f(x)

f (ak)
≥ f(a)f(x− a).

It therefore follows that

1 = sup
x∈Ωa

f(x)
f(x + a)

= sup
x∈Ωa, x>a

f(x− a)
f(x)

≤ f
(
ak+1

)

f(a)f (ak)
,

as desired.

Step 3. From the two previous results, whenever a ≥ 2, we have

f
(
ak+1

)
= f

(
ak

)
f(a).

Then, the straightforward induction gives that

f
(
ak

)
= f(a)k

for all positive integers a and k. Since f is multiplicative, whenever

n = p1
k1 · · · pl

kl

gives the standard factorization of n, we obtain

f(n) = f
(
p1

k1
) · · · f (

pl
kl

)
= f (p1)

k1 · · · f (pl)
kl .

We therefore conclude that f is completely multiplicative. ¤
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1.4. There are Infinitely Many Primes. The purpose of this subsection is to offer
various proofs of Euclid’s Theorem.

Theorem 1.6. (Euclid’s Theorem) The number of primes is infinite.

Proof. Assume to the contrary {p1 = 2, p2 = 3, · · · , pn} is the set of all primes.
Consider the positive integer

P = p1 · · · pn + 1.

Since P > 1, P must admit a prime divisor pi for some i ∈ {1, · · · , n}. Since both
P and p1 · · · pn are divisible by pi, we find that 1 = P − p1 · · · pn is also divisible
by pi, which is a contradiction. ¤

In fact, more is true. We now present four proofs of Euler’s Theorem that the
sum of the reciprocals of all prime numbers diverges.

Theorem 1.7. (Euler’s Theorem, PEN E24) Let pn denote the nth prime number.
The infinite series

∞∑
n=1

1
pn

diverges.

First Proof. [NZM, pp.21-23] We first prepare a lemma. Let %(n) denote the set of
prime divisors of n. Let Sn(N) denote the set of positive integers i ≤ N satisfying
that %(i) ⊂ {p1, · · · , pn}.
Lemma 1.3. We have |Sn(N)| ≤ 2n

√
N .

Proof of Lemma. It is because every positive integer i ∈ Sn(N) has a unique
factorization i = st2, where s is a divisor of p1 · · · pn and t ≤ √

N . In other words,
i 7→ (s, t) is an injective map from Sn(N) to Tn(N) = { (s, t) | s | p1 · · · pn, t ≤ √

N},
which means that |Sn(N)| ≤ |Tn(N)| ≤ 2n

√
N .

Now, assume to the contrary that the infinite series 1
p1

+ 1
p2

+ · · · converges.
Then we can take a sufficiently large positive integer n satisfying that

1
2
≥

∞∑

i>n

1
pi

=
1

pn+1
+

1
pn+2

+ · · · .

Take a sufficiently large positive integer N so that N > 4n+1. By its definition of
Sn(N), we see that each element i in {1, · · · , N} − Sn(N) is divisible by at least
one prime pj for some j > n. Since the number of multiples of pj not exceeding N

is
⌊

N
pj

⌋
, we have

|{1, · · · , N} − Sn(N)| ≤
∑

j>n

⌊
N

pj

⌋

or

N − |Sn(N)| ≤
∑

j>n

⌊
N

pj

⌋
≤

∑

j>n

N

pj
≤ N

2

or
N

2
≤ |Sn(N)| .
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It follows from this and from the lemma that N
2 ≤ 2n

√
N so that N ≤ 4n+1.

However, it is a contradiction for the choice of N . ¤

Second Proof. We employ an auxiliary inequality without a proof.

Lemma 1.4. The inequality 1 + t ≤ et holds for all t ∈ R.

Let n > 1. Since each positive integer i ≤ n has a unique factorization i = st2,
where s is square free and t ≤ √

n, we obtain
n∑

k=1

1
k
≤

∏

p:prime,
p≤n

(
1 +

1
p

) ∑

t≤√n

1
t2

.

Together with the estimation
∞∑

t=1

1
t2
≤ 1 +

∞∑
t=2

1
t(t− 1)

= 1 +
∞∑

t=2

(
1

t− 1
− 1

t

)
= 2,

we conclude that
n∑

k=1

1
k
≤ 2

∏

p:prime,
p≤n

(
1 +

1
p

)
≤ 2

∏

p:prime
p≤n

e
1
p

or
∑

p:prime
p≤n

1
p
≥ ln

(
1
2

n∑

k=1

1
k

)
.

Since the divergence of the harmonic series 1 + 1
2 + 1

3 + · · · is well-known, by
Comparison Test, the series diverges. ¤

Third Proof. [NZM, pp.21-23] We exploit an auxiliary inequality without a proof.

Lemma 1.5. The inequality 1
1−t ≤ et+t2 holds for all t ≤ [

0, 1
2

]
.

Let l ∈ N. By The Fundamental Theorem of Arithmetic, each positive integer
i ≤ pl has a unique factorization i = p1

e1 · · · p1
el for some e1, · · · , el ∈ Z≥0. It

follows that
pl∑

i=1

1
i
≤

∑

e1,··· ,el∈Z≥0

1
p1

e1 · · · pl
el

=
l∏

j=1

( ∞∑

k=0

1
pj

k

)
=

l∏

j=1

1
1− 1

pj

≤
l∏

j=1

e
1

pj
+ 1

pj
2

so that
l∑

j=1

(
1
pj

+
1

pj
2

)
≥ ln

(
pl∑

i=1

1
i

)
.

Together with the estimation
∞∑

j=1

1
pj

2
≤

l∑

j=1

1
(j + 1)2

≤
l∑

j=1

1
(j + 1)j

=
l∑

j=1

(
1
j
− 1

j + 1

)
= lim

n→∞

(
1− 1

n + 1

)
= 1,

we conclude that
l∑

j=1

1
pj
≥ ln

(
pl∑

i=1

1
i

)
− 1.
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Since the harmonic series 1 + 1
2 + 1

3 + · · · diverges, by The Comparison Test, we
get the result. ¤
Fourth Proof. [DB, p.334] It is a consequence of The Prime Number Theorem.
Let π(x) denote the prime counting function. Since The Prime Number Theorem
says that π(x) → x

ln x as x → ∞, we can find a constant λ > 0 satisfying that
π(x) > λ x

ln x for all sufficiently large positive real numbers x. This means that
n > λ pn

ln pn
when n is sufficiently large. Since λ x

ln x >
√

x for all sufficiently large
x > 0, we also have

n > λ
pn

ln pn
>
√

pn

or
n2 > pn

for all sufficiently large n. We conclude that, when n is sufficiently large,

n > λ
pn

ln pn
> λ

pn

ln (n2)
,

or equivalently,
1
pn

>
λ

2n ln n
.

Since we have
∑∞

n=2
1

n ln n = ∞, The Comparison Test yields the desired result. ¤
We close this subsection with a striking result establish by Viggo Brun.

Theorem 1.8. (Brun’s Theorem) The sum of the reciprocals of the twin primes
converges:

B =
∑

p, p+2: prime

(
1
p

+
1

p + 2

)
=

(
1
3

+
1
5

)
+

(
1
5

+
1
7

)
+

(
1
11

+
1
13

)
+ · · · < ∞

The constant B = 1.90216 · · · is called Brun’s Constant.
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1.5. Towards $1 Million Prize Inequalities. In this section, we follow [JL]. We
consider two conjectures.

Open Problem 1.1. (J. C. Lagarias) Given a positive integer n, let Hn denote the
n-th harmonic number

Hn =
n∑

i=1

1
i

= 1 + · · ·+ 1
n

and let σ(n) denote the sum of positive divisors of n. Prove that that the inequality

σ(n) ≤ Hn + eHn lnHn

holds for all positive integers n.

Open Problem 1.2. Let π denote the prime counting function, that is, π(x) counts
the number of primes p with 1 < p ≤ x. Let ε > 0. Prove that that there exists a
positive constant Cε such that the inequality∣∣∣∣π(x)−

∫ x

2

1
ln t

dt

∣∣∣∣ ≤ Cεx
1
2 +ε

holds for all real numbers x ≥ 2.

These two unseemingly problems are, in fact, equivalent. Furthermore, more
strikingly, they are equivalent to The Riemann Hypothesis from complex analysis.
In 2000, The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has
named seven prize problems. If you knock them down, you earn at least $1 Million.3

For more info, visit the CMI website at
http://www.claymath.org/millennium

Wir müssen wissen. Wir werden wissen.

- D. Hilbert

3However, in that case, be aware that Mafias can knock you down and take money from you :]
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2. Symmetries

Each problem that I solved became a rule, which served after-
wards to solve other problems.

- R. Descartes

2.1. Exploiting Symmetry. We begin with the following example.

Example 4. Let a, b, c be positive real numbers. Prove the inequality

a4 + b4

a + b
+

b4 + c4

b + c
+

c4 + a4

c + a
≥ a3 + b3 + c3.

First Solution. After brute-force computation, i.e, clearing denominators, we reach

a5b + a5c + b5c + b5a + c5a + c5b ≥ a3b2c + a3bc2 + b3c2a + b3ca2 + c3a2b + c3ab2.

Now, we deduce

a5b + a5c + b5c + b5a + c5a + c5b

= a
`
b5 + c5´+ b

`
c5 + a5´+ c

`
a5 + b5´

≥ a
`
b3c2 + b2c3´+ b

`
c3a2 + c2b3´+ c

`
c3a2 + c2b3´

= a3b2c + a3bc2 + b3c2a + b3ca2 + c3a2b + c3ab2.

Here, we used the the auxiliary inequality

x5 + y5 ≥ x3y2 + x2y3,

where x, y ≥ 0. Indeed, we obtain the equality

x5 + y5 − x3y2 − x2y3 =
`
x3 − y3´ `x2 − y2´ .

It is clear that the final term
`
x3 − y3

´ `
x2 − y2

´
is always non-negative. ˜

Here goes a more economical solution without the brute-force computation.

Second Solution. The trick is to observe that the right hand side admits a nice decompo-
sition:

a3 + b3 + c3 =
a3 + b3

2
+

b3 + c3

2
+

c3 + a3

2
.

We then see that the inequality has the symmetric face:

a4 + b4

a + b
+

b4 + c4

b + c
+

c4 + a4

c + a
≥ a3 + b3

2
+

b3 + c3

2
+

c3 + a3

2
.

Now, the symmetry of this expression gives the right approach. We check that, for x, y > 0,

x4 + y4

x + y
≥ x3 + y3

2
.

However, we obtain the identity

2
`
x4 + y4´− `x3 + y3´ (x + y) = x4 + y4 − x3y − xy3 =

`
x3 − y3´ (x− y) .

It is clear that the final term
`
x3 − y3

´
(x− y) is always non-negative. ˜

Delta 9. [LL 1967 POL] Prove that, for all a, b, c > 0,

a8 + b8 + c8

a3b3c3
≥ 1

a
+

1

b
+

1

c
.

Delta 10. [LL 1970 AUT] Prove that, for all a, b, c > 0,

a + b + c

2
≥ bc

b + c
+

ca

c + a
+

ab

a + b
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Delta 11. [SL 1995 UKR] Let n be an integer, n ≥ 3. Let a1, · · · , an be real numbers
such that 2 ≤ ai ≤ 3 for i = 1, · · · , n. If s = a1 + · · ·+ an, prove that

a1
2 + a2

2 − a3
2

a1 + a2 + a3
+

a2
2 + a3

2 − a4
2

a2 + a3 + a4
+ · · ·+ an

2 + a1
2 − a2

2

an + a1 + a2
≤ 2s− 2n.

Delta 12. [SL 2006 ] Let a1, · · · , an be positive real numbers. Prove the inequality
n

2(a1 + a2 + · · ·+ an)

X

1≤i<j≤n

aiaj ≥
X

1≤i<j≤n

aiaj

ai + aj

Epsilon 6. Let a, b, c be positive real numbers. Prove the inequality`
1 + a2´ `1 + b2´ `1 + c2´ ≥ (a + b)(b + c)(c + a).

Show that the equality holds if and only if (a, b, c) = (1, 1, 1).

Epsilon 7. (Poland 2006) Let a, b, c be positive real numbers with ab+bc+ca = abc. Prove
that

a4 + b4

ab(a3 + b3)
+

b4 + c4

bc(b3 + c3)
+

c4 + a4

ca(c3 + a3)
≥ 1.

Epsilon 8. (APMO 1996) Let a, b, c be the lengths of the sides of a triangle. Prove that
√

a + b− c +
√

b + c− a +
√

c + a− b ≤ √
a +

√
b +

√
c.
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2.2. Breaking Symmetry. We now learn how to break the symmetry. Let’s attack the
following problem.

Example 5. Let a, b, c be non-negative real numbers. Show the inequality

a4 + b4 + c4 + 3 (abc)
4
3 ≥ 2

`
a2b2 + b2c2 + c2a2´ .

There are many ways to prove this inequality. In fact, it can be proved either with
Schur’s Inequality or with Popoviciu’s Inequality. Here, we try to give another proof. One
natural starting point is to apply The AM-GM Inequality to obtain the estimations

c4 + 3 (abc)
4
3 ≥ 4

“
c4 · (abc)

4
3 · (abc)

4
3 · (abc)

4
3

” 1
4

= 4abc2

and
a4 + b4 ≥ 2a2b2.

Adding these two inequalities, we obtain

a4 + b4 + c4 + 3 (abc)
4
3 ≥ 2a2b2 + 4abc2.

Hence, it now remains to show that

2a2b2 + 4abc2 ≥ 2
`
a2b2 + b2c2 + c2a2´

or equivalently
0 ≥ 2c2(a− b)2,

which is clearly untrue in general. It is reversed! However, we can exploit the above
idea to finsh the proof.

Proof. Using the symmetry of the inequality, we break the symmetry. Since the inequality
is symmetric, we may consider the case a, b ≥ c only. Since The AM-GM Inequality implies

the inequality c4 + 3 (abc)
4
3 ≥ 4abc2, we obtain the estimation

a4 + b4 + c4 + 3 (abc)
4
3 − 2

`
a2b2 + b2c2 + c2a2´

≥ `
a4 + b4 − 2a2b2´+ 4abc2 − 2

`
b2c2 + c2a2´

=
`
a2 − b2´2 − 2c2 (a− b)2

= (a− b)2
`
(a + b)2 − 2c2´ .

Since we have a, b ≥ c, the last term is clearly non-negative. ˜
Epsilon 9. Let a, b, c be the lengths of a triangle. Show that

a

b + c
+

b

c + a
+

c

a + b
< 2.

Epsilon 10. (USA 1980) Prove that, for all real numbers a, b, c ∈ [0, 1],

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1.

Epsilon 11. [AE, p. 186] Show that, for all a, b, c ∈ [0, 1],

a

1 + bc
+

b

1 + ca
+

c

1 + ab
≤ 2.

Epsilon 12. [SL 2006 KOR] Let a, b, c be the lengths of the sides of a triangle. Prove the
inequality √

b + c− a√
b +

√
c−√a

+

√
c + a− b√

c +
√

a−
√

b
+

√
a + b− c√

a +
√

b−√c
≤ 3.

Epsilon 13. Let f(x, y) = xy
`
x3 + y3

´
for x, y ≥ 0 with x + y = 2. Prove the inequality

f(x, y) ≤ f

„
1 +

1√
3
, 1− 1√

3

«
= f

„
1− 1√

3
, 1 +

1√
3

«
.
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Epsilon 14. Let a, b ≥ 0 with a + b = 1. Prove thatp
a2 + b +

p
a + b2 +

√
1 + ab ≤ 3.

Show that the equality holds if and only if (a, b) = (1, 0) or (a, b) = (0, 1).

Epsilon 15. (USA 1981) Let ABC be a triangle. Prove that

sin 3A + sin 3B + sin 3C ≤ 3
√

3

2
.

The above examples say that, in general, symmetric problems does not admit
symmetric solutions. We now introduce an extremely useful inequality when we make
the ordering assmption.

Epsilon 16. (Chebyshev’s Inequality) Let x1, · · · , xn and y1, · · · yn be two monotone in-
creasing sequences of real numbers:

x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn.

Then, we have the estimation

nX
i=1

xiyi ≥ 1

n

 
nX

i=1

xi

! 
nX

i=1

yi

!
.

Corollary 2.1. (The AM-HM Inequality) Let x1, · · · , xn > 0. Then, we have

x1 + · · ·+ xn

n
≥ n

1
x1

+ · · · 1
xn

or
1

x1
+ · · · 1

xn
≥ n2

x1 + · · ·+ xn
.

The equality holds if and only if x1 = · · · = xn.

Proof. Since the inequality is symmetric, we may assume that x1 ≤ · · · ≤ xn. We have

− 1

x1
≤ · · · ≤ − 1

xn
.

Chebyshev’s Inequality shows that

x1 ·
„
− 1

x1

«
+ · · ·+ x1 ·

„
− 1

x1

«
≥ 1

n
(x1 + · · ·+ xn)

»„
− 1

x1

«
+ · · ·+

„
− 1

x1

«–
.

˜

Remark 2.1. In Chebyshev’s Inequality, we do not require that the variables are positive.
It also implies that if x1 ≤ · · · ≤ xn and y1 ≥ · · · ≥ yn, then we have the reverse estimation

nX
i=1

xiyi ≤ 1

n

 
nX

i=1

xi

! 
nX

i=1

yi

!
.

Epsilon 17. (United Kingdom 2002) For all a, b, c ∈ (0, 1), show that

a

1− a
+

b

1− b
+

c

1− c
≥ 3 3

√
abc

1− 3
√

abc
.

Epsilon 18. [IMO 1995/2 RUS] Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Epsilon 19. (Iran 1996) Let x, y, z be positive real numbers. Prove that

(xy + yz + zx)

„
1

(x + y)2
+

1

(y + z)2
+

1

(z + x)2

«
≥ 9

4
.
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We now present three different proofs of Nesbitt’s Inequality:

Proposition 2.1. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 1. We denote L the left hand side. Since the inequality is symmetric in the three
variables, we may assume that a ≥ b ≥ c. Since 1

b+c
≥ 1

c+a
≥ 1

a+b
, Chebyshev’s Inequality

yields that

L ≥ 1

3
(a + b + c)

„
1

b + c
+

1

c + a
+

1

a + b

«

=
1

3

„
a + b + c

b + c
+

a + b + c

c + a
+

a + b + c

a + b

«

= 3

„
1 +

a

b + c
+ 1 +

b

c + a
+ 1 +

c

a + b

«

=
1

3
(3 + L),

so that L ≥ 3
2
, as desired.

Proof 2. We now break the symmetry by a suitable normalization. Since the inequality is
symmetric in the three variables, we may assume that a ≥ b ≥ c. After the substitution
x = a

c
, y = b

c
, we have x ≥ y ≥ 1. It becomes

a
c

b
c

+ 1
+

b
c

a
c

+ 1
+

1
a
c

+ b
c

≥ 3

2

or
x

y + 1
+

y

x + 1
≥ 3

2
− 1

x + y
.

We first apply The AM-GM Inequality to deduce

x + 1

y + 1
+

y + 1

x + 1
≥ 2

or
x

y + 1
+

y

x + 1
≥ 2− 1

y + 1
− 1

x + 1
.

It is now enough to show that

2− 1

y + 1
− 1

x + 1
≥ 3

2
− 1

x + y
or

1

2
− 1

y + 1
≥ 1

x + 1
− 1

x + y
or

y − 1

2(1 + y)
≥ y − 1

(x + 1)(x + y)
.

However, the last inequality clearly holds for x ≥ y ≥ 1.

Proof 3. As in the previous proof, we may assume a ≥ b ≥ 1 = c. We present a proof of

a

b + 1
+

b

a + 1
+

1

a + b
≥ 3

2
.

Let A = a + b and B = ab. What we want to prove is

a2 + b2 + a + b

(a + 1)(b + 1)
+

1

a + b
≥ 3

2

or
A2 − 2B + A

A + B + 1
+

1

A
≥ 3

2
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or
2A3 −A2 −A + 2 ≥ B(7A− 2).

Since 7A− 2 > 2(a + b− 1) > 0 and A2 = (a + b)2 ≥ 4ab = 4B, it’s enough to show that

4(2A3 −A2 −A + 2) ≥ A2(7A− 2) ⇔ A3 − 2A2 − 4A + 8 ≥ 0.

However, it’s easy to check that A3 − 2A2 − 4A + 8 = (A− 2)2(A + 2) ≥ 0.
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2.3. Symmetrizations. We now attack non-symmetrical inequalities by transforming them
into symmetric ones.

Example 6. Let x, y, z be positive real numbers. Show the cyclic inequality

x2

y2
+

y2

z2
+

z2

x2
≥ x

y
+

y

z
+

z

x
.

First Solution. We break the homogeneity. After the substitution a = x
y
, b = y

z
, c = z

x
, it

becomes
a2 + b2 + c2 ≥ a + b + c.

We now obtain

a2 + b2 + c2 ≥ 1

3
(a + b + c)2 ≥ (a + b + c)(abc)

1
3 = a + b + c.

˜
Epsilon 20. (APMO 1991) Let a1, · · · , an, b1, · · · , bn be positive real numbers such that
a1 + · · ·+ an = b1 + · · ·+ bn. Show that

a1
2

a1 + b1
+ · · ·+ an

2

an + bn
≥ a1 + · · ·+ an

2
.

Epsilon 21. Let x, y, z be positive real numbers. Show the cyclic inequality
x

2x + y
+

y

2y + z
+

z

2z + x
≤ 1.

Epsilon 22. Let x, y, z be positive real numbers with x + y + z = 3. Show the cyclic
inequality

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ 1.

Epsilon 23. [SL 1985 CAN] Let x, y, z be positive real numbers. Show the cyclic inequality

x2

x2 + yz
+

y2

y2 + zx
+

z2

z2 + xy
≤ 2.

Epsilon 24. [SL 1990 THA] Let a, b, c, d ≥ 0 with ab + bc + cd + da = 1. show that

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
.

Delta 13. [SL 1998 MNG] Let a1, · · · , an be positive real numbers such that a1+· · ·+an <
1. Prove that

a1 · · · an (1− a1 − · · · − an)

(a1 + · · ·+ an) (1− a1) · · · (1− an)
≤ 1

nn+1
.

Don’t just read it; fight it! Ask your own questions, look for your own examples, discover
your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the
classical special case? What about the degenerate cases? Where does the proof use the
hypothesis?

- P. Halmos, I Want to be a Mathematician
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3. Geometric Inequalities

Geometry is the science of correct reasoning on incorrect figures.
- G. Pólya

3.1. Triangle Inequalities. Many inequalities are simplified by some suitable substitutions.
We begin with a classical inequality in triangle geometry. What is the first4 nontrivial
geometric inequality?

Theorem 3.1. (Chapple 1746, Euler 1765) Let R and r denote the radii of the circumcircle
and incircle of the triangle ABC. Then, we have R ≥ 2r and the equality holds if and
only if ABC is equilateral.

Proof. Let BC = a, CA = b, AB = c, s = a+b+c
2

and S = [ABC].5 We now recall the
well-known identities:

S =
abc

4R
, S = rs, S2 = s(s− a)(s− b)(s− c).

Hence, the inequality R ≥ 2r is equivalent to

abc

4S
≥ 2

S

s
or

abc ≥ 8
S2

s
or

abc ≥ 8(s− a)(s− b)(s− c).

We need to prove the following. ˜

Theorem 3.2. (A. Padoa) Let a, b, c be the lengths of a triangle. Then, we have

abc ≥ 8(s− a)(s− b)(s− c)

or

abc ≥ (b + c− a)(c + a− b)(a + b− c)

Here, the equality holds if and only if a = b = c.

Proof. We exploit The Ravi Substitution. Since a, b, c are the lengths of a triangle, there
are positive reals x, y, z such that a = y + z, b = z + x, c = x + y. (Why?) Then, the
inequality is (y + z)(z + x)(x + y) ≥ 8xyz for x, y, z > 0. However, we get

(y + z)(z + x)(x + y)− 8xyz = x(y − z)2 + y(z − x)2 + z(x− y)2 ≥ 0.

˜

Does the above inequality hold for arbitrary positive reals a, b, c? Yes ! It’s possible
to prove the inequality without the additional condition that a, b, c are the lengths of a
triangle :

Theorem 3.3. Whenever x, y, z > 0, we have

xyz ≥ (y + z − x)(z + x− y)(x + y − z).

Here, the equality holds if and only if x = y = z.

4The first geometric inequality is the Triangle Inequality: AB + BC ≥ AC
5In this book, [P ] stands for the area of the polygon P .
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Proof. Since the inequality is symmetric in the variables, without loss of generality, we
may assume that x ≥ y ≥ z. Then, we have x + y > z and z + x > y. If y + z > x,
then x, y, z are the lengths of the sides of a triangle. In this case, by the previous
theorem, we get the result. Now, we may assume that y + z ≤ x. Then, it is clear that
xyz > 0 ≥ (y + z − x)(z + x− y)(x + y − z). ˜

The above inequality holds when some of x, y, z are zeros:

Theorem 3.4. Let x, y, z ≥ 0. Then, we have xyz ≥ (y + z − x)(z + x− y)(x + y − z).

Proof. Since x, y, z ≥ 0, we can find strictly positive sequences {xn}, {yn}, {zn} for which

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z.

The above theorem says that

xnynzn ≥ (yn + zn − xn)(zn + xn − yn)(xn + yn − zn).

Now, taking the limits to both sides, we get the result.
˜

We now notice that, when x, y, z ≥ 0, the equality xyz = (y+z−x)(z+x−y)(x+y−z)
does not guarantee that x = y = z. In fact, for x, y, z ≥ 0, the equality xyz = (y + z −
x)(z + x− y)(x + y − z) implies that

x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0.

(Verify this!) It’s straightforward to verify the equality

xyz− (y + z−x)(z +x−y)(x+y− z) = x(x−y)(x− z)+y(y− z)(y−x)+ z(z−x)(z−y).

Hence, it is a particular case of Schur’s Inequality.

Epsilon 25. [IMO 2000/2 USA] Let a, b, c be positive numbers such that abc = 1. Prove
that „

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
≤ 1.

Delta 14. Let R and r denote the radii of the circumcircle and incircle of the right triangle
ABC, resepectively. Show that

R ≥ (1 +
√

2)r.

When does the equality hold ?

Delta 15. [LL 1988 ESP] Let ABC be a triangle with inradius r and circumradius R.
Show that

sin
A

2
sin

B

2
+ sin

B

2
sin

C

2
+ sin

C

2
sin

A

2
≤ 5

8
+

r

4R
.

In 1965, W. J. Blundon[WJB] found the best possible inequalities of the form

A(R, r) ≤ s2 ≤ B(R, r),

where A(x, y) and B(x, y) are real quadratic forms αx2 + βxy + γy2.

Delta 16. Let R and r denote the radii of the circumcircle and incircle of the triangle
ABC. Let s be the semiperimeter of ABC. Show that

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2.

Delta 17. [WJB2, RS] Let R and r denote the radii of the circumcircle and incircle of the
triangle ABC. Let s be the semiperimeter of ABC. Show that

s ≥ 2R + (3
√

3− 4)r.
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Delta 18. With the usual notation for a triangle, show the inequality6

4R + r ≥
√

3s.

The Ravi Substitution is useful for inequalities for the lengths a, b, c of a triangle.
After The Ravi Substitution, we can remove the condition that they are the lengths of
the sides of a triangle.

Epsilon 26. [IMO 1983/6 USA] Let a, b, c be the lengths of the sides of a triangle. Prove
that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Delta 19. (Darij Grinberg) Let a, b, c be the lengths of a triangle. Show the inequalities

a3 + b3 + c3 + 3abc− 2b2a− 2c2b− 2a2c ≥ 0,

and

3a2b + 3b2c + 3c2a− 3abc− 2b2a− 2c2b− 2a2c ≥ 0.

Delta 20. [LL 1983 UNK] Show that if the sides a, b, c of a triangle satisfy the equation

2
`
ab2 + bc2 + ca2´ = a2b + b2c + c2a + 3abc

then the triangle is equilateral. Show also that the equation can be satisfied by positive real
numbers that are not the sides of a triangle.

Delta 21. [IMO 1991/1 USS] Prove for each triangle ABC the inequality

1

4
<

IA · IB · IC

lA · lB · lC ≤ 8

27
,

where I is the incenter and lA, lB , lC are the lengths of the angle bisectors of ABC.

We now discuss Weitzenböck’s Inequality and related theorems.

Epsilon 27. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Epsilon 28. (The Hadwiger-Finsler Inequality) For any triangle ABC with sides a, b, c and
area F , the following inequality holds:

a2 + b2 + c2 ≥ 4
√

3F + (a− b)2 + (b− c)2 + (c− a)2

or

2ab + 2bc + 2ca− (a2 + b2 + c2) ≥ 4
√

3F.

Here is a simultaneous generalization of Weitzenböck’s Inequality and Nesbitt’s In-
equality.

Epsilon 29. (Tsintsifas) Let p, q, r be positive real numbers and let a, b, c denote the sides
of a triangle with area F . Then, we have

p

q + r
a2 +

q

r + p
b2 +

r

p + q
c2 ≥ 2

√
3F.

Epsilon 30. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Notice that it’s a generalization of Weitzenböck’s Inequality. Carlitz observed that The
Neuberg-Pedoe Inequality can be deduced from Aczél’s Inequality.

6It is equivalent to The Hadwiger-Finsler Inequality.
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Epsilon 31. (Aczél’s Inequality) If a1, · · · , an, b1, · · · , bn > 0 satisfies the inequality

a1
2 ≥ a2

2 + · · ·+ an
2 and b1

2 ≥ b2
2 + · · ·+ bn

2,

then the following inequality holds.

a1b1 − (a2b2 + · · ·+ anbn) ≥
q

(a1
2 − (a2

2 + · · ·+ an
2))
`
b1

2 − `b2
2 + · · ·+ bn

2
´´
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3.2. Conway Substitution. As we saw earlier, transforming geometric inequalities to alge-
braic ones (and vice-versa), in order to solve them, may prove to be very useful. Besides
the Ravi Substitution, we remind another technique, known to the authors as the Conway
Substitution Theorem.

Theorem 3.5. (Conway) Let u, v, w be three reals such that the numbers v + w, w + u,
u + v and vw + wu + uv are all nonnegative. Then, there exists a triangle XY Z with
sidelengths x = Y Z =

√
v + w, y = ZX =

√
w + u, z = XY =

√
u + v. This triangle

satisfies y2 + z2 − x2 = 2u, z2 + x2 − y2 = 2v, x2 + y2 − z2 = 2w. The area T of this
triangle equals T = 1

2

√
vw + wu + uv. If X = \ZXY , Y = \XY Z, Z = \Y ZX are the

angles of this triangle, then cot X = u
2T

, cot Y = v
2T

and cot Z = w
2T

.

Proof. Since the numbers v +w, w +u, u+ v are nonnegative, their square roots
√

v + w,√
w + u,

√
u + v exist, and, of course, are nonnegative as well. A straightforward compu-

tation shows that
√

w + u +
√

u + v ≥ √
v + w. Similarly,

√
u + v +

√
v + w ≥ √

w + u
and

√
v + w +

√
w + u ≥ √

u + v. Thus, there exists a triangle XYZ with sidelengths

x = Y Z =
√

v + w, y = ZX =
√

w + u, z = XY =
√

u + v.

It follows that

y2 + z2 − x2 =
`√

w + u
´2

+
`√

u + v
´2 − `√v + w

´2
= 2u.

Similarly, z2 + x2 − y2 = 2v and x2 + y2 − z2 = 2w. According now to the fact that

cot Z =
x2 + y2 − z2

4T
,

we deduce that so that cot Z = w
2T

, and similarly cot X = u
2T

and cot Y = v
2T

. The
well-known trigonometric identity

cot Y · cot Z + cot Z · cot X + cot X · cot Y = 1,

now becomes
v

2T
· w

2T
+

w

2T
· u

2T
+

u

2T
· v

2T
= 1

or

vw + wu + uv = 4T 2.

or

T =
1

2

√
4T 2 =

1

2

√
vw + wu + uv.

˜

Note that the positive real numbers m, n, p satisfy the above conditions, and therefore,
there exists a triangle with sidelengths m =

√
n + p, n =

√
p + m, p =

√
m + n. However,

we will further see that there are such cases when we need the version in which the numbers
m, n, p are not all necessarily nonnegative.

Delta 22. (Turkey 2006) If x, y, z are positive numbers with xy + yz + zx = 1, show that

27

4
(x + y)(y + z)(z + x) ≥ (

√
x + y +

√
y + z +

√
z + x)2 ≥ 6

√
3.

We continue with an interesting inequality discussed on the MathLinks Forum.

Proposition 3.1. If x, y, z are three reals such that the numbers y + z, z + x, x + y and
yz + zx + xy are all nonnegative, then

Xp
(z + x) (x + y) ≥ x + y + z +

√
3 · √yz + zx + xy.



26 INFINITY

Proof. (Darij Grinberg) Applying the Conway substitution theorem to the reals x, y, z,
we see that, since the numbers y + z, z + x, x + y and yz + zx + xy are all nonnegative,
we can conclude that there exists a triangle ABC with sidelengths a = BC =

√
y + z,

b = CA =
√

z + x, c = AB =
√

x + y and area S = 1
2

√
yz + zx + xy. Now, we have

Xp
(z + x) (x + y) =

X√
z + x · √x + y =

X
b · c = bc + ca + ab,

x + y + z =
1

2

“`√
y + z

´2
+
`√

z + x
´2

+
`√

x + y
´2”

=
1

2

`
a2 + b2 + c2´ ,

and √
3 · √yz + zx + xy = 2

√
3 · 1

2

√
yz + zx + xy = 2

√
3 · S.

Hence, the inequality in question becomes

bc + ca + ab ≥ 1

2

`
a2 + b2 + c2´+ 2

√
3 · S,

which is equivalent with

a2 + b2 + c2 ≥ 4
√

3 · S + (b− c)2 + (c− a)2 + (a− b)2 .

But this is the well-known refinement of the Weintzenbock Inequality, discovered by Finsler
and Hadwiger in 1937. See [FiHa]. ˜

Five years later, Pedoe [DP2] proved a magnificent generalization of the same Weitzenböck
Inequality. In Mitrinovic, Pecaric, and Volenecs’ classic Recent Advances in Geometric
Inequalities, this generalization is referred to as the Neuberg-Pedoe Inequality. See also
[DP1], [DP2], [DP3], [DP5] and [JN].

Proposition 3.2. (Neuberg-Pedoe) Let a, b, c, and x, y, z be the side lengths of two given
triangles ABC, XY Z with areas S, and T , respectively. Then,

a2 `y2 + z2 − x2´+ b2 `z2 + x2 − y2´+ c2 `x2 + y2 − z2´ ≥ 16ST,

with equality if and only if the triangles ABC and XY Z are similar.

Proof. (Darij Grinberg) First note that the inequality is homogeneous in the sidelengths
x, y, z of the triangle XY Z (in fact, these sidelengths occur in the power 2 on the left
hand side, and on the right hand side they occur in the power 2 as well, since the area
of a triangle is quadratically dependant from its sidelengths). Hence, this inequality is
invariant under any similitude transformation executed on triangle XY Z. In other words,
we can move, reflect, rotate and stretch the triangle XY Z as we wish, but the inequality
remains equivalent. But, of course, by applying similitude transformations to triangle
XY Z, we can always achieve a situation when Y = B and Z = C and the point X lies in
the same half-plane with respect to the line BC as the point A. Hence, in order to prove
the Neuberg-Pedoe Inequality for any two triangles ABC and XY Z, it is enough to prove
it for two triangles ABC and XY Z in this special situation.

So, assume that the triangles ABC and XY Z are in this special situation, i. e. that
we have Y = B and Z = C and the point X lies in the same half-plane with respect to
the line BC as the point A. We, thus, have to prove the inequality

a2 `y2 + z2 − x2´+ b2 `z2 + x2 − y2´+ c2 `x2 + y2 − z2´ ≥ 16ST.

Well, by the cosine law in triangle ABX, we have

AX2 = AB2 + XB2 − 2 ·AB ·XB · cos\ABX.

Let’s figure out now what this equation means. At first, AB = c. Then, since B =
Y , we have XB = XY = z. Finally, we have either \ABX = \ABC − \XBC or
\ABX = \XBC − \ABC (depending on the arrangement of the points), but in both
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cases cos\ABX = cos(\ABC − \XBC). Since B = Y and C = Z, we can rewrite the
angle \XBC as \XY Z. Thus,

cos\ABX = cos (\ABC − \XY Z) = cos\ABC cos\XY Z + sin\ABC sin\XY Z.

By the Cosine Law in triangles ABC and XY Z, we have

cos\ABC =
c2 + a2 − b2

2ca
, and cos\XY Z =

z2 + x2 − y2

2zx
.

Also, since

sin\ABC =
2S

ca
, and sin\XY Z =

2T

zx
,

we have that

cos\ABX

= cos\ABC cos\XY Z + sin\ABC sin\XY Z

=
c2 + a2 − b2

2ca
· z2 + x2 − y2

2zx
+

2S

ca
· 2T

zx
.

This makes the equation

AX2 = AB2 + XB2 − 2 ·AB ·XB · cos\ABX

transform into

AX2 = c2 + z2 − 2 · c · z ·
„

c2 + a2 − b2

2ca
· z2 + x2 − y2

2zx
+

2S

ca
· 2T

zx

«
,

which immediately simplifies to

AX2 = c2 + z2 − 2

 `
c2 + a2 − b2

´ `
z2 + x2 − y2

´

4ax
+

4ST

ax

!
,

and since Y Z = BC,

AX2 =

`
a2
`
y2 + z2 − x2

´
+ b2

`
z2 + x2 − y2

´
+ c2

`
x2 + y2 − z2

´´− 16ST

2ax
.

Thus, according to the (obvious) fact that AX2 ≥ 0, we conclude that

a2 `y2 + z2 − x2´+ b2 `z2 + x2 − y2´+ c2 `x2 + y2 − z2´ ≥ 16ST,

which proves the Neuberg-Pedoe Inequality. The equality holds if and only if the points
A and X coincide, i. e. if the triangles ABC and XY Z are congruent. Now, of course,
since the triangle XY Z we are dealing with is not the initial triangle XY Z, but just
its image under a similitude transformation, the general equality condition is that the
triangles ABC and XY Z are similar (not necessarily being congruent). ˜

Delta 23. (Bottema [BK]) Let a, b, c, and x, y, z be the side lengths of two given triangles
ABC, XY Z with areas S, and T , respectively. If P is an arbitrary point in the plane of
triangle ABC, then we have the inequality

x·AP+y·BP+z·CP ≥
r

a2 (y2 + z2 − x2) + b2 (z2 + x2 − y2) + c2 (x2 + y2 − z2)

2
+ 8ST .

Epsilon 32. If A, B, C, X, Y , Z denote the magnitudes of the corresponding angles of
triangles ABC, and XY Z, respectively, then

cot A cot Y + cot A cot Z + cot B cot Z + cot B cot X + cot C cot X + cot C cot Y ≥ 2.
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Epsilon 33. (Vasile Cârtoaje) Let a, b, c, x, y, z be nonnegative reals. Prove the inequality

(ay + az + bz + bx + cx + cy)2 ≥ 4 (bc + ca + ab) (yz + zx + xy) ,

with equality if and only if a : x = b : y = c : z.

Delta 24. (The Extended Tsintsifas Inequality) Let p, q, r be positive real numbers such
that the terms q+r, r+p, p+q are all positive, and let a, b, c denote the sides of a triangle
with area F . Then, we have

p

q + r
a2 +

q

r + p
b2 +

r

p + q
c2 ≥ 2

√
3F.

Epsilon 34. (Walter Janous, Crux Mathematicorum) If u, v, w, x, y, z are six reals such
that the terms y+z, z+x, x+y, v+w, w+u, u+v, and vw+wu+uv are all nonnegative,
then

x

y + z
· (v + w) +

y

z + x
· (w + u) +

z

x + y
· (u + v) ≥

p
3 (vw + wu + uv).

Note that the Neuberg-Pedoe Inequality is a generalization (actually the better word is
parametrization) of the Weitzenböck Inequality. How about deducing Hadwiger-Finsler’s
Inequality from it? Apparently this is not possible. However, the Conway Substitution
Theorem will change our mind.

Lemma 3.1. Let ABC be a triangle with side lengths a, b, c, and area S, and let u, v,
w be three reals such that the numbers v + w, w + u, u + v and vw + wu + uv are all
nonnegative. Then,

ua2 + vb2 + wc2 ≥ 4
√

vw + wu + uv · S.

Proof. According to the Conway Substitution Theorem, we can construct a triangle with
sidelenghts x =

√
v + w, y =

√
w + u, z =

√
u + v and area T =

√
vw + wu + uv/2. Let

this triangle be XY Z. In this case, by the Neuberg-Pedoe Inequality, applied for the
triangles ABC and XY Z, we get that

a2 `y2 + z2 − x2´+ b2 `z2 + x2 − y2´+ c2 `x2 + y2 − z2´ ≥ 16ST.

By the formulas given in the Conway Substitution Theorem, this becomes equivalent with

a2 · 2u + b2 · 2v + c2 · 2w ≥ 16S · 1

2

√
vw + wu + uv

which simplifies to ua2 + vb2 + wc2 ≥ 4
√

vw + wu + uv · S. ˜

Proposition 3.3. (Cosmin Pohoaţă) Let ABC be a triangle with side lengths a, b, c, and
area S and let x, y, z be three positive real numbers. Then,

a2 + b2 + c2 ≥ 4
√

3S +
2

x + y + z

„
x2 − yz

x
· a2 +

y2 − zx

y
· b2 +

z2 − xy

z
· c2

«
.

Proof. Let m = xyz(x + y + z) − 2yz(x2 − yz), n = xyz(x + y + z) − 2zx(y2 − zx), and
p = xyz(x + y + z) − 2xy(z2 − xy). The three terms n + p, p + m, and m + n are all
positive, and since

mn + np + pm = 3x2y2z2(x + y + z)2 ≥ 0,

by Lemma 3.1, we get that
X
cyc

[xyz(x + y + z)− 2yz(x2 − yz)]a2 ≥ 4xyz(x + y + z)
√

3S.
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This rewrites as
X
cyc

»
(x + y + z)− 2 · x2 − yz

x

–
a2 ≥ 4(x + y + z)

√
3S,

and, thus,

a2 + b2 + c2 ≥ 4
√

3S +
2

x + y + z

„
x2 − yz

x
· a2 +

y2 − zx

y
· b2 +

z2 − xy

z
· c2

«
.

˜
Obviously, for x = a, y = b, z = c, and following the fact that

a3 + b3 + c3 − 3abc =
1

2
(a + b + c)

ˆ
(a− b)2 + (b− c)2 + (c− a)2

˜
,

Proposition 3.3 becomes equivalent with the Hadwiger-Finsler Inequality. Note also that
for x = y = z, Proposition 3.3 turns out to be the Weintzenbock Inequality. Therefore,
by using only Conway’s Substitution Theorem, we’ve transformed a result which strictly
generalizes the Weintzebock Inequality (the Neuberg-Pedoe Inequality) into one which
generalizes both the Weintzenbock Inequality and, surprisingly or not, the Hadwiger-
Finsler Inequality.
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3.3. Hadwiger-Finsler Revisited. The Hadwiger-Finsler inequality is known in literature
as a refinement of Weitzenböck’s Inequality. Due to its great importance and beautiful
aspect, many proofs for this inequality are now known. For example, in [AE] one can find
eleven proofs. Is the Hadwiger-Inequality the best we can do? The answer is indeed no.
Here, we shall enlighten a few of its sharpening.

We begin with an interesting ”phenomenon”. Most of you might know that according
to the formulas ab + bc + ca = s2 + r2 + 4Rr, and a2 + b2 + c2 = 2(s2 − r2 − 4Rr), the
Hadwiger-Finsler Inequality rewrites as

4R + r ≥ s
√

3,

where s is the semiperimeter of the triangle. However, by using this last equivalent form
in a trickier way, we may obtain a slightly sharper result:

Proposition 3.4. (Cezar Lupu, Cosmin Pohoaţă) In any triangle ABC with sidelengths a,
b, c, circumradius R, inradius r, and area S, we have that

a2 + b2 + c2 ≥ 2S
√

3 + 2r(4R + r) + (a− b)2 + (b− c)2 + (c− a)2.

Proof. As announced, we start with

4R + r ≥ s
√

3.

By multiplying with 2 and adding 2r(4R + r) to both terms, we obtain that

16Rr + 4r2 ≥ 2S
√

3 + 2r(4R + r).

According now to the fact that ab+bc+ca = s2+r2+4Rr, and a2+b2+c2 = 2(s2−r2−4Rr),
this rewrites as

2(ab + bc + ca)− (a2 + b2 + c2) ≥ 2S
√

3 + 2r(4R + r).

Therefore, we obtain

a2 + b2 + c2 ≥ 2S
√

3 + 2r(4R + r) + (a− b)2 + (b− c)2 + (c− a)2.

˜

This might seem strange, but wait until you see how does the geometric version of
Schur’s Inequality look like (of course, since we expect to run through another refinement
of the Hadwiger-Finsler Inequality, we obviously refer to the third degree case of Schur’s
Inequality).

Proposition 3.5. (Cezar Lupu, Cosmin Pohoaţă [LuPo]) In any triangle ABC with side-
lengths a, b, c, circumradius R, inradius r, and area S, we have that

a2 + b2 + c2 ≥ 4S

r
3 +

4(R− 2r)

4R + r
+ (a− b)2 + (b− c)2 + (c− a)2.

Proof. The third degree case of Schur’s Inequality says that for any three nonnegative real
numbers m, n, p, we have that

m3 + n3 + p3 + 3mnp ≥ m2(n + p) + n2(p + m) + p2(m + n).

Note that this can be rewritten as

2(np + pm + mn)− (m2 + n2 + p2) ≤ 9mnp

m + n + p
,

and by plugging in the substitutions x = 1
m

, y = 1
n
, and z = 1

p
, we obtain that

yz

x
+

zx

y
+

xy

z
+

9xyz

yz + zx + xy
≥ 2(x + y + z).
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So far so good, but let’s take this now geometrically. Using the Ravi Substitution (i. e.

x =
1

2
(b + c− a), y =

1

2
(c + a− b), and p =

1

2
(a + b− c),

where a, b, c are the sidelengths of triangle ABC), we get that the above inequality
rewrites as

X
cyc

(b + c− a)(c + a− b)

(a + b− c)
+

9(b + c− a)(c + a− b)(a + b− c)P
(b + c− a)(c + a− b)

≥ 2(a + b + c).

Since ab + bc + ca = s2 + r2 + 4Rr and a2 + b2 + c2 = 2(s2 − r2 − 4Rr), it follows that
X
cyc

(b + c− a)(c + a− b) = 4r(4R + r).

Thus, according to Heron’s area formula that

S =
p

s(s− a)(s− b)(s− c),

we obtain X (b + c− a)(c + a− b)

(a + b− c)
+

18sr

4R + r
≥ 4s.

This is now equivalent to
X
cyc

(s− a)(s− b)

(s− c)
+

9sr

4R + r
≥ 2s,

and so X
cyc

(s− a)2(s− b)2 +
9s2r3

4R + r
≥ 2s2r2.

By the identity

X
cyc

(s− a)2(s− b)2 =

 X
cyc

(s− a)(s− b)

!2

− 2s2r2,

we have  X
cyc

(s− a)(s− b)

!2

− 2s2r2 +
9s2r3

4R + r
≥ 2s2r2,

and since X
cyc

(s− a)(s− b) = r(4R + r),

we deduce that

r2(4R + r)2 +
9s2r3

4R + r
≥ 4s2r2.

This finally rewrites as „
4R + r

s

«2

+
9r

4R + r
≥ 4.

According again to ab + bc + ca = s2 + r2 + 4Rr and a2 + b2 + c2 = 2(s2 − r2 − 4Rr), we
have „

2(ab + bc + ca)− (a2 + b2 + c2)

4S

«2

≥ 4− 9r

4R + r
.

Therefore,

a2 + b2 + c2 ≥ 4S

r
3 +

4(R− 2r)

4R + r
+ (a− b)2 + (b− c)2 + (c− a)2.

˜



32 INFINITY

Epsilon 35. (Tran Quang Hung) In any triangle ABC with sidelengths a, b, c, circumradius
R, inradius r, and area S, we have

a2 +b2 +c2 ≥ 4S
√

3+(a−b)2 +(b−c)2 +(c−a)2 +16Rr

„X
cos2

A

2
−
X

cos
B

2
cos

C

2

«
.

Delta 25. Let a, b, c be the lengths of a triangle with area S.
(a) (Cosmin Pohoaţă) Prove that

a2 + b2 + c2 ≥ 4S
√

3 +
1

2
(|a− b|+ |b− c|+ |c− a|)2 .

(b) Show that, for all positive integers n,

a2n + b2n + c2n ≥ 3

„
4√
3

«n

+ (a− b)2n + (b− c)2n + (c− a)2n.
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3.4. Trigonometry Rocks! Trigonometry is an extremely powerful tool in geometry. We
begin with Fagnano’s theorem that among all inscribed triangles in a given acute-angled
triangle, the feet of its altitudes are the vertices of the one with the least perimeter. Despite
of its apparent simplicity, the problem proved itself really challenging and attractive to
many mathematicians of the twentieth century. Several proofs are presented at [Fag].

Theorem 3.6. (Fagnano’s Theorem) Let ABC be any triangle, with sidelengths a, b, c,
and area S. If XY Z is inscribed in ABC, then

XY + Y Z + ZX ≥ 8S2

abc
.

Equality holds if and only if ABC is acute-angled, and then only if XY Z is its orthic
triangle.

Proof. (Finbarr Holland [FH]) Let XY Z be a triangle inscribed in ABC. Let x = BX,
y = CY , and z = AZ. Then 0 < x < a, 0 < y < b, 0 < z < c. By applying the Cosine
Law in the triangle ZBX, we have

ZX2 = (c− z)2 + x2 − 2x(c− z) cos B

= (c− z)2 + x2 + 2xc− z) cos (A + C)

= (x cos A + (c− z) cos C)2 + (x sin A− (c− z) sin C)2.

Hence, we have

ZX ≥ |x cos A + (c− z) cos C|,
with equality if and only if x sin A = (c− z) sin C or ax + cz = c2, Similarly, we obtain

XY ≥ |y cos B + (a− x) cos A|,
with equality if and only if ax + by = a2. And

Y Z ≥ |z cos C + (b− y) cos B|,
with equality if and only if by + cz = b2. Thus, we get

XY + Y Z + ZX

≥ |y cos B + (a− x) cos A|+ |z cos C + (b− y) cos B|+ |x cos A + (c− z) cos C|
≥ |y cos B + (a− x) cos A + z cos C + (b− y) cos B + x cos A + (c− z) cos C|
≥ |a cos A + b cos B + c cos C|

=
a2(b2 + c2 − a2) + b2(c2 + a2 − b2) + c2(a2 + b2 − c2)

2abc

=
8S2

abc
.

Note that we have equality here if and only if

ax + cz = c2, ax + by = a2, and by + cz = b2,

and moreover the expressions

u = x cos A + (c− z) cos C, v = y cos B + (a− x) cos A, w = z cos C + (b− y) cos B,

are either all negative or all nonnegative. Now it is easy to very that the system of
equations

ax + cz = c2, ax + by = a2, by + cz = b2

has an unique solution given by

x = c cos B, y = a cos C, and z = b cos A,

in which case

u = b cos C, v = c cos C, and w = a cos A.



34 INFINITY

Thus, in this case, at most one of u, v, w can be negative. But, if one of u, v, w is zero,
then one of x, y, z must be zero, which is not possible. It follows that

XY + Y Z + ZX >
8S2

abc
,

unless ABC is acute-angled, and XY Z is its orthic triangle. If ABC is acute-angled, then
8S2

abc
is the perimeter of its orthic triangle, in which case we recover Fagnano’s theorem. ˜

We continue with Morley’s miracle. We first prepare two well-known trigonometric
identities.

Epsilon 36. For all θ ∈ R, we have

sin (3θ) = 4 sin θ sin
“π

3
+ θ
”

sin

„
2π

3
+ θ

«
.

Epsilon 37. For all A, B, C ∈ R with A + B + C = 2π, we have

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1.

Theorem 3.7. (Morley’s Theorem) The three points of intersections of the adjacent internal
angle trisectors of a triangle forms an equilateral triangle.

Proof. We want to show that the triangle E1E2E3 is equilateral.
Let R denote the circumradius of A1A2A3. Setting \Ai = 3θi for i = 1, 2, 3, we get

θ1 + θ2 + θ3 = π
3
. We now apply The Sine Law twice to deduce

A1E3 =
sin θ2

sin (π − θ1 − θ2)
A1A2 =

sin θ2

sin
`

2π
3

+ θ3

´ ·2R sin (3θ3) = 8R sin θ2 sin θ3 sin
“π

3
+ θ3

”
.

By symmetry, we also have

A1E2 = 8R sin θ3 sin θ2 sin
“π

3
+ θ2

”
.

Now, we present two different ways to complete the proof. The first method is more direct
and the second one gives more information.

First Method. One of the most natural approaches to crack this is to compute the lengths
of E1E2E3. We apply The Cosine Law to obtain

E1E2
2

= AE3
2 + AE2

2 − 2 cos (\E3A1E2) ·AE3 ·AE1

= 64R2 sin2 θ2 sin2 θ3

h
sin2

“π

3
+ θ3

”
+ sin2

“π

3
+ θ2

”
− 2 cos θ1 sin

“π

3
+ θ3

”
sin
“π

3
+ θ2

”i

To avoid long computation, here, we employ a trick. In the view of the equality

(π − θ1) +
“π

6
− θ2

”
+
“π

6
− θ3

”
= π,

we have

cos2 (π − θ1)+cos2
“π

6
− θ2

”
+cos2

“π

6
− θ3

”
+2 cos (π − θ1) cos

“π

6
− θ2

”
cos
“π

6
− θ3

”
= 1

or

cos2 θ1 + sin2
“π

3
+ θ2

”
+ sin2

“π

3
+ θ3

”
− 2 cos θ1

“π

3
+ θ2

”
cos
“π

3
+ θ3

”
= 1

or

sin2
“π

3
+ θ2

”
+ sin2

“π

3
+ θ3

”
− 2 cos θ1 sin

“π

3
+ θ2

”
sin
“π

3
+ θ3

”
= sin2 θ1.

We therefore find that

E1E2
2 = 64R2 sin2 θ1 sin2 θ2 sin2 θ3
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so that
E1E2 = 8R sin θ1 sin θ2 sin θ3

Remarkably, the length of E1E2 is symmetric in the angles! By symmetry, we therefore
conclude that E1E2E3 is an equilateral triangle with the length 8R sin θ1 sin θ2 sin θ3.

Second Method. We find the angles in the picture explicitly. Look at the triangle E3A1E2.
The equality

θ1 +
“π

3
+ θ2

”
+
“π

3
+ θ3

”
= π

allows us to invite a ghost triangle ABC having the angles

A = θ1, B =
π

3
+ θ2, C =

π

3
+ θ3.

Observe that two triangles BAC and E3A1E2 are similar. Indeed, we have \BAC =
\E3A1E2 and

A1E3

A1E2
=

8R sin θ2 sin θ3 sin
`

π
3

+ θ3

´

8R sin θ3 sin θ2 sin
`

π
3

+ θ2

´ =
sin
`

π
3

+ θ3

´

sin
`

π
3

+ θ2

´ =
sin C

sin B
=

AB

AC
.

It therefore follows that

(\A1E3E2, \A1E2E3) =
“π

3
+ θ2,

π

3
+ θ3

”
.

Similarly, we also have

(\A2E1E3, \A2E3E1) =
“π

3
+ θ3,

π

3
+ θ1

”
.

and

(\A3E2E1, \A3E1E2) =
“π

3
+ θ1,

π

3
+ θ2

”
.

An angle computation yields

\E1E2E3 = 2π − (\A1E2E3 + \E1E2A3 + \A3E2A1)

= 2π −
h “π

3
+ θ3

”
+
“π

3
+ θ1

”
+ (π − θ3 − θ1)

i

=
π

3
.

Similarly, we also have \E2E3E1 = π
3

= \E3E1E2. It follows that E1E2E3 is equilateral.
Furthermore, we apply The Sine Law to reach

E2E3 =
sin θ1

sin
`

π
3

+ θ3

´ A1E3

=
sin θ1

sin
`

π
3

+ θ3

´ · 8R sin θ2 sin θ3 sin
“π

3
+ θ3

”

= 8R sin θ1 sin θ2 sin θ3.

Hence, we find that the triangle E1E2E3 has the length 8R sin θ1 sin θ2 sin θ3. ˜

We pass now to another ’miracle’: the Steiner-Lehmus theorem.

Theorem 3.8. (The Steiner-Lehmus Theorem) If the internal angle-bisectors of two angles
of a triangle are congruent, then the triangle is isosceles.

Proof. [MH] Let BB′ and CC′ be the respective internal angle bisectors of angles B and
C in triangle ABC, and let a, b, and c denote the sidelengths of the triangle. We set

\B = 2β, \C = 2γ, u = AB′, U = B′C, v = AC′, V = C′B.

We shall see that the assumptions BB′ = CC′ and C > B (and hence c > b) lead to the
contradiction that

b

u
<

c

v
and

b

u
≥ c

v
.
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Geometrically, this means that the line B′C′ intersects both rays BC and CB. On the
one hand, we have

b

u
− c

v
=

u + U

u
− v + V

v
=

U

u
− V

v
=

a

c
− a

b
< 0

or
b

u
<

c

v
.

On the other hand, we use the identity sin 2ω = 2 sin ω cos ω to obtain

b

c
· v

u
=

sin B

sin C
· v

u

=
2 cos β sin β

2 cos γ sin γ
· v

u

=
cos β

cos γ
· sin β

u
· v

sin γ

=
cos β

cos γ
· sin A

BB′ ·
CC′

sin A

=
cos β

cos γ
.

It thus follows that b
u

> c
v
. We meet a contradiction. ˜

The next inequality is probably the most beautiful ’modern’ geometric inequality in
triangle geometry.

Theorem 3.9. (The Erdős-Mordell Theorem) If from a point P inside a given triangle ABC
perpendiculars PH1, PH2, PH3 are drawn to its sides, then

PA + PB + PC ≥ 2(PH1 + PH2 + PH3).

This was conjectured by Paul Erdős in 1935, and first proved by Mordell in the same
year. Several proofs of this inequality have been given, using Ptolemy’s Theorem by André
Avez, angular computations with similar triangles by Leon Bankoff, area inequality by V.
Komornik, or using trigonometry by Mordell and Barrow.

Proof. [MB] We transform it to a trigonometric inequality. Let h1 = PH1, h2 = PH2 and
h3 = PH3.

Apply the Since Law and the Cosine Law to obtain

PA sin A = H2H3 =

q
h2

2 + h3
2 − 2h2h3 cos(π −A),

PB sin B = H3H1 =

q
h3

2 + h1
2 − 2h3h1 cos(π −B),

PC sin C = H1H2 =

q
h1

2 + h2
2 − 2h1h2 cos(π − C).

So, we need to prove that
X

cyclic

1

sin A

q
h2

2 + h3
2 − 2h2h3 cos(π −A) ≥ 2(h1 + h2 + h3).

The main trouble is that the left hand side has too heavy terms with square root expres-
sions. Our strategy is to find a lower bound without square roots. To this end, we express
the terms inside the square root as the sum of two squares.

H2H3
2 = h2

2 + h3
2 − 2h2h3 cos(π −A)

= h2
2 + h3

2 − 2h2h3 cos(B + C)

= h2
2 + h3

2 − 2h2h3(cos B cos C − sin B sin C).
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Using cos2 B + sin2 B = 1 and cos2 C + sin2 C = 1, one finds that

H2H3
2 = (h2 sin C + h3 sin B)2 + (h2 cos C − h3 cos B)2 .

Since (h2 cos C − h3 cos B)2 is clearly nonnegative, we get H2H3 ≥ h2 sin C + h3 sin B.
Hence,

X

cyclic

p
h2

2 + h3
2 − 2h2h3 cos(π −A)

sin A
≥

X

cyclic

h2 sin C + h3 sin B

sin A

=
X

cyclic

„
sin B

sin C
+

sin C

sin B

«
h1

≥
X

cyclic

2

r
sin B

sin C
· sin C

sin B
h1

= 2h1 + 2h2 + 2h3.

˜
Epsilon 38. [SL 2005 KOR] In an acute triangle ABC, let D, E, F , P , Q, R be the feet
of perpendiculars from A, B, C, A, B, C to BC, CA, AB, EF , FD, DE, respectively.
Prove that

p(ABC)p(PQR) ≥ p(DEF )2,

where p(T ) denotes the perimeter of triangle T .

Epsilon 39. [IMO 2001/1 KOR] Let ABC be an acute-angled triangle with O as its
circumcenter. Let P on line BC be the foot of the altitude from A. Assume that \BCA ≥
\ABC + 30◦. Prove that \CAB + \COP < 90◦.

Epsilon 40. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Epsilon 41. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

We close this subsection with Barrows’ Inequality stronger than The Erdös-Mordell
Theorem. We need the following trigonometric inequality:

Proposition 3.6. (Wolstenholme’s Inequality) Let x, y, z, θ1, θ2, θ3 be real numbers with
θ1 + θ2 + θ3 = π. Then, the following inequality holds:

x2 + y2 + z2 ≥ 2(yz cos θ1 + zx cos θ2 + xy cos θ3).

Proof. Using θ3 = π − (θ1 + θ2), we have the identity

x2 + y2 + z2 − 2(yz cos θ1 + zx cos θ2 + xy cos θ3)

= [ z − (x cos θ2 + y cos θ1) ]2 + [ x sin θ2 − y sin θ1 ]2 .

˜
Corollary 3.1. Let p, q, and r be positive real numbers. Let θ1, θ2, and θ3 be real numbers
satisfying θ1 + θ2 + θ3 = π. Then, the following inequality holds.

p cos θ1 + q cos θ2 + r cos θ3 ≤ 1

2

„
qr

p
+

rp

q
+

pq

r

«
.

Proof. Take (x, y, z) =
“q

qr
p

,
q

rp
q

,
p

pq
r

”
and apply the above proposition. ˜



38 INFINITY

Delta 26. (Cosmin Pohoaţă) Let a, b, c be the sidelengths of a given triangle ABC with
circumradius R, and let x, y, z be three arbitrary real numbers. Then, we have that

R

„r
yz

x
+

r
zx

y
+

r
xy

z

«
≥
p

xa2 + yb2 + zc2.

Epsilon 42. (Barrow’s Inequality) Let P be an interior point of a triangle ABC and let
U , V , W be the points where the bisectors of angles BPC, CPA, APB cut the sides
BC,CA,AB respectively. Then, we have

PA + PB + PC ≥ 2(PU + PV + PW ).

Epsilon 43. [AK] Let x1, · · · , x4 be positive real numbers. Let θ1, · · · , θ4 be real numbers
such that θ1 + · · ·+ θ4 = π. Then, we have

x1 cos θ1 +x2 cos θ2 +x3 cos θ3 +x4 cos θ4 ≤
r

(x1x2 + x3x4)(x1x3 + x2x4)(x1x4 + x2x3)

x1x2x3x4
.

Delta 27. [RS] Let R, r, s > 0. Show that a necessary and sufficient condition for the
existence of a triangle with circumradius R, inradius r, and semiperimeter s is

s4 − 2(2R2 + 10Rr − r2)s2 + r(4R + r)2 ≤ 0.
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3.5. Erdős, Brocard, and Weitzenböck. In this section, we touch Brocard geometry. We
begin with a consequence of The Erdős-Mordell Theorem.

Epsilon 44. [IMO 1991/5 FRA] Let ABC be a triangle and P an interior point in ABC.
Show that at least one of the angles \PAB, \PBC, \PCA is less than or equal to 30◦.

As an immediate consequence, one may consider the following symmetric situation:

Proposition 3.7. Let ABC be a triangle. If there exists an interior point P in ABC
satisfying that

\PAB = \PBC = \PCA = ω

for some positive real number ω. Then, we have the inequality ω ≤ π
6
.

We omit the geometrical proof of the existence and the uniqueness of such point in an
arbitrary triangle.(Prove it!)

Delta 28. Let ABC be a triangle. There exists a unique interior point Ω1, which bear the
name the first Brocard point of ABC, such that

\Ω1AB = \Ω1BC = \Ω1CA = ω1

for some ω1, the first Brocard angle.

By symmetry, we also include

Delta 29. Let ABC be a triangle. There exists a unique interior point Ω2 with

\Ω2BA = \Ω2CB = \Ω2AC = ω2

for some ω2, the second Brocard angle. The point Ω2 is called the second Brocard point of
ABC.

Delta 30. If a triangle ABC has an interior point P such that \PAB = \PBC =
\PCA = 30◦, then it is equilateral.

Epsilon 45. Any triangle has the same Brocard angles.

As a historical remark, we state that H. Brocard (1845-1922) was not the first one who
discovered the Brocard points. They were also known to A. Crelle (1780-1855), C. Jacobi
(1804-1851), and others some 60 years earlier. However, their results in this area were
soon forgotten [RH]. Our next job is to evaluate the Brocard angle quite explicitly.

Epsilon 46. The Brocard angle ω of the triangle ABC satisfies

cot ω = cot A + cot B + cot C.

Proposition 3.8. The Brocard angle ω of the triangle with sides a, b, c and area S satisfies

cot ω =
a2 + b2 + c2

4S
.

Proof. We have

cot A + cot B + cot C =
2bc cos A

2bc sin A
+

2ca cos B

2ca sin B
+

2ab cos C

2ab sin C

=
b2 + c2 − a2

4S
+

c2 + a2 − b2

4S
+

a2 + b2 − c2

4S

=
a2 + b2 + c2

4S
.

˜

We revisit Weitzenböck’s Inequality. It is a corollary of The Erdős-Mordell Theorem!
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Proposition 3.9. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths
of a triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Third Proof. Letting ω denote its Brocard angle, by combining results we proved, we
obtain

a2 + b2 + c2

4S
= cot ω ≥ cot

“π

6

”
=
√

3.

˜
We present interesting theorems from Brocard geometry.

Delta 31. [RH] Let Ω1 and Ω2 denote the Brocard points of a triangle ABC with the
circumcenter O. Let the circumcircle of OΩ1Ω2, called the Brocard circle of ABC, meet
the line AΩ1, BΩ1, CΩ1 at R, P , Q, respectively, again. The triangle PQR bears the
name the first Brocard triangle of ABC.

(a) OΩ1 = OΩ2.

(b) Two triangles PQR and ABC are similar.

(c) Two triangles PQR and ABC have the same centroid.

(d) Let U , V , W denote the midpoints of QR, RP , PQ, respectively. Let UH , VH , WH

denote the feet of the perpendiculars from U , V , W respectively. Then, the three lines
UUH , V UH , WWH meet at the nine point circle of triangle ABC.

The story is not over. We establish an inequality which implies the problem [IMO
1991/5 FRA].

Epsilon 47. (The Trigonometric Versions of Ceva’s Theorem) For an interior point P of a
triangle A1A2A3, we write

\A3A1A2 = α1, \PA1A2 = ϑ1, \PA1A3 = θ1,

\A1A2A3 = α2, \PA2A3 = ϑ2, \PA2A1 = θ2,

\A2A3A1 = α3, \PA3A1 = ϑ3, \PA3A2 = θ3.

Then, we find a hidden symmetry:

sin ϑ1

sin θ1
· sin ϑ2

sin θ2
· sin ϑ3

sin θ3
= 1,

or equivalently,

1

sin α1 sin α2 sin α3
= [cot ϑ1 − cot α1] [cot ϑ2 − cot α2] [cot ϑ3 − cot α3] .

Epsilon 48. Let P be an interior point of a triangle ABC. Show that

cot (\PAB) + cot (\PBC) + cot (\PCA) ≥ 3
√

3.

Proposition 3.10. [IMO 1991/5 FRA] Let ABC be a triangle and P an interior point in
ABC. Show that at least one of the angles \PAB, \PBC, \PCA is less than or equal
to 30◦.

Second Solution. The above inequality implies

max{ cot (\PAB) , cot (\PBC) , cot (\PCA) } ≥
√

3 = cot 30◦.

Since the cotangent function is strictly decreasing on (0, π), we get the result. ˜
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3.6. From Incenter to Centroid. We begin with an inequality regarding the incenter. In
fact, the geometric inequality is equivalent to an algebraic one, Schur’s Inequality!

Example 7. (Korea 1998) Let I be the incenter of a triangle ABC. Prove that

IA2 + IB2 + IC2 ≥ BC2 + CA2 + AB2

3
.

Proof. Let BC = a, CA = b, AB = c, and s = a+b+c
2

. Letting r denote the inradius of
4ABC, we have

r2 =
(s− a)(s− b)(s− c)

s
.

By The Pythagoras Theorem, the inequality is equivalent to

(s− a)2 + r2 + (s− b)2 + r2 + (s− c)2 + r2 ≥ 1

3

`
a2 + b2 + c2´ .

or

(s− a)2 + (s− b)2 + (s− c)2 +
3(s− a)(s− b)(s− c)

s
≥ 1

3

`
a2 + b2 + c2´ .

After The Ravi Substitution x = s− a, y = s− b, z = s− c, it becomes

x2 + y2 + z2 +
3xyz

x + y + z
≥ (x + y)2 + (y + z)2 + (z + x)2

3
or

3
`
x2 + y2 + z2´ (x + y + z) + 9xyz ≥ (x + y + z)

`
(x + y)2 + (y + z)2 + (z + x)2

´

or

9xyz ≥ (x + y + z)
`
2xy + 2yz + 2zx− x2 − y2 − z2´

or

9xyz ≥ x2y + x2z + y2z + y2x + z2x + z2y + 6xyz − x3 − y3 − z3

or

x3 + y3 + z3 + 3xyz ≥ x2(y + z) + y2(z + x) + z2(x + y).

This is a particular case of Schur’s Inequality. ˜

Now, one may ask more questions. Can we replace the incenter by other classical points
in triangle geometry? The answer is yes. We first take the centroid.

Example 8. Let G denote the centroid of the triangle ABC. Then, we have the geometric
identity

GA2 + GB2 + GC2 =
BC2 + CA2 + AB2

3
.

Proof. Let M denote the midpoint of BC. The Pappus Theorem implies that

GB2 + GC2

2
= GM2 +

„
BC

2

«2

=

„
GA

2

«2

+

„
BC

2

«2

or

−GA2 + 2GB2 + 2GC2 = BC2

Similarly, 2GA2 −GB2 + 2GC2 = CA2 and 2GA2 + 2GB2 − 2GC2 = AB2. Adding these
three equalities, we get the identity. ˜

Before we take other classical points, we need to rethink this unexpected situation. We
have an equality, instead of an inequality. According to this equality, we find that the
previous inequality can be rewritten as

IA2 + IB2 + IC2 ≥ GA2 + GB2 + GC2.

Now, it is quite reasonable to make a conjecture which states that, given a triangle ABC,
the minimum value of PA2 + PB2 + PC2 is attained when P is the centroid of 4ABC.
This guess is true!
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Theorem 3.10. Let A1A2A3 be a triangle with the centroid G. For any point P , we have

PA1
2 + PA2

2 + PA3
2 ≥ GA2 + GB2 + GC2.

Proof. Just toss the picture on the real plane R2 so that

P (p, q), A1 (x1, y1) , A2 (x2, y2) , A3 (x3, y3) , G
“x1 + x2 + x3

3
,
y1 + y2 + y3

3

”
.

What we need to do is to compute

3
`
PA1

2 + PA2
2 + PA3

2´− `BC2 + CA2 + AB2´

= 3

3X
i=1

(p− xi)
2 + (q − yi)

2 −
3X

i=1

“x1 + x2 + x3

3
− xi

”2

+
“y1 + y2 + y3

3
− yi

”2

= 3

3X
i=1

(p− xi)
2 −

3X
i=1

“x1 + x2 + x3

3
− xi

”2

+ 3

3X
i=1

(q − yi)
2 −

3X
i=1

“y1 + y2 + y3

3
− yi

”2

.

A moment’s thought shows that the quadratic polynomials are squares.

3

3X
i=1

(p− xi)
2 −

3X
i=1

“x1 + x2 + x3

3
− xi

”2

= 9
“
p− x1 + x2 + x3

3

”2

,

3

3X
i=1

(q − yi)
2 −

3X
i=1

“y1 + y2 + y3

3
− yi

”2

= 9
“
q − y1 + y2 + y3

3

”2

.

Hence, the quantity 3
`
PA1

2 + PA2
2 + PA3

2
´ − `BC2 + CA2 + AB2

´
is clearly non-

negative. Furthermore, we notice that the above proof of the geometric inequality dis-
covers a geometric identity:

`
PA2 + PB2 + PC2´− `GA2 + GB2 + GC2´ = 9GP 2.

It is clear that the equality in the above inequality holds only when GP = 0 or P = G. ˜

After removing the special condition that P is the incenter, we get a more general
inequality, even without using a heavy machine, like Schur’s Inequality. Sometimes, gen-
eralizations are more easy! Taking the point P as the circumcenter, we have

Proposition 3.11. Let ABC be a triangle with circumradius R. Then, we have

AB2 + BC2 + CA2 ≤ 9R2.

Proof. Let O and G denote its circumcenter and centroid, respectively. It reads

9GO2 +
`
AB2 + BC2 + CA2´ = 3

`
OA2 + OB2 + OC2´ = 9R2.

˜

The readers can rediscover many geometric inequalities by taking other classical points
from triangle geometry.(Do it!) Here goes another inequality regarding the incenter.

Example 9. Let I be the incenter of the triangle ABC with BC = a, CA = b and AB = c.
Prove that, for all points X,

aXA2 + bXB2 + cXC2 ≥ abc.

First Solution. It turns out that the non-negative quantity

aXA2 + bXB2 + cXC2 − abc

has a geometric meaning. This geometric inequality follows from the following geometric
identity:

aXA2 + bXB2 + cXC2 = (a + b + c)XI2 + abc. 7

7 [SL 1988 SGP]
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There are many ways to establish this identity. To euler8 it, we toss the picture on the
real plane R2 with the coordinates

A(c cos B, c sin B), B(0, 0), C(a, 0).

Let r denote the inradius of 4ABC. Setting s = a+b+c
2

, we get I(s−b, r). It is well-known
that

r2 =
(s− a)(s− b)(s− c)

s
.

Set X(p, q). On the one hand, we obtain

aXA2 + bXB2 + cXC2

= a
ˆ
(p− c cos B)2 + (q − c sin B)2

˜
+ b

`
p2 + q2´+ c

ˆ
(p− a)2 + q2˜

= (a + b + c)p2 − 2acp(1 + cos B) + (a + b + c)q2 − 2acq sin B + ac2 + a2c

= 2sp2 − 2acp

„
1 +

a2 + c2 − b2

2ac

«
+ 2sq2 − 2acq

[4ABC]
1
2
ac

+ ac2 + a2c

= 2sp2 − p(a + c + b) (a + c− b) + 2sq2 − 4q[4ABC] + ac2 + a2c

= 2sp2 − p(2s) (2s− 2b) + 2sq2 − 4qsr + ac2 + a2c

= 2sp2 − 4s (s− b) p + 2sq2 − 4rsq + ac2 + a2c.

On the other hand, we obtain

(a + b + c)XI2 + abc

= 2s
ˆ
(p− (s− b))2 + (q − r)2

˜

= 2s
ˆ
p2 − 2(s− b)p + (s− b)2 + q2 − 2qr + r2˜

= 2sp2 − 4s (s− b) p + 2s(s− b)2 + 2sq2 − 4rsq + 2sr2 + abc.

It thus follows that

aXA2 + bXB2 + cXC2 − (a + b + c)XI2 − abc

= ac2 + a2c− 2s(s− b)2 − 2sr2 − abc

= ac(a + c)− 2s(s− b)2 − 2(s− a)(s− b)(s− c)− abc

= ac(a + c− b)− 2s(s− b)2 − 2(s− a)(s− b)(s− c)

= 2ac(s− b)− 2s(s− b)2 − 2(s− a)(s− b)(s− c)

= 2(s− b) [ac− s(s− b)− 2(s− a)(s− c)] .

However, we compute ac− s(s− b)− 2(s− a)(s− c) = −2s2 + (a + b + c)s = 0. ˜
Now, throw out the special condition that I is the incenter! Then, the essence appears:

Delta 32. (The Leibniz Theorem) Let ω1, ω2, ω3 be real numbers such that ω1+ω2+ω3 6= 0.
We characterize the generalized centroid Gω = G(ω1,ω2,ω3) by

−−−→
XGω =

3X
i=1

ωi

ω1 + ω2 + ω3

−−→
XAi.

Then Gω is well-defined in the sense that it doesn’t depend on the choice of X. For all
points P , we have

3X
i=1

ωiPAi
2 = (ω1 + ω2 + ω3)PGω

2 +

3X
i=1

ωiωi+1

ω1 + ω2 + ω3
AiAi+1

2.

We show that the geometric identity aXA2 + bXB2 + cXC2 = (a + b + c)XI2 + abc is
a straightforward consequence of The Leibniz Theorem.

8euler v. (in Mathematics) transform the geometric identity in triangle geometry to trigono-
metric or algebraic identity.
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Second Solution. Let BC = a, CA = b, AB = c. With the weights (a, b, c), we have
I = G(a,b,c). Hence,

aXA2 + bXB2 + cXC2 = (a + b + c)XI2 +
bc

a + b + c
a2 + +

ca

a + b + c
b2 +

ab

a + b + c
c2

= (a + b + c)XI2 + abc.

˜
Epsilon 49. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Epsilon 50. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Delta 33. [SL 1988 UNK] The triangle ABC is acute-angled. Let L be any line in
the plane of the triangle and let u, v, w be lengths of the perpendiculars from A, B, C
respectively to L. Prove that

u2 tan A + v2 tan B + w2 tan C ≥ 24,

where 4 is the area of the triangle, and determine the lines L for which equality holds.

Delta 34. [KWL] Let G and I be the centroid and incenter of the triangle ABC with
inradius r, semiperimeter s, circumradius R. Show that

IG2 =
1

9

`
s2 + 5r2 − 16Rr

´
.

Inspiration is needed in geometry, just as much as in poetry. - A. Pushkin
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4. Geometry Revisited

It gives me the same pleasure when someone else proves a good
theorem as when I do it myself.

- E. Landau

4.1. Areal Co-ordinates. In this section we aim to briefly introduce develop the theory of
areal (or ’barycentric’) co-ordinate methods with a view to making them accessible to a
reader as a means for solving problems in plane geometry. Areal co-ordinate methods are
particularly useful and important for solving problems based upon a triangle, because,
unlike Cartesian co-ordinates, they exploit the natural symmetries of the triangle and
many of its key points in a very beautiful and useful way.

4.1.1. Setting up the co-ordinate system. If we are going to solve a problem using areal co-
ordinates, the first thing we must do is choose a triangle ABC, which we call the triangle
of reference, and which plays a similar role to the axes in a cartesian co-ordinate system.
Once this triangle is chosen, we can assign to each point P in the plane a unique triple
(x, y, z) fixed such that x + y + z = 1, which we call the areal co-ordinates of P . The
way these numbers are assigned can be thought of in three different ways, all of which
are useful in different circumstances. We leave the proofs that these three conditions are
equivalent, along with a proof of the uniqueness of areal co-ordinate representation, for
the reader. The first definition we shall see is probably the most intuitive and most useful
for working with. It also explains why they are known as ‘areal’ co-ordinates.

1st Definition: A point P internal to the triangle ABC has areal co-ordinates

„
[PBC]

[ABC]
,
[PCA]

[ABC]
,
[PAB]

[ABC]

«
.

If a sign convention is adopted, such that a triangle whose vertices are labelled clockwise
has negative area, this definition applies for all P in the plane.

2nd Definition: If x, y, z are the masses we must place at the vertices A, B, C respec-
tively such that the resulting system has centre of mass P , then (x, y, z) are the areal
co-ordinates of P (hence the alternative name ‘barycentric’)

3rd Definition: If we take a system of vectors with arbitrary origin (not on the sides of
triangle ABC) and let a, b, c, p be the position vectors of A, B, C, P respectively, then
p = xa + yb + zc for some triple (x, y, z) such that x + y + z = 1. We define this triple
as the areal co-ordinates of P .

There are some remarks immediately worth making:

• The vertices A, B, C of the triangle of reference have co-ordinates (1, 0, 0), (0, 1, 0),
(0, 0, 1) respectively.

• All the co-ordinates of a point are positive if and only if the point lies within the
triangle of reference, and if any of the co-ordinates are zero, the point lies on one
of the sides (or extensions of the sides) of ABC.
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4.1.2. The Equation of a Line. A line is a geometrical object such that any pair of non-
parallel lines meet at one and only one point. We would therefore expect the equation of
a line to be linear, such that any pair of simultaneous line equations, together with the
condition x + y + z = 1, can be solved for a unique triple (x, y, z) corresponding to the
areal co-ordinates of the point of intersection of the two lines. Indeed, it follows (using
the equation x + y + z = 1 to eliminate any constant terms) that the general equation of
a line is of the form

lx + my + nz = 0

where l, m, n are constants and not all zero. Clearly there exists a unique line (up to
multiplication by a constant) containing any two given points P (xp, yp, zp), Q(xq, yq, zq).
This line can be written explicitly as

(ypzq − yqzp)x + (zpxq − zqxp)y + (xpyq − xqyp)z = 0

This equation is perhaps more neatly expressed in the determinant9 form:

Det

0
@

x xp xq

y yp yq

z zp zq

1
A = 0.

While the above form is useful, it is often quicker to just spot the line automatically.
For example try to spot the equation of the line BC, containing the points B(0, 1, 0) and
C(0, 0, 1), without using the above equation.

Of particular interest (and simplicity) are Cevian lines, which pass through the vertices
of the triangle of reference. We define a Cevian through A as a line whose equation is
of the form my = nz. Clearly any line containing A must have this form, because setting
y = z = 0, x = 1 any equation with a nonzero x coefficient would not vanish. It is easy to
see that any point on this line therefore has form (x, y, z) = (1−mt−nt, nt, mt) where t is
a parameter. In particular, it will intersect the side BC with equation x = 0 at the point
U(0, n

m+n
, m

m+n
). Note that from definition 1 (or 3) of areal co-ordinates, this implies that

the ratio BU
UC

= [ABU ]
[AUC]

= m
n

.

4.1.3. Example: Ceva’s Theorem. We are now in a position to start using areal co-
ordinates to prove useful theorems. In this section we shall state and prove (one direction
of) an important result of Euclidean geometry known as Ceva’s Theorem. The author
recommends a keen reader only reads the statement of Ceva’s theorem initially and tries
to prove it for themselves using the ideas introduced above, before reading the proof given.

9The Determinant of a 3 × 3 Matrix. Matrix determinants play an important role in areal
co-ordinate methods. We define the determinant of a 3 by 3 square matrix A as

Det(A) = Det

0
@

ax bx cx

ay by cy

az bz cz

1
A = ax(bycz − bzcy) + ay(bzcx − bxcz) + az(bxcy − bycx).

This can be thought of as (as the above equation suggests) multiplying each element of the first
column by the determinants of 2x2 matrices formed in the 2nd and 3rd columns and the rows not
containing the element of the first column. Alternatively, if you think of the matrix as wrapping
around (so bx is in some sense directly beneath bz in the above matrix) you can simply take the
sum of the products of diagonals running from top-left to bottom-right and subtract from it the
sum of the products of diagonals running from bottom-left to top-right (so think of the above
RHS as (axbycz +aybzcx +azbxcy)−(azbycx +axbzcy +aybxcz)). In any case, it is worth making
sure you are able to quickly evaluate these determinants if you are to be successful with areal
co-ordinates.
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Theorem 4.1. (Ceva’s Theorem) Let ABC be a triangle and let L, M , N be points on
the sides BC, CA, AB respectively. Then the cevians AL, BM , CN are concurrent at a
point P if and only if

BL

LC
· CM

MA
· AN

NB
= 1

Proof. Suppose first that the cevians are concurrent at a point P , and let P have areal
co-ordinates (p, q, r). Then AL has equation qz = ry (following the discussion of Cevian

lines above), so L
“
0, q

q+r
, r

q+r

”
, which implies BL

LC
= r

q
. Similarly, CM

MA
= p

r
, AN
NB

= q
p
.

Taking their product we get BL
LC

· CM
MA

· AN
NB

= 1, proving one direction of the theorem. We
leave the converse to the reader. ˜

The above proof was very typical of many areal co-ordinate proofs. We only had to
go through the details for one of the three cevians, and then could say ‘similarly’ and
obtain ratios for the other two by symmetry. This is one of the great advantages of the
areal co-ordinate system in solving problems where such symmetries do exist (particularly
problems symmetric in a triangle ABC: such that relabelling the triangle vertices would
result in the same problem).

4.1.4. Areas and Parallel Lines. One might expect there to be an elegant formula for the
area of a triangle in areal co-ordinates, given they are a system constructed on areas. In-
deed, there is. If PQR is an arbitrary triangle with P (xp, yp, zp) , Q (xq, yq, zq) , R (xr, yr, zr)
then

[PQR]

[ABC]
= Det

0
@

xp xq xr

yp yq yr

zp zq zr

1
A

An astute reader might notice that this seems like a plausible formula, because if P, Q, R
are collinear, it tells us that the triangle PQR has area zero, by the line formula already
mentioned. It should be noted that the area comes out as negative if the vertices PQR
are labelled in the opposite direction to ABC.

It is now fairly obvious what the general equation for a line parallel to a given line pass-
ing through two points (x1, y1, z1), (x2, y2, z2) should be, because the area of the triangle
formed by any point on such a line and these two points must be constant, having a
constant base and constant height. Therefore this line has equation

Det

0
@

x x1 x2

y y1 y2

z z1 z2

1
A = k = k(x + y + z),

where k ∈ R is a constant.

Delta 35. (United Kingdom 2007) Given a triangle ABC and an arbitrary point P internal
to it, let the line through P parallel to BC meet AC at M , and similarly let the lines
through P parallel to CA,AB meet AB,BC at N ,L respectively. Show that

BL

LC
· CM

MA
· AN

NB
≤ 1

8

Delta 36. (Nikolaos Dergiades) Let DEF be the medial triangle of ABC, and P a point
with cevian triangle XY Z (with respect to ABC). Find P such that the lines DX, EY ,
FZ are parallel to the internal bisectors of angles A, B, C, respectively.



48 INFINITY

4.1.5. To infinity and beyond. Before we start looking at some more definite specific useful
tools (like the positions of various interesting points in the triangle), we round off the
general theory with a device that, with practice, greatly simplifies areal manipulations.
Until now we have been acting subject to the constraint that x+y+z = 1. In reality, if we
are just intersecting lines with lines or lines with conics, and not trying to calculate any
ratios, it is legitimate to ignore this constraint and to just consider the points (x, y, z) and
(kx, ky, kz) as being the same point for all k 6= 0. This is because areal co-ordinates are a
special case of a more general class of co-ordinates called projective homogeneous co-
ordinates10, where here the projective line at infinity is taken to be the line x+y+z = 0.
This system only works if one makes all equations homogeneous (of the same degree in
x, y, z), so, for example, x+y = 1 and x2+y = z are not homogeneous, whereas x+y−z = 0
and a2yz + b2zx + c2xy = 0 are homogeneous. We can therefore, once all our line and
conic equations are happily in this form, no longer insist on x+ y + z = 1, meaning points
like the incentre ( a

a+b+c
, b

a+b+c
, c

a+b+c
) can just be written (a, b, c). Such represenataions

are called unnormalised areal co-ordinates and usually provide a significant advantage for
the practical purposes of doing manipulations. However, if any ratios or areas are to be
calculated, it is imperative that the co-ordinates are normalised again to make x+y+z = 1.
This process is easy: just apply the map

(x, y, z) 7→
„

x

x + y + z
,

y

x + y + z
,

z

x + y + z

«

4.1.6. Significant areal points and formulae in the triangle. We have seen that the vertices
are given by A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), and the sides by x = 0,y = 0,z = 0. In the
section on the equation of a line we examined the equation of a cevian, and this theory
can, together with other knowledge of the triangle, be used to give areal expressions for
familiar points in Euclidean triangle geometry. We invite the reader to prove some of the
facts below as exercises.

• Triangle centroid: G(1, 1, 1).11

• Centre of the inscribed circle: I(a, b, c).12

• Centres of escribed circles: Ia(−a, b, c), Ib(a,−b, c), Ic(a, b,−c).
• Symmedian point: K(a2, b2, c2).
• Circumcentre: O(sin 2A, sin 2B, sin 2C).
• Orthocentre: H(tan A, tan B, tan C).

• The isogonal conjugate of P (x, y, z): P ∗
“

a2

x
, b2

y
, c2

z

”
.

• The isotomic conjugate of P (x, y, z): P t
“

1
x
, 1

y
, 1

z

”
.

It should be noted that the rather nasty trigonometric forms of O and H mean that
they should be approached using areals with caution, preferably only if the calculations
will be relatively simple.

Delta 37. Let D, E be the feet of the altitudes from A and B respectively, and P, Q
the meets of the angle bisectors AI,BI with BC,CA respectively. Show that D,I,E are
collinear if and only if P ,O,Q are.

10The author regrets that, in the interests of concision, he is unable to deal with these co-
ordinates in this document, but strongly recommends Christopher Bradley’s The Algebra of Ge-
ometry, published by Highperception, as a good modern reference also with a more detailed ac-
count of areals and a plethora of applications of the methods touched on in this document. Even
better, though only for projectives and lacking in the wealth of fascinating modern examples, is
E.A.Maxwell’s The methods of plane projective geometry based on the use of general homogeneous
coordinates, recommended to the present author by the author of the first book.

11The midpoints of the sides BC, CA, AB are given by (0, 1, 1),(1, 0, 1) and (1, 1, 0) respectively.
12Hint: use the angle bisector theorem.
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4.1.7. Distances and circles. We finally quickly outline some slightly more advanced the-
ory, which is occasionally quite useful in some problems, We show how to manipulate
conics (with an emphasis on circles) in areal co-ordinates, and how to find the distance
between two points in areal co-ordinates. These are placed in the same section because the
formulae look quite similar and the underlying theory is quite closely related. Derivations
can be found in [Bra1].

Firstly, the general equation of a conic in areal co-ordinates is, since a conic is a gen-
eral equation of the second degree, and areals are a homogeneous system, given by

px2 + qy2 + rz2 + 2dyz + 2ezx + 2fxy = 0

Since multiplication by a nonzero constant gives the same equation, we have five indepen-
dent degrees of freedom, and so may choose the coefficients uniquely (up to multiplication
by a constant) in such a way as to ensure five given points lie on such a conic.

In Euclidean geometry, the conic we most often have to work with is the circle. The
most important circle in areal co-ordinates is the circumcircle of the reference triangle,
which has the equation (with a, b, c equal to BC, CA, AB respectively)

a2yz + b2zx + c2xy = 0

In fact, sharing two infinite points13 with the above, a general circle is just a variation on
this theme, being of the form

a2yz + b2zx + c2xy + (x + y + z)(ux + vy + wz) = 0

We can, given three points, solve the above equation for u, v, w substituting in the three
desired points to obtain the equation for the unique circle passing through them.

Now, the areal distance formula looks very similar to the circumcircle equation. If we
have a pair of points P (x1, y1, z1) and Q(x2, y2, z2), which must be normalised, we may
define the displacement PQ : (x2 − x1, y2 − y1, z2 − z1) = (u, v, w), and it is this we shall
measure the distance of. So the distance of a displacement PQ(u, v, w), u + v + w = 0 is
given by

PQ2 = −a2vw − b2wu− c2uv

Since u+v+w = 0 this is, despite the negative signs, always positive unless u = v = w = 0.

Delta 38. Use the vector definition of areal co-ordinates to prove the areal distance formula
and the circumcircle formula.

4.1.8. Miscellaneous Exercises. Here we attach a selection of problems compiled by Tim
Hennock, largely from UK IMO activities in 2007 and 2008. None of them are trivial, and
some are quite difficult. Good luck!

Delta 39. (UK Pre-IMO training 2007) Let ABC be a triangle. Let D, E, F be the reflec-
tions of A, B, C in BC, AC, AB respectively. Show that D, E, F are collinear if and only
if OH = 2R.

Delta 40. (Balkan MO 2005) Let ABC be an acute-angled triangle whose inscribed circle
touches AB and AC at D and E respectively. Let X and Y be the points of intersection of
the bisectors of the angles \ACB and \ABC with the line DE and let Z be the midpoint
of BC. Prove that the triangle XY Z is equilateral if and only if \A = 60◦

13All circles have two (imaginary) points in common on the line at infinity. It follows that if
a conic is a circle, its behaviour at the line at infinity x + y + z = 0 must be the same as that of
the circumcircle, hence the equation given.
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Delta 41. (United Kingdom 2007) Triangle ABC has circumcentre O and centroid M .
The lines OM and AM are perpendicular. Let AM meet the circumcircle of ABC again
at A′. Lines CA′ and AB intersect at D and BA′ and AC intersect at E. Prove that the
circumcentre of triangle ADE lies on the circumcircle of ABC.

Delta 42. [IMO 2007/4] In triangle ABC the bisector of \BCA intersects the circum-
circle again at R, the perpendicular bisector of BC at P , and the perpendicular bisector
of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the
triangles RPK and RQL have the same area.

Delta 43. (RMM 2008) Let ABC be an equilateral triangle. P is a variable point internal
to the triangle, and its perpendicular distances to the sides are denoted by a2, b2 and c2

for positive real numbers a, b and c. Find the locus of points P such that a, b and c can
be the side lengths of a non-degenerate triangle.

Delta 44. [SL 2006] Let ABC be a triangle such that \C < \A < π
2
. Let D be on AC

such that BD = BA. The incircle of ABC touches AB at K and AC at L. Let J be the
incentre of triangle BCD. Prove that KL bisects AJ .

Delta 45. (United Kingdom 2007) The excircle of a triangle ABC touches the side AB
and the extensions of the sides BC and CA at points M, N and P , respectively, and the
other excircle touches the side AC and the extensions of the sides AB and BC at points
S, Q and R, respectively. If X is the intersection point of the lines PN and RQ, and Y
the intersection point of RS and MN , prove that the points X, A and Y are collinear.

Delta 46. (Sharygin GMO 2008) Let ABC be a triangle and let the excircle opposite A
be tangent to the side BC at A1. N is the Nagel point of ABC, and P is the point on
AA1 such that AP = NA1. Prove that P lies on the incircle of ABC.

Delta 47. (United Kingdom 2007) Let ABC be a triangle with \B 6= \C. The incircle I of
ABC touches the sides BC, CA, AB at the points D, E, F , respectively. Let AD intersect
I at D and P . Let Q be the intersection of the lines EF and the line passing through
P and perpendicular to AD, and let X, Y be intersections of the line AQ and DE, DF ,
respectively. Show that the point A is the midpoint of XY .

Delta 48. (Sharygin GMO 2008) Given a triangle ABC. Point A1 is chosen on the ray
BA so that the segments BA1 and BC are equal. Point A2 is chosen on the ray CA so
that the segments CA2 and BC are equal. Points B1, B2 and C1, C2 are chosen similarly.
Prove that the lines A1A2, B1B2 and C1C2 are parallel.

4.2. Concurrencies around Ceva’s Theorem. In this section, we shall present some corol-
laries and applications of Ceva’s theorem.

Theorem 4.2. Let 4ABC be a given triangle and let A1, B1, C1 be three points on lying
on its sides BC, CA and AB, respectively. Then, the three lines AA1 ,BB1, CC1 concur
if and only if

A′B
A′C

· B′C
B′A

· C′A
C′B

= 1.

Proof. We shall resume to proving only the direct implication. After reading the following
proof, you will understand why. Denote by P the intersection of the lines AA1, BB1, CC1.
The parallel to BC through P meets CA at Ba and AB at Ca. The parallel to CA through
P meets AB at Cb and BC at Ab. The parallel to AB through P meets BC at Ac and
CA at Bc. As segments on parallels, we get C1A

C1B
= PBc

PAc
. On the other hand, we get

BcP

AB
=

PB1

BB1
and

PAc

AB
=

PA1

AA1
.

It follows that
BcP

AB
:

PAc

AB
=

PB1

BB1
:

PA1

AA1
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so that
BcP

PAc
=

PB1

BB1
:

PA1

AA1
.

Consequently, we obtain
C1A

C1B
=

PB1

BB1
:

PA1

AA1
.

Similarly, we deduce that A1B
A1C

= PC1
CC1

: PB1
BB1

and B1C
B1A

= PA1
AA1

: PC1
CC1

. Now

A′B
A′C

· B′C
B′A

· C′A
C′B

=

„
PC1

CC1
:

PB1

BB1

«
·
„

PA1

AA1
:

PC1

CC1

«
·
„

PB1

BB1
:

PA1

AA1

«
= 1,

which proves Ceva’s theorem. ˜

Corollary 4.1. (The Trigonometric Version of Ceva’s Theorem) In the configuration de-
scribed above, the lines AA1, BB1, CC1 are concurrent if and only if

sin A1AB

sin A1AC
· sin C1CA

sin C1CB
· sin B1BC

sin B1BA
= 1.

Proof. By the Sine Law, applied in the triangles A1AB and A1AC, we have

A1B

sin A1AB
=

AB

sin AA1B
, and

A1C

sin A1AC
=

AC

sin AA1C
.

Hence,
A1B

A1C
=

AB

AC
· sin A1AB

sin A1AC
.

Similarly, B1C
B1A

= BC
AB

· sin B1BC
sin B1BA

and C1A
C1B

= AC
BC

· sin C1CA
sin C1CB

. Thus, we conclude that

sin A1AB

sin A1AC
· sin C1CA

sin C1CB
· sin B1BC

sin B1BA

=

„
A1B

A1C
· AC

AB

«
·
„

C1A

C1B
· BC

AC

«
·
„

B1C

B1A
· AB

BC

«

= 1.

˜

We begin now with a result, which most of you might know it as Jacobi’s theorem.

Proposition 4.1. (Jacobi’s Theorem) Let ABC be a triangle, and let X, Y , Z be three
points in its plane such that \Y AC = \BAZ, \ZBA = \CBX and \XCB = \ACY .
Then, the lines AX, BY , CZ are concurrent.

Proof. We use directed angles taken modulo 180◦. Denote by A, B, C, x, y, z the mag-
nitudes of the angles \CAB, \ABC, \BCA, \Y AC, \ZBA, and \XCB, respectively.
Since the lines AX, BX, CX are (obviously) concurrent (at X), the trigonometric version
of Ceva’s theorem yields

sin CAX

sin XAB
· sin ABX

sin XBC
· sin BCX

sin XCA
= 1.

We now notice that

\ABX = \ABC + \CBX = B + y, \XBC = −\CBX = −y,

\BCX = −\XCB = −z, \XCA = \XCB + \BCA = z + C.

Hence, we get
sin CAX

sin XAB
· sin (B + y)

sin (−y)
· sin (−z)

sin (C + z)
= 1.

Similarly, we can find

sin ABY

sin Y BC
· sin (C + z)

sin (−z)
· sin (−x)

sin (A + x)
= 1,
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sin BCZ

sin ZCA
· sin (A + x)

sin (−x)
· sin (−y)

sin (B + y)
= 1.

Multiplying all these three equations and canceling the same terms, we get

sin CAX

sin XAB
· sin ABY

sin Y BC
· sin BCZ

sin ZCA
= 1.

According to the trigonometric version of Ceva’s theorem, the lines AX, BY , CZ are
concurrent. ˜

We will see that Jacobi’s theorem has many interesting applications. We start with the
well-known Karyia theorem.

Theorem 4.3. (Kariya’s Theorem) Let I be the incenter of a given triangle ABC, and let
D, E, F be the points where the incircle of ABC touches the sides BC, CA, AB. Now,
let X, Y , Z be three points on the lines ID, IE, IF such that the directed segments IX,
IY , IZ are congruent. Then, the lines AX, BY , CZ are concurrent.

Proof. (Darij Grinberg) Being the points of tangency of the incircle of triangle ABC with
the sides AB and BC, the points F and D are symmetric to each other with respect to
the angle bisector of the angle ABC, i. e. with respect to the line BI. Thus, the triangles
BFI and BDI are inversely congruent. Now, the points Z and X are corresponding points
in these two inversely congruent triangles, since they lie on the (corresponding) sides IF
and ID of these two triangles and satisfy IZ = IX. Corresponding points in inversely
congruent triangles form oppositely equal angles, i.e. \ZBF = −\XBD. In other words,
\ZBA = \CBX. Similarly, we have that \XCB = \ACY and \Y AC = \BAZ. Note
that the points X, Y , Z satisfy the condition from Jacobi’s theorem, and therefore, we
conclude that the lines AX, BY , CZ are concurrent. ˜

Another such corollary is the Kiepert theorem, which generalizes the existence of the
Fermat points.

Delta 49. (Kiepert’s Theorem) Let ABC be a triangle, and let BXC, CY A, AZB be
three directly similar isosceles triangles erected on its sides BC, CA, and AB, respectively.
Then, the lines AX, BY , CZ concur at one point.

Delta 50. (Floor van Lamoen) Let A′, B′, C′ be three points in the plane of a triangle
ABC such that \B′AC = \BAC′, \C′BA = \CBA′ and \A′CB = \ACB′. Let X, Y ,
Z be the feet of the perpendiculars from the points A′, B′, C′ to the lines BC, CA, AB.
Then, the lines AX, BY , CZ are concurrent.

Delta 51. (Cosmin Pohoaţă) Let ABC be a given triangle in plane. From each of its
vertices we draw two arbitrary isogonals. Then, these six isogonals determine a hexagon
with concurrent diagonals.

Epsilon 51. (USA 2003) Let ABC be a triangle. A circle passing through A and B
intersects the segments AC and BC at D and E, respectively. Lines AB and DE intersect
at F , while lines BD and CF intersect at M . Prove that MF = MC if and only if
MB ·MD = MC2.

Delta 52. (Romanian jBMO 2007 Team Selection Test) Let ABC be a right triangle with
\A = 90◦, and let D be a point lying on the side AC. Denote by E reflection of A into
the line BD, and by F the intersection point of CE with the perpendicular in D to the
line BC. Prove that AF , DE and BC are concurrent.

Delta 53. Denote by AA1, BB1, CC1 the altitudes of an acute triangle ABC, where A1,
B1, C1 lie on the sides BC, CA, and AB, respectively. A circle passing through A1 and
B1 touches the arc AB of its circumcircle at C2. The points A2, B2 are defined similarly.

1. (Tuymaada Olympiad 2007) Prove that the lines AA2, BB2, CC2 are concurrent.
2. (Cosmin Pohoaţă, MathLinks Contest 2008, Round 1) Prove that the lines A1A2,

B1B2, C1C2 are concurrent on the Euler line of ABC.
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4.3. Tossing onto Complex Plane. Here, we discuss some applications of complex numbers
to geometric inequality. Every complex number corresponds to a unique point in the
complex plane. The standard symbol for the set of all complex numbers is C, and we
also refer to the complex plane as C. We can identify the points in the real plane R2 as
numbers in C. The main tool is the following fundamental inequality.

Theorem 4.4. (Triangle Inequality) If z1, · · · , zn ∈ C, then |z1|+ · · ·+ |zn| ≥ |z1 + · · ·+zn|.
Proof. Induction on n. ˜
Theorem 4.5. (Ptolemy’s Inequality) For any points A, B, C, D in the plane, we have

AB · CD + BC ·DA ≥ AC ·BD.

Proof. Let a, b, c and 0 be complex numbers that correspond to A, B, C, D in the complex
plane C. It then becomes

|a− b| · |c|+ |b− c| · |a| ≥ |a− c| · |b|.
Applying the Triangle Inequality to the identity (a− b)c + (b− c)a = (a− c)b, we get the
result. ˜
Remark 4.1. Investigate the equality case in Ptolemy’s Inequality.

Delta 54. [SL 1997 RUS] Let ABCDEF be a convex hexagon such that AB = BC,
CD = DE, EF = FA. Prove that

BC

BE
+

DE

DA
+

FA

FC
≥ 3

2
.

When does the equality occur?

Epsilon 52. [TD] Let P be an arbitrary point in the plane of a triangle ABC with the
centroid G. Show the following inequalities

(1) BC · PB · PC + AB · PA · PB + CA · PC · PA ≥ BC · CA ·AB,
(2) PA3 ·BC + PB3 · CA + PC3 ·AB ≥ 3PG ·BC · CA ·AB.

Delta 55. Let H denote the orthocenter of an acute triangle ABC. Prove the geometric
identity

BC ·HB ·HC + AB ·HA ·HB + CA ·HC ·HA = BC · CA ·AB.

Epsilon 53. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Epsilon 54. [SL 2002 KOR] Let ABC be a triangle for which there exists an interior point
F such that \AFB = \BFC = \CFA. Let the lines BF and CF meet the sides AC
and AB at D and E, respectively. Prove that AB + AC ≥ 4DE.
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4.4. Generalize Ptolemy’s Theorem! The story begins with three trigonometric proofs of
Ptolemy’s Theorem.

Theorem 4.6. (Ptolemy’s Theorem) Let ABCD be a convex quadrilateral. If ABCD is
cyclic, then we have

AB · CD + BC ·DA = AC ·BD.

First Proof. Set AB = a, BC = b, CD = c, DA = d. One natural approach is to compute
BD = x and AC = y in terms of a, b, c and d. We apply the Cosine Law to obtain

x2 = a2 + d2 − 2ad cos A

and

x2 = b2 + c2 − 2bc cos D = b2 + c2 + 2bc cos A.

Equating two equations, we meet

a2 + d2 − 2ad cos A = b2 + c2 + 2bc cos A

or

cos A =
a2 + d2 − b2 − c2

2(ad + bc)
.

It follows that

x2 = a2 + d2 − 2ad cos A = a2 + d2 − 2ad

„
a2 + d2 − b2 − c2

2(ad + bc)

«
=

(ac + bd)(ab + cd)

ad + bc
.

Similarly, we also obtain

y2 =
(ac + bd)(ad + bc)

ab + cd
.

Multiplying these two, we obtain x2y2 = (ac + bd)2 or xy = ac + bd, as desired. ˜

Second Proof. (Hojoo Lee) As in the classical proof via the inversion, we rewrite it as

AB

DA ·DB
+

BC

DB ·DC
=

AC

DA ·DC
.

We now trigonometrize each term. Letting R denote the circumradius of ABCD and
noticing that sin(\ADB) = sin (\DBA + \DAB) in triangle DAB, we obtain

AB

DA ·DB
=

2R sin(\ADB)

2R sin(\DBA) · 2R sin(\DAB)

=
sin\DBA cos\DAB + cos\DBA sin\DAB

2R sin(\DBA) sin(\DAB)

=
1

2R (cot\DAB + cot\DBA) .

Likewise, we have
BC

DB ·DC
=

1

2R (cot\DBC + cot\DCB)

and
AC

DA ·DC
=

1

2R (cot\DAC + cot\DCA) .

Hence, the geometric identity in Ptolemy’s Theorem is equivalent to the cotangent identity

(cot\DAB + cot\DBA) + (cot\DBC + cot\DCB) = (cot\DAC + cot\DCA) .

However, since the convex quadrilateral ABCD admits a circumcircle, it is clear that

\DAB + \DCB = π, \DBA = \DCA, \DBC = \DAC

so that

cot\DAB + cot\DCB = 0, cot\DBA = cot\DCA, cot\DBC = cot\DAC.

˜
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Third Proof. We exploit the Sine Law to convert the geometric identity to the trigono-
metric identity. Let R denote the circumradius of ABCD. We set

\AOB = 2θ1, \BOC = 2θ2, \COD = 2θ3, \DOA = 2θ4,

where O is the center of the circumcircle of ABCD. It’s clear that θ1 + θ2 + θ3 + θ4 = π.
It follows that AB = 2R sin θ1, BC = 2R sin θ2, CD = 2R sin θ3, DA = 2R sin θ4,
AC = 2R sin (θ1 + θ2), AB = 2R sin (θ2 + θ3). Our job is to establish

AB · CD + BC ·DA = AC ·BD

or

(2R sin θ1) (2R sin θ3) + (2R sin θ2) (2R sin θ4) = (2R sin (θ1 + θ2)) (2R sin (θ2 + θ3))

or equivalently

sin θ1 sin θ3 + sin θ2 sin θ4 = sin (θ1 + θ2) sin (θ2 + θ3) .

We use the well-known identity sin α sin β = 1
2

[ cos(α− β)− cos(α + β) ] to rewrite it as

cos(θ1 − θ3)− cos(θ1 + θ3)

2
+

cos(θ2 − θ4)− cos(θ2 + θ4)

2

=
cos(θ1 − θ3)− cos(θ1 + 2θ2 + θ3)

2

or equivalently

− cos(θ1 + θ3) + cos(θ2 − θ4)− cos(θ2 + θ4) = − cos(θ1 + 2θ2 + θ3).

Since θ1 + θ2 + θ3 + θ4 = π or since cos(θ1 + θ3) + cos(θ2 + θ4) = 0, it is equivalent to

cos(θ2 − θ4) = − cos(θ1 + 2θ2 + θ3).

However, we employ θ1 + θ2 + θ3 = π − θ4 to deduce

cos(θ1 + 2θ2 + θ3) = cos(θ2 + π − θ4) = − cos(θ2 − θ4).

˜

When the second author of this weblication was a high school student, one day, he
was trying to device a coordinate proof of Ptolemy’s Theorem. However, we immediately
realize that the direct approach using only the distance formula is hopeless. The geometric
identity reads, in coordinates,

q˘
(x1 − x2)

2 + (y1 − y2)
2¯˘(x3 − x4)

2 + (y3 − y4)
2¯

+
q˘

(x2 − x3)
2 + (y2 − y3)

2¯˘(x4 − x1)
2 + (y4 − y1)

2¯

=
q˘

(x1 − x3)
2 + (y1 − y3)

2¯˘(x2 − x4)
2 + (y2 − y4)

2¯.
What he realized was that the key point is to find a natural coordinate condition. First,

forget about the destination AB ·CD + BC ·DA = AC ·BD and, instead, find out what
the initial condition that ABCD is cyclic says in coordinates.

Lemma 4.1. Let ABCD be a convex quadrilateral. We toss ABCD on the real plane R2

with the coordinates A (a1, a2) , B (b1, b2) , C (c1, c2) , D (d1, d2). Then, the necessary and
sufficient condition that ABCD is cyclic is that the following equality holds.

a1
2 + a2

2 − (a1b1 + a2b2 + a1c1 + a2c2 − b1c1 − b2c2)

b1a2 + a1c2 + c1b2 − a1b2 − c1a2 − b1c2

=
d1

2 + d2
2 − (d1b1 + d2b2 + d1a1 + d2a2 − b1a1 − b2a2)

b1d2 + d1a2 + a1b2 − d1b2 − a1d2 − b1a2
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Proof. The quadrilateral ABCD is cyclic if and only if \BAC = \BDC, or equivalently
cot (\BAC) = cot (\BDC). It is equivalent to

cos (\BAC)

sin (\BAC)
=

cos (\BDC)

sin (\BDC)
or

BA2+AC2−CB2

2BA·AC
2[ABC]
BA·AC

=
BD2+DC2−CB2

2BD·DC
2[DBC]
BD·DC

or
BA2 + AC2 − CB2

2[ABC]
=

BD2 + DC2 − CB2

2[DBC]

or in coordinates,

a1
2 + a2

2 − (a1b1 + a2b2 + a1c1 + a2c2 − b1c1 − b2c2)

b1a2 + a1c2 + c1b2 − a1b2 − c1a2 − b1c2

=
d1

2 + d2
2 − (d1b1 + d2b2 + d1a1 + d2a2 − b1a1 − b2a2)

b1d2 + d1a2 + a1b2 − d1b2 − a1d2 − b1a2
.

˜
The coordinate condition and its proof is natural. However, something weird happens

here. It does not look like being cyclic in the coordinates . Indeed, when ABCD is a
cyclic quadrilateral, we notice that the same quadrilateral BCDA, CDAB, DABC are
also trivially cyclic. It turns out that the coordinate condition indeed admits a certain
symmetry. Now, it is time to consider the destination

AB · CD + BC ·DA = AC ·BD.

As we see above, the direct application of the distance formula gives us a monster identity
with square roots. What we need is a reformulation without square roots. We recall
that Ptolemy’s Theorem is trivialized by the inversive geometry. As in the proof via the
inversion, we rewrite it in the symmetric form

AB

DA ·DB
+

BC

DB ·DC
=

AC

DA ·DC
.

Now, we reach the key step. Let R denote the circumcircle of ABCD. The formulas

[DAB] =
AB ·DA ·DB

4R , [DBC] =
BC ·DB ·DC

4R , [DCA] =
CA ·DC ·DA

4R
allows us to realize that it is equivalent to the geometric identity.

[DAB]

DA2 ·DB2
+

[DBC]

DB2 ·DC2
=

[DAC]

DA2 ·DC2

or
DC2[DAB] + DA2[DBC] = DB2[DAC].

Summarizing up the result, we have

Lemma 4.2. Let ABCD be a convex and cyclic quadrilateral. Then the following two
geometric identities are equivalent.

(1) AB · CD + BC ·DA = AC ·BD.

(2) DC2[DAB] + DA2[DBC] = DB2[DAC].

It is awesome. Why? It is because we can express the second condition in the coordi-
nates without the horrible square root! After a long, very long computation by hand, we
can check that

a1
2 + a2

2 − (a1b1 + a2b2 + a1c1 + a2c2 − b1c1 − b2c2)

b1a2 + a1c2 + c1b2 − a1b2 − c1a2 − b1c2

=
d1

2 + d2
2 − (d1b1 + d2b2 + d1a1 + d2a2 − b1a1 − b2a2)

b1d2 + d1a2 + a1b2 − d1b2 − a1d2 − b1a2
.
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indeed implies the coordinate condition of the reformulation (2). The brute-force com-
putation will be simplified if we take D (d1, d2) = (0, 0). However, it is not the end of
the story. Actually, he found a symmetry in the coordinate computation. It leads him to
rediscover The Feuerbach-Luchterhand Theorem, which generalize Ptolemy’s Theorem.

Theorem 4.7. (The Feuerbach-Luchterhand Theorem) Let ABCD be a convex and cyclic
quadrilateral. For any point O in the plane, we have

OA2 ·BC ·CD ·DB−OB2 ·CD ·DA ·AB +OC2 ·DA ·AB ·BD−OD2 ·AB ·BC ·CD = 0.

Proof. We toss the picture on the real plane R2 with the coordinates

O(0, 0), A (a1, a2) , B (b1, b2) , C (c1, c2) , D (d1, d2) ,

Letting R denote the circumcircle of ABCD, it can be rewritten as

OA2 · [BCD]

4R
−OB2 · [CDA]

4R
+ OC2 · [DAB]

4R
−OD2 · [DBC]

4R
= 0

or

OA2 · [BCD]−OB2 · [CDA] + OC2 · [DAB]−OD2 · [ABC] = 0.

We can rewrite this in the coordinates without square roots. Now, after long computation,
we can check, by hand, that it is equivalent to the coordinate condition that ABCD is
cyclic:

a1
2 + a2

2 − (a1b1 + a2b2 + a1c1 + a2c2 − b1c1 − b2c2)

b1a2 + a1c2 + c1b2 − a1b2 − c1a2 − b1c2

=
d1

2 + d2
2 − (d1b1 + d2b2 + d1a1 + d2a2 − b1a1 − b2a2)

b1d2 + d1a2 + a1b2 − d1b2 − a1d2 − b1a2
.

˜

The end? Not yet. It turns out that after throwing out the essential condition that the
quadrilateral is cyclic, we can extend the theorem to arbitrary quadrilaterals!

Theorem 4.8. (Hojoo Lee) For an arbitrary point P in the plane of the convex quadrilateral
A1A2A3A4, we obtain

PA1
2[4A2A3A4]− PA2

2[4A3A4A1] + PA3
2[4A4A1A2]− PA4

2[4A1A2A3]

=
−−−−→
A1A2 · −−−−→A1A3 [4A2A3A4]−−−−−→A4A2 · −−−−→A4A3 [4A1A2A3].

After removing the convexity of A1A2A3A4, we get the same result regarding the signed
area of triangle.

Outline of Proof. We toss the figure on the real plane R2 and write P (0, 0) and Ai =
(xi, yi), where 1 ≤ i ≤ 4. Our task is to check that two matrices

L =

0
BB@

PA1
2 PA2

2 PA3
2 PA4

2

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1

1
CCA

and

R =

0
BB@

−−−−→
A1A2 · −−−−→A1A3 0 0

−−−−→
A4A2 · −−−−→A4A3

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1

1
CCA

have the same determinant. We now invite the readers to find a neat proof, of course
without the brute force expansion of the determinants! ˜
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Is it a re-discovery again? Is this the end of the story? No. There is no end of
generalizations in Mathematics. The lesson we want to deliver here is simple: Even the
brute-force coordinate proofs offer good motivations. There is no bad proof. We now
present some applications of the The Feuerbach-Luchterhand Theorem.

Corollary 4.2. Let ABCD be a rectangle. For any point P , we have

PA2 − PB2 + PC2 − PD2 = 0.

Now, let’s see what happens if we apply The Feuerbach-Luchterhand Theorem to a
geometric situation from the triangle geometry. Let ABC be a triangle with the incenter
I and the circumcenter O. Let BC = a, CA = b, AB = c, s = a+b+c

2
. Let R and r denote

the circumradius and inradius, respectively. Let P and Q denote the feet of perpendiculars
from I to the sides CA and CB, respectively. Since \IPC = 90◦ = \IQC, we find that
IQCP is cyclic.

We then apply The Feuerbach-Luchterhand Theorem to the pair (O, IQCP ) to deduce
the geometric identity

0 = OI2QC · CP · PQ−OQ2CP · PI · IC + OC2PI · IQ ·QP −OP 2IQ ·QC · CI.

What does it mean? We observe that, in the isosceles triangles COA and BOC,

OP 2 = R2 −AP · PC = R2 − (s− a)(s− c),

OQ2 = R2 −BQ ·QC = R2 − (s− b)(s− c).

Now, it becomes

0 = OI2(s− c)2
“
CI

c

2R

”
− ˆR2 − (s− b)(s− c)

˜
(s− c)r · IC

+ R2r2
“
CI

c

2R

”
− ˆR2 − (s− a)(s− c)

˜
r(s− c) · CI

or

0 = OI2(s− c)2 · c

2R
− ˆR2 − (s− b)(s− c)

˜
(s− c)r

+ R2r2 · c

2R
− ˆR2 − (s− a)(s− c)

˜
r(s− c).

or

OI2(s− c)2 · c

2R
= − Rr2c

2
+
ˆ
2R2 − c(s− c)

˜
(s− c)r

or
OI2

R
= − Rr2

(s− c)2
+

4R2r

c(s− c)
− 2r = R

»
4Rr(s− c)− r2c

(s− c)2c

–
− 2r.

Now, we apply Ptolemy’s Theorem and The Pythagoras Theorem to deduce

2r(s− c) = CP · IQ + PI · IQ = PQ · CI = CI2 c

2R
=
ˆ
(s− c)2 + r2˜ c

2R
or

4Rr(s− c) = c
`
(s− c)2 + r2´

or

4Rr(s− c)− r2c = (s− c)2c

or
4Rr(s− c)− r2c

(s− c)2c
= 1.

It therefore follows that

OI2 = R2 − 2rR.

It is the theorem proved first by L. Euler. There are lots of way to establish this. Device
your own proofs! Find other corollaries of The Feuerbach-Luchterhand Theorem. Another
possible generalization of Ptolemy’s relation is Casey’s theorem:
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Theorem 4.9. (Casey’s Theorem) Given four circles Ci, i = 1, 2, 3, 4, let tij be the length
of a common tangent between Ci and Cj . The four circles are tangent to a fifth circle (or
line) if and only if for an appropriate choice of signs, we have that

t12t34 ± t13t42 ± t14t23 = 0.

The most common proof for this result is by making use of inversion. See [RJ]. We
shall omit it here. We now work on the Feuerbach’s celebrated theorem (actually its first
version).

Theorem 4.10. (Feuerbach’s Theorem) The incircle and nine-point circle of a triangle are
tangent to one another.

Why first version? Of course, most of you might know that the nine-point circle is also
tangent to the three excircles of the triangle. Most of the geometry textbooks include this
last remark in the theorem’s statement as well, but this is mostly for sake of completeness,
since the proof is similar with the incenter case.

Proof. Let the sides BC, CA, AB of triangle ABC have midpoints D, E, F respectively,
and let Γ be the incircle of the triangle. Let a, b, c be the sidelengths of ABC, and let s
be its semiperimeter. We now consider the 4-tuple of circles (D, E, F, Γ). Here is what
we find:

tDE =
c

2
, tDF =

b

2
, tEF =

a

2
,

tDΓ =
˛̨
˛a
2
− (s− b)

˛̨
˛ =

˛̨
˛̨ b− c

2

˛̨
˛̨ ,

tEΓ =

˛̨
˛̨ b
2
− (s− c)

˛̨
˛̨ =

˛̨
˛a− c

2

˛̨
˛ ,

tFΓ =
˛̨
˛ c
2
− (s− a)

˛̨
˛ =

˛̨
˛̨ b− a

2

˛̨
˛̨ .

We need to check whether, for some combination of +, − signs, we have

±(c(b− a)± a(b− c)± b(a− c) = 0.

But this is immediate! According to Casey’s theorem there exists a circle what touches
each of D, E, F and Γ. Since the circle passing through D, E, F is the ninepoint circle
of the triangle, it follows that Γ and the nine-point circle are tangent to each other. ˜

We shall see now an interesting particular case of Thebault’s theorem.

Proposition 4.2. (IMO Longlist 1991, proposed by India) Circles Γ1 and Γ2 are externally
tangent at a point I, and both are enclosed by and tangent to a third circle Γ. One
common tangent to Γ1 and Γ2 meets Γ in B and C, while the common tangent at I meets
Γ in A on the same side of BC as I. Then, we have that I is the incenter of triangle ABC.

Proof. Let X, Y be the tangency points of BC with the circles Γ1, and Γ2, respectively,
and let x, y be the lengths of the tangents from B and C to Γ1 and Γ2. Denote by D
the intersection of AI with the line BC, and let z = AI, u = ID. According to Casey’s
theorem, applied for the two 4-tuples of circles (A, Γ1, B, C) and (A, Γ2, C, B), we
obtain az + bx = c(2u+y) and az + cy = b(2u+x). Subtracting the second equation from
the first, we obtain that bx − cy = u(c − b), and therefore x+u

y+u
= c

b
, that is, BD

DC
= AB

AC
,

which implies that AI bisects \BAC, and that BD = ac
b+c

. Adding the two equations

mentioned before, we finally obtain that az = u(b + c), which rewrites as AI
ID

= AB
BD

. This
implies that BI bisects \ABC. Thus, I is the incenter of triangle ABC. ˜

But can we prove Thebault’s theorem using Casey? S. Gueron [SG] says yes!
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Delta 56. (Thebault [VT]) Through the vertex A of a triangle ABC, a straight line AD
is drawn, cutting the side BC at D. I is the incenter of triangle ABC, and let P be the
center of the circle which touches DC, DA, and (internally) the circumcircle of ABC, and
let Q be the center of the circle which touches DB, DA, and (internally) the circumcircle
of ABC. Then, the points P , I, Q are collinear.

Delta 57. (Jean-Pierre Ehrmann and Cosmin Pohoaţă, MathLinks Contest 2008) Let P be

an arbitrary point on the side BC of a given triangle ABC with circumcircle Γ. Let T b
A

be the circle tangent to AP , PB, and internally to Γ, and let T c
A be the circle tangent to

AP , PC, and internally to Γ. Then, the circles T b
A and T c

A are congruent if and only if
AP passes through the Nagel point of triangle ABC.

Delta 58. (Lev Emelyanov [LE]) Let P be a point in the interior of a given triangle ABC.
Denote by A1, B1, C1 the intersections of AP , BP , CP with the sidelines BC, CA, and
AB, respectively (in other words, the triangle A1B1C1 is the cevian triangle of P with
respect to ABC). Construct the three circles (O1), (O2) and (O3) outside the triangle
which are tangent to the sides of ABC at A1, B1, C1, and also tangent to the circumcircle
of ABC. Then, the circle tangent externally to these three circles is also tangent to teh
incircle of triangle ABC.

It is impossible to be a mathematician without being a poet in soul. - S. Kovalevskaya
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5. Three Terrific Techniques (EAT)

A long time ago an older and well-known number theorist made
some disparaging remarks about Paul Erdős’s work. You admire
Erdős’s contributions to mathematics as much as I do, and I
felt annoyed when the older mathematician flatly and definitively
stated that all of Erdős’s work could be ”reduced” to a few tricks
which Erdős repeatedly relied on in his proofs. What the num-
ber theorist did not realize is that other mathematicians, even
the very best, also rely on a few tricks which they use over and
over. Take Hilbert. The second volume of Hilbert’s collected
papers contains Hilbert’s papers in invariant theory. I have made
a point of reading some of these papers with care. It is sad
to note that some of Hilbert′s beautiful results have been com-
pletely forgotten. But on reading the proofs of Hilbert’s striking
and deep theorems in invariant theory, it was surprising to verify
that Hilbert’s proofs relied on the same few tricks. Even Hilbert
had only a few tricks!

- G-C Rota, Ten Lessons I Wish I Had Been Taught

5.1. ’T’rigonometric Substitutions. If you are faced with an integral that contains square
root expressions such asZ p

1− x2 dx,

Z p
1 + y2 dy,

Z p
z2 − 1 dz

then trigonometric substitutions such as x = sin t, y = tan t, z = sec t are very useful. We
will learn that making a suitable trigonometric substitution simplifies the given inequality.

Epsilon 55. (APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca).

Epsilon 56. (Latvia 2002) Let a, b, c, d be the positive real numbers such that

1

1 + a4
+

1

1 + b4
+

1

1 + c4
+

1

1 + d4
= 1.

Prove that abcd ≥ 3.

Epsilon 57. (Korea 1998) Let x, y, z be the positive reals with x + y + z = xyz. Show
that

1√
1 + x2

+
1p

1 + y2
+

1√
1 + z2

≤ 3

2
.

Since the function f(t) = 1√
1+t2

is not concave on R+, we cannot apply Jensen’s

Inequality directly. However, the function f(tan θ) is concave on
`
0, π

2

´
!

Proposition 5.1. In any acute triangle ABC, we have cos A + cos B + cos C ≤ 3
2
.

Proof. Since cos x is concave on
`
0, π

2

´
, it’s a direct consequence of Jensen’s Inequality. ˜

We note that the function cos x is not concave on (0, π). In fact, it’s convex on
`

π
2
, π
´
.

One may think that the inequality cos A+cos B+cos C ≤ 3
2

doesn’t hold for any triangles.
However, it’s known that it holds for all triangles.

Proposition 5.2. In any triangle ABC, we have

cos A + cos B + cos C ≤ 3

2
.
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First Proof. It follows from π − C = A + B that

cos C = − cos(A + B) = − cos A cos B + sin A sin B

or
3− 2(cos A + cos B + cos C) = (sin A− sin B)2 + (cos A + cos B − 1)2 ≥ 0.

˜
Second Proof. Let BC = a, CA = b, AB = c. Use The Cosine Law to rewrite the given
inequality in the terms of a, b, c :

b2 + c2 − a2

2bc
+

c2 + a2 − b2

2ca
+

a2 + b2 − c2

2ab
≤ 3

2
.

Clearing denominators, this becomes

3abc ≥ a(b2 + c2 − a2) + b(c2 + a2 − b2) + c(a2 + b2 − c2),

which is equivalent to abc ≥ (b + c− a)(c + a− b)(a + b− c). ˜
We remind that the geometric inequality R ≥ 2r is equivalent to the algebraic inequality

abc ≥ (b+c−a)(c+a−b)(a+b−c). We now find that, in the proof of the above theorem,
abc ≥ (b + c − a)(c + a − b)(a + b − c) is equivalent to the trigonometric inequality
cos A + cos B + cos C ≤ 3

2
. One may ask that

in any triangles ABC, is there a natural relation between cos A+cos B+
cos C and R

r
, where R and r are the radii of the circumcircle and incircle

of ABC?

Theorem 5.1. Let R and r denote the radii of the circumcircle and incircle of the triangle
ABC. Then, we have

cos A + cos B + cos C = 1 +
r

R
.

Proof. Use the algebraic identity

a(b2 + c2− a2) + b(c2 + a2− b2) + c(a2 + b2− c2) = 2abc + (b + c− a)(c + a− b)(a + b− c).

We leave the details for the readers. ˜
Delta 59. (China 2004) Let ABC be a triangle with BC = a, CA = b, AB = c. Prove
that, for all x ≥ 0,

ax cos A + bx cos B + cx cos C ≤ 1

2
(ax + bx + cx) .

Delta 60. (a) Let p, q, r be the positive real numbers such that p2 + q2 + r2 + 2pqr = 1.
Show that there exists an acute triangle ABC such that p = cos A, q = cos B, r = cos C.
(b) Let p, q, r ≥ 0 with p2 + q2 + r2 + 2pqr = 1. Show that there are A, B, C ∈ ˆ0, π

2

˜
with

p = cos A, q = cos B, r = cos C, and A + B + C = π.

Epsilon 58. (USA 2001) Let a, b, and c be nonnegative real numbers such that a2 + b2 +
c2 + abc = 4. Prove that 0 ≤ ab + bc + ca− abc ≤ 2.

Life is good for only two things, discovering mathematics and teaching mathematics.

- S. Poisson
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5.2. ’A’lgebraic Substitutions. We know that some inequalities in triangle geometry can
be treated by the Ravi substitution and trigonometric substitutions. We can also transform
the given inequalities into easier ones through some clever algebraic substitutions.

Epsilon 59. [IMO 2001/2 KOR] Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Epsilon 60. [IMO 1995/2 RUS] Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Epsilon 61. (Korea 1998) Let x, y, z be the positive reals with x + y + z = xyz. Show
that

1√
1 + x2

+
1p

1 + y2
+

1√
1 + z2

≤ 3

2
.

We now prove a classical theorem in various ways.

Proposition 5.3. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 4. After the substitution x = b + c, y = c + a, z = a + b, it becomes
X

cyclic

y + z − x

2x
≥ 3

2
or

X

cyclic

y + z

x
≥ 6,

which follows from The AM-GM Inequality as following:

X

cyclic

y + z

x
=

y

x
+

z

x
+

z

y
+

x

y
+

x

z
+

y

z
≥ 6

„
y

x
· z

x
· z

y
· x

y
· x

z
· y

z

« 1
6

= 6.

Proof 5. We make the substitution

x =
a

b + c
, y =

b

c + a
, z =

c

a + b
.

It follows that X

cyclic

f(x) =
X

cyclic

a

a + b + c
= 1,

where f(t) = t
1+t

. Since f is concave on (0,∞), Jensen’s Inequality shows that

f

„
1

2

«
=

1

3
=

1

3

X

cyclic

f(x) ≤ f
“x + y + z

3

”

Since f is monotone increasing, it implies that

1

2
≤ x + y + z

3
or X

cyclic

a

b + c
= x + y + z ≥ 3

2
.

Proof 6. As in the previous proof, it suffices to show that

T :=
x + y + z

3
≥ 1

2
,

where we have X

cyclic

x

1 + x
= 1
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or equivalently,
1 = 2xyz + xy + yz + zx.

We apply The AM-GM Inequality to deduce

1 = 2xyz + xy + yz + zx ≤ 2T 3 + 3T 2

It follows that
2T 3 + 3T 2 − 1 ≥ 0

so that
(2T − 1)(T + 1)2 ≥ 0

or

T ≥ 1

2
.

Epsilon 62. [IMO 2000/2 USA] Let a, b, c be positive numbers such that abc = 1. Prove
that „

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
≤ 1.

Epsilon 63. Let a, b, c be positive real numbers satisfying a + b + c = 1. Show that

a

a + bc
+

b

b + ca
+

√
abc

c + ab
≤ 1 +

3
√

3

4
.

Epsilon 64. (Latvia 2002) Let a, b, c, d be the positive real numbers such that

1

1 + a4
+

1

1 + b4
+

1

1 + c4
+

1

1 + d4
= 1.

Prove that abcd ≥ 3.

Delta 61. [SL 1993 USA] Prove that

a

b + 2c + 3d
+

b

c + 2d + 3a
+

c

d + 2a + 3b
+

d

a + 2b + 3c
≥ 2

3

for all positive real numbers a, b, c, d.

Epsilon 65. [LL 1992 UNK] (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x
+ 1

y
+ 1

z
=

2, √
x + y + z ≥ √

x− 1 +
p

y − 1 +
√

z − 1.

Epsilon 66. (Belarus 1998) Prove that, for all a, b, c > 0,

a

b
+

b

c
+

c

a
≥ a + b

b + c
+

b + c

c + a
+ 1.

Delta 62. [IMO 1969 USS] Under the conditions x1, x2 > 0, x1y1 > z1
2, and x2y2 > z2

2,
prove the inequality

8

(x1 + x2) (y1 + y2)− (z1 + z2)
2 ≤

1

x1y1 − z1
2

+
1

x2y2 − z2
2
.

Epsilon 67. [SL 2001 ] Let x1, · · · , xn be arbitrary real numbers. Prove the inequality.
x1

1 + x1
2

+
x2

1 + x1
2 + x2

2
+ · · ·+ xn

1 + x1
2 + · · ·+ xn

2
<
√

n.

Delta 63. [LL 1987 FRA] Given n real numbers 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < 1, prove that

`
1− tn

2´
„

t1

(1− t12)2
+

t2
2

(1− t23)2
+ · · ·+ tn

n

(1− tn
n+1)2

«
< 1.
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5.3. ’E’stablishing New Bounds. The following examples give a nice description of the
title of this subsection.

Example 10. Let x, y, z be positive real numbers. Show the cyclic inequality

x2

y2
+

y2

z2
+

z2

x2
≥ x

y
+

y

z
+

z

x
.

Second Solution. We first use the auxiliary inequality t2 ≥ 2t− 1 to deduce

x2

y2
+

y2

z2
+

z2

x2
≥ 2

x

y
− 1 + 2

y

z
− 1 + 2

z

x
− 1.

It now remains to check that

2
x

y
− 1 + 2

y

z
− 1 + 2

z

x
− 1 ≥ x

y
+

y

z
+

z

x

or equivalently
x

y
+

y

z
+

z

x
≥ 3.

However, The AM-GM Inequality shows that

x

y
+

y

z
+

z

x
≥ 3

„
x

y
· y

z
· z

x

« 1
3

= 3.

˜

Proposition 5.4. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 7. From
“

a
b+c

− 1
2

”2

≥ 0, we deduce that

a

b + c
≥ 1

4
·

8a
b+c

− 1
a

b+c
+ 1

=
8a− b− c

4(a + b + c)
.

It follows that
X

cyclic

a

b + c
≥
X

cyclic

8a− b− c

4(a + b + c)
=

3

2
.

Proof 8. We claim that

a

b + c
≥ 3a

3
2

2
“
a

3
2 + b

3
2 + c

3
2

” or 2
“
a

3
2 + b

3
2 + c

3
2

”
≥ 3a

1
2 (b + c).

The AM-GM inequality gives a
3
2 + b

3
2 + b

3
2 ≥ 3a

1
2 b and a

3
2 + c

3
2 + c

3
2 ≥ 3a

1
2 c . Adding

these two inequalities yields 2
“
a

3
2 + b

3
2 + c

3
2

”
≥ 3a

1
2 (b + c), as desired. Therefore, we

have
X

cyclic

a

b + c
≥ 3

2

X

cyclic

a
3
2

a
3
2 + b

3
2 + c

3
2

=
3

2
.

Epsilon 68. Let a, b, c be the lengths of a triangle. Show that

a

b + c
+

b

c + a
+

c

a + b
< 2.
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Some cyclic inequalities can be established by finding some clever bounds. Suppose
that we want to establish that X

cyclic

F (x, y, z) ≥ C

for some given constant C ∈ R. Whenever we have a function G such that, for all
x, y, z > 0,

F (x, y, z) ≥ G(x, y, z)

and X

cyclic

G(x, y, z) = C,

we then deduce that X

cyclic

F (x, y, z) ≥
X

cyclic

G(x, y, z) = C.

For instance, if a function F satisfies the inequality

F (x, y, z) ≥ x

x + y + z

for all x, y, z > 0, then F obeys the inequality
X

cyclic

F (x, y, z) ≥ 1.

Epsilon 69. [IMO 2001/2 KOR] Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Epsilon 70. [IMO 2005/3 KOR] Let x, y, and z be positive numbers such that xyz ≥ 1.
Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.

Epsilon 71. (KMO Weekend Program 2007) Prove that, for all a, b, c, x, y, z > 0,

ax

a + x
+

by

b + y
+

cz

c + z
≤ (a + b + c)(x + y + z)

a + b + c + x + y + z
.

Epsilon 72. (USAMO Summer Program 2002) Let a, b, c be positive real numbers. Prove
that „

2a

b + c

« 2
3

+

„
2b

c + a

« 2
3

+

„
2c

a + b

« 2
3

≥ 3.

Epsilon 73. (APMO 2005) Let a, b, c be positive real numbers with abc = 8. Prove that

a2

p
(1 + a3)(1 + b3)

+
b2

p
(1 + b3)(1 + c3)

+
c2

p
(1 + c3)(1 + a3)

≥ 4

3

Delta 64. [SL 1996 SVN] Let a, b, and c be positive real numbers such that abc = 1. Prove
that

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ 1.

Delta 65. [SL 1971 YUG] Prove the inequality

a1 + a3

a1 + a2
+

a2 + a4

a2 + a3
+

a3 + a1

a3 + a4
+

a4 + a2

a4 + a1
≥ 4

where a1, a2, a3, a4 > 0.

There is a simple way to find new bounds for given differentiable functions. We begin
to show that every supporting lines are tangent lines in the following sense.
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Proposition 5.5. (The Characterization of Supporting Lines) Let f be a real valued function.
Let m, n ∈ R. Suppose that

(1) f(α) = mα + n for some α ∈ R,
(2) f(x) ≥ mx + n for all x in some interval (ε1, ε2) including α, and
(3) f is differentiable at α.

Then, the supporting line y = mx + n of f is the tangent line of f at x = α.

Proof. Let us define a function F : (ε1, ε2) −→ R by F (x) = f(x) − mx − n for all
x ∈ (ε1, ε2). Then, F is differentiable at α and we obtain F ′(α) = f ′(α) − m. By the
assumption (1) and (2), we see that F has a local minimum at α. So, the first derivative
theorem for local extreme values implies that 0 = F ′(α) = f ′(α)−m so that m = f ′(α) and
that n = f(α)−mα = f(α)−f ′(α)α. It follows that y = mx+n = f ′(α)(x−α)+f(α). ˜

Proposition 5.6. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 9. We may normalize to a + b + c = 1. Note that 0 < a, b, c < 1. The problem is
now to prove

X

cyclic

f(a) ≥ 3

2

or
f(a) + f(b) + f(c)

3
≥ f

„
1

3

«
,

where where f(x) = x
1−x

. The equation of the tangent line of f at x = 1
3

is given by

y = 9x−1
4

. We claim that the inequality

f(x) ≥ 9x− 1

4

holds for all x ∈ (0, 1). However, it immediately follows from the equality

f(x)− 9x− 1

4
=

(3x− 1)2

4(1− x)
.

Now, we conclude that

X

cyclic

a

1− a
≥
X

cyclic

9a− 1

4
=

9

4

X

cyclic

a− 3

4
=

3

2
.

The above argument can be generalized. If a function f has a supporting line at some
point on the graph of f , then f satisfies Jensen’s Inequality in the following sense.

Theorem 5.2. (Supporting Line Inequality) Let f : [a, b] −→ R be a function. Suppose that
α ∈ [a, b] and m ∈ R satisfy

f(x) ≥ m(x− α) + f(α)

for all x ∈ [a, b]. Let ω1, · · · , ωn > 0 with ω1 + · · ·+ωn = 1. Then, the following inequality
holds

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(α)

for all x1, · · · , xn ∈ [a, b] such that α = ω1x1 + · · ·+ ωnxn. In particular, we obtain

f(x1) + · · ·+ f(xn)

n
≥ f

“ s

n

”
,

where x1, · · · , xn ∈ [a, b] with x1 + · · ·+ xn = s for some s ∈ [na, nb].
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Proof.

ω1f(x1) + · · ·+ ωnf(xn)

≥ ω1[m(x1 − α) + f(α)] + · · ·+ ω1[m(xn − α) + f(α)]

= f(α).

˜
We can apply the supporting line inequality to deduce Jensen’s inequality for differen-

tiable functions.

Lemma 5.1. Let f : (a, b) −→ R be a convex function which is differentiable twice on (a, b).
Let y = lα(x) be the tangent line at α ∈ (a, b). Then, f(x) ≥ lα(x) for all x ∈ (a, b). So,
the convex function f admits the supporting lines.

Proof. Let α ∈ (a, b). We want to show that the tangent line y = lα(x) = f ′(α)(x −
α) + f(α) is the supporting line of f at x = α such that f(x) ≥ lα(x) for all x ∈ (a, b).
However, by Taylor’s Theorem, we can find a real number θx between α and x such that

f(x) = f(α) + f ′(α)(x− α) +
f ′′(θx)

2
(x− α)2 ≥ f(α) + f ′(α)(x− α).

˜
Theorem 5.3. (The Weighted Jensen’s Inequality) Let f : [a, b] −→ R be a continuous
convex function which is differentiable twice on (a, b). Let ω1, · · · , ωn > 0 with ω1 + · · ·+
ωn = 1. For all x1, · · · , xn ∈ [a, b],

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).

First Proof. By the continuity of f , we may assume that x1, · · · , xn ∈ (a, b). Now, let
µ = ω1 x1 + · · · + ωn xn. Then, µ ∈ (a, b). By the above lemma, f has the tangent line
y = lµ(x) = f ′(µ)(x− µ) + f(µ) at x = µ satisfying f(x) ≥ lµ(x) for all x ∈ (a, b). Hence,
the supporting line inequality shows that

ω1f(x1) + · · ·+ ωnf(xn) ≥ ω1f(µ) + · · ·+ ωnf(µ) = f(µ) = f(ω1 x1 + · · ·+ ωn xn).

˜
Non-convex functions can be convex locally and have supporting lines at some points.

This means that the supporting line inequality is a powerful tool because we can also
produce Jensen-type inequalities for non-convex functions.

Epsilon 74. (Titu Andreescu, Gabriel Dospinescu) Let x, y, and z be real numbers such
that x, y, z ≤ 1 and x + y + z = 1. Prove that

1

1 + x2
+

1

1 + y2
+

1

1 + z2
≤ 27

10
.

Epsilon 75. (Japan 1997) Let a, b, and c be positive real numbers. Prove that

(b + c− a)2

(b + c)2 + a2
+

(c + a− b)2

(c + a)2 + b2
+

(a + b− c)2

(a + b)2 + c2
≥ 3

5
.

Any good idea can be stated in fifty words or less. - S. Ulam
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6. Homogenizations and Normalizations

Mathematicians do not study objects, but relations between ob-
jects.

- H. Poincaré

6.1. Homogenizations. Many inequality problems come with constraints such as ab = 1,
xyz = 1, x + y + z = 1. A non-homogeneous symmetric inequality can be transformed
into a homogeneous one. Then we apply two powerful theorems: Schur’s Inequality and
Muirhead’s Theorem. We begin with a simple example.

Example 11. (Hungary, 1996) Let a and b be positive real numbers with a + b = 1. Prove
that

a2

a + 1
+

b2

b + 1
≥ 1

3
.

Solution. Using the condition a+b = 1, we can reduce the given inequality to homogeneous
one:

1

3
≤ a2

(a + b)(a + (a + b))
+

b2

(a + b)(b + (a + b))
or

a2b + ab2 ≤ a3 + b3,

which follows from

(a3 + b3)− (a2b + ab2) = (a− b)2(a + b) ≥ 0.

The equality holds if and only if a = b = 1
2
. ˜

Theorem 6.1. Let a1, a2, b1, b2 be positive real numbers such that a1 + a2 = b1 + b2 and
max(a1, a2) ≥ max(b1, b2). Let x and y be nonnegative real numbers. Then, we have

xa1ya2 + xa2ya1 ≥ xb1yb2 + xb2yb1 .

Proof. Without loss of generality, we can assume that a1 ≥ a2, b1 ≥ b2, a1 ≥ b1. If x or
y is zero, then it clearly holds. So, we assume that both x and y are nonzero. It follows
from a1 + a2 = b1 + b2 that a1 − a2 = (b1 − a2) + (b2 − a2). It’s easy to check

xa1ya2 + xa2ya1 − xb1yb2 − xb2yb1

= xa2ya2
“
xa1−a2 + ya1−a2 − xb1−a2yb2−a2 − xb2−a2yb1−a2

”

= xa2ya2
“
xb1−a2 − yb1−a2

”“
xb2−a2 − yb2−a2

”

=
1

xa2ya2

“
xb1 − yb1

”“
xb2 − yb2

”
≥ 0.

˜

Remark 6.1. When does the equality hold in the above theorem?

We now introduce two summation notations. Let P(x, y, z) be a three variables function
of x, y, z. Let us define

X

cyclic

P(x, y, z) = P(x, y, z) + P(y, z, x) + P(z, x, y)

andX
sym

P(x, y, z) = P(x, y, z) + P(x, z, y) + P(y, x, z) + P(y, z, x) + P(z, x, y) + P(z, y, x).
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Here, we have some examples:X

cyclic

x3y = x3y + y3z + z3x,
X
sym

x3 = 2(x3 + y3 + z3),

X
sym

x2y = x2y + x2z + y2z + y2x + z2x + z2y,
X
sym

xyz = 6xyz

Example 12. Let x, y, z be positive real numbers. Show the cyclic inequality

x2

y2
+

y2

z2
+

z2

x2
≥ x

y
+

y

z
+

z

x
.

Third Solution. We break the homogeneity. After the substitution a = x
y
, b = y

z
, c = z

x
, it

becomes
a2 + b2 + c2 ≥ a + b + c.

Using the constraint abc = 1, we now impose the homogeneity to this as follows:

a2 + b2 + c2 ≥ (abc)
1
3 (a + b + c) .

After setting a = x3, b = y3, c = z3 with x, y, z > 0, it then becomes

x6 + y6 + z6 ≥ x4yz + xy4z + xyz4.

We now deduce
X

cyclic

x6 =
X

cyclic

x6 + y6

2
≥
X

cyclic

x4y2 + x2y4

2
=
X

cyclic

x4

„
y2 + z2

2

«
≥
X

cyclic

x4yz.

˜
Epsilon 76. [IMO 1984/1 FRG] Let x, y, z be nonnegative real numbers such that x+y+z =
1. Prove that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

Epsilon 77. [LL 1992 UNK] (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x
+ 1

y
+ 1

z
=

2, √
x + y + z ≥ √

x− 1 +
p

y − 1 +
√

z − 1.
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6.2. Schur and Muirhead.

Theorem 6.2. (Schur’s Inequality) Let x, y, z be nonnegative real numbers. For any r > 0,
we have X

cyclic

xr(x− y)(x− z) ≥ 0.

Proof. Since the inequality is symmetric in the three variables, we may assume without
loss of generality that x ≥ y ≥ z. Then the given inequality may be rewritten as

(x− y)[xr(x− z)− yr(y − z)] + zr(x− z)(y − z) ≥ 0,

and every term on the left-hand side is clearly nonnegative. ˜
Remark 6.2. When does the equality hold in Schur’s Inequality?

Delta 66. Disprove the following proposition: for all a, b, c, d ≥ 0 and r > 0, we have

ar(a−b)(a−c)(a−d)+br(b−c)(b−d)(b−a)+cr(c−a)(c−c)(a−d)+dr(d−a)(d−b)(d−c) ≥ 0.

Delta 67. [LL 1971 HUN] Let a, b, c, d, e be real numbers. Prove the expression

(a− b) (a− c) (a− d) (a− e) + (b− a) (b− c) (b− d) (b− e)

+ (c− a) (c− b) (c− d) (c− e) + (d− a) (d− b) (d− c) (a− e)

+ (e− a) (e− b) (e− c) (e− d)

is nonnegative.

The following special case of Schur’s Inequality is useful:
X

cyclic

x(x− y)(x− z) ≥ 0 ⇔ 3xyz +
X

cyclic

x3 ≥
X
sym

x2y ⇔
X
sym

xyz +
X
sym

x3 ≥ 2
X
sym

x2y.

Epsilon 78. Let x, y, z be nonnegative real numbers. Then, we have

3xyz + x3 + y3 + z3 ≥ 2
“
(xy)

3
2 + (yz)

3
2 + (zx)

3
2

”
.

Epsilon 79. Let t ∈ (0, 3]. For all a, b, c ≥ 0, we have

(3− t) + t(abc)
2
t +

X

cyclic

a2 ≥ 2
X

cyclic

ab.

Epsilon 80. (APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca).

Epsilon 81. [IMO 2000/2 USA] Let a, b, c be positive numbers such that abc = 1. Prove
that „

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
≤ 1.

Epsilon 82. (Tournament of Towns 1997) Let a, b, c be positive numbers such that abc = 1.
Prove that

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≤ 1.

Delta 68. [TZ, p.142] Prove that for any acute triangle ABC,

cot3 A + cot3 B + cot3 C + 6 cot A cot B cot C ≥ cot A + cot B + cot C.

Delta 69. [IN, p.103] Let a, b, c be the lengths of a triangle. Prove that

a2b + a2c + b2c + b2a + c2a + c2b > a3 + b3 + c3 + 2abc.

Delta 70. (Surányi’s Inequality) Show that, for all x1, · · · , xn ≥ 0,

(n− 1) (x1
n + · · ·xn

n) + nx1 · · ·xn ≥ (x1 + · · ·+ xn)
`
x1

n−1 + · · ·xn
n−1´ .
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Epsilon 83. (Muirhead’s Theorem) Let a1, a2, a3, b1, b2, b3 be non-negative real numbers
such that

a1 ≥ a2 ≥ a3, b1 ≥ b2 ≥ b3, a1 ≥ b1, a1 + a2 ≥ b1 + b2, a1 + a2 + a3 = b1 + b2 + b3.

(In this case, we say that the vector a = (a1, a2, a3) majorizes the vector b = (b1, b2, b3)
and write a Â b.) For all positive real numbers x, y, z, we have

X
sym

xa1ya2za3 ≥
X
sym

xb1yb2zb3 .

Remark 6.3. The equality holds if and only if x = y = z. However, if we allow x = 0
or y = 0 or z = 0, then one may easily check that the equality holds (after assuming
a1, a2, a3 > 0 and b1, b2, b3 > 0) if and only if

x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0.

We can apply Muirhead’s Theorem to establish Nesbitt’s Inequality.

Proposition 6.1. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 10. Clearing the denominators of the inequality, it becomes

2
X

cyclic

a(a + b)(a + c) ≥ 3(a + b)(b + c)(c + a)

or X
sym

a3 ≥
X
sym

a2b.

Epsilon 84. [IMO 1995/2 RUS] Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Epsilon 85. (Iran 1996) Let x, y, z be positive real numbers. Prove that

(xy + yz + zx)

„
1

(x + y)2
+

1

(y + z)2
+

1

(z + x)2

«
≥ 9

4
.

Epsilon 86. Let x, y, z be nonnegative real numbers with xy + yz + zx = 1. Prove that

1

x + y
+

1

y + z
+

1

z + x
≥ 5

2
.

Epsilon 87. [SC] If ma,mb,mc are medians and ra,rb,rc the exradii of a triangle, prove
that

rarb

mamb
+

rbrc

mbmc
+

rcra

mcma
≥ 3.

We now offer a criterion for the homogeneous symmetric polynomial inequalities with
degree 3. It is a direct consequence of Schur’s Inequality and Muirhead’s Theorem.

Epsilon 88. Let P(u, v, w) ∈ R[u, v, w] be a homogeneous symmetric polynomial with degree
3. Then the following two statements are equivalent.

(a) P(1, 1, 1), P(1, 1, 0), P(1, 0, 0) ≥ 0.
(b) P(x, y, z) ≥ 0 for all x, y, z ≥ 0.

Example 13. [IMO 1984/1 FRG] Let x, y, z be nonnegative real numbers such that x +
y + z = 1. Prove that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.
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Solution. Using x + y + z = 1, we convert the given inequality to the equivalent form:

0 ≤ (xy + yz + zx)(x + y + z)− 2xyz ≤ 7

27
(x + y + z)3.

Let us define L(u, v, w),R(u, v, w) ∈ R[u, v, w] by

L(u, v, w) = (uv + vw + wu)(u + v + w)− 2uvw,

R(u, v, w) =
7

27
(u + v + w)3 − (uv + vw + wu)(u + v + w) + 2uvw.

However, one may easily check that

L(1, 1, 1) = 7, L(1, 1, 0) = 2, L(1, 0, 0) = 0,

R(1, 1, 1) = 0, R(1, 1, 0) =
2

27
, R(1, 0, 0) =

7

27
.

˜
In other words, we don’t need to employ Schur’s Inequality and Muirhead’s Theorem

to get a straightforward result.

Delta 71. (M. S. Klamkin) Determine the maximum and minimum values of

x2 + y2 + z2 + λxyz

where x + y + z = 1, x, y, z ≥ 0, and λ is a given constant.

Delta 72. (W. Janous) Let x, y, z ≥ 0 with x + y + z = 1. For fixed real numbers a ≥ 0
and b, determine the maximum c = c(a, b) such that

a + bxyz ≥ c(xy + yz + zx).

As a corollary of the above criterion, we obtain the following proposition for homoge-
neous symmetric polynomial inequalities for the triangles :

Theorem 6.3. (K. B. Stolarsky) Let P(u, v, w) be a real symmetric form of degree 3. If
we have

P(1, 1, 1), P(1, 1, 0), P(2, 1, 1) ≥ 0,

then P(a, b, c) ≥ 0, where a, b, c are the lengths of the sides of a triangle.

Proof. Employ The Ravi Substitution together with the above crieterion. We leave the
details for the readers. For an alternative proof, see [KS]. ˜
Delta 73. (China 2007) Let a, b, c be the lengths of a triangle with a+b+c = 3. Determine
the minimum value of

a2 + b2 + c2 +
4abc

3
.

As noted in [KS], applying Stolarsky’s Crieterion, we obtain various cubic inequalities
in triangle geometry.

Example 14. Let a, b, c be the lengths of the sides of a triangle. Let s be the semiperimeter
of the triangle. Then, the following inequalities holds.

(a) 4(ab + bc + ca) > (a + b + c)2 ≥ 3(ab + bc + ca)
(b) [DM] a2 + b2 + c2 ≥ 36

35

`
s2 + abc

s

´
(c) [AP] abc ≥ 8(s− a)(s− b)(s− c)
(d) [EC] 8abc ≥ (a + b)(b + c)(c + a)
(e) [AP] 8(a3 + b3 + c3) ≥ 3(a + b)(b + c)(c + a)
(f) [MC] 2(a + b + c)(a2 + b2 + c2) ≥ 3(a3 + b3 + c3 + 3abc)
(g) 3

2
abc ≥ a2(s− a) + b2(s− b) + c2(s− c) > abc

(h) bc(b + c) + ca(c + a) + ab(a + b) ≥ 48(s− a)(s− b)(s− c)
(i) 1

s−a
+ 1

s−b
+ 1

s−c
≥ 9

s

(j) [AN, MP] 2 > a
b+c

+ b
c+a

+ c
a+b

≥ 3
2
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(k) 9
2

> s+a
b+c

+ s+b
c+a

+ s+c
a+b

≥ 15
4

(l) [SR1] 5[ab(a + b) + bc(b + c) + ca(c + a)]− 3abc ≥ (a + b + c)3

Proof. We only check the left hand side inequality in (j). One may easily check that it is
equivalent to the cubic inequality T (a, b, c) ≥ 0, where

T (a, b, c) = 2(a + b)(b + c)(c + a)− (a + b)(b + c)(c + a)

„
a

b + c
+

b

c + a
+

c

a + b

«
.

Since T (1, 1, 1) = 4, T (1, 1, 0) = 0, and T (2, 1, 1) = 6, the result follows from Stolarsky’s
Criterion. For alternative proofs, see [BDJMV]. ˜
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6.3. Normalizations. In the previous subsections, we transformed non-homogeneous in-
equalities into homogeneous ones. On the other hand, homogeneous inequalities also can
be normalized in various ways. We offer two alternative solutions of the problem 8 by
normalizations :

Epsilon 89. [IMO 2001/2 KOR] Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Epsilon 90. [IMO 1983/6 USA] Let a, b, c be the lengths of the sides of a triangle. Prove
that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Epsilon 91. (KMO Winter Program Test 2001) Prove that, for all a, b, c > 0,
p

(a2b + b2c + c2a) (ab2 + bc2 + ca2) ≥ abc + 3
p

(a3 + abc) (b3 + abc) (c3 + abc)

Epsilon 92. [IMO 1999/2 POL] Let n be an integer with n ≥ 2. (a) Determine the least
constant C such that the inequality

X

1≤i<j≤n

xixj(x
2
i + x2

j ) ≤ C

0
@ X

1≤i≤n

xi

1
A

4

holds for all real numbers x1, · · · , xn ≥ 0.
(b) For this constant C, determine when equality holds.

Delta 74. [SL 1991 POL] Let n be a given integer with n ≥ 2. Find the maximum value
of X

1≤i<j≤n

xixj(xi + xj),

where x1, · · · , xn ≥ 0 and x1 + · · ·+ xn = 1.

We close this subsection with another proofs of Nesbitt’s Inequality.

Proposition 6.2. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 11. We may normalize to a + b + c = 1. Note that 0 < a, b, c < 1. The problem is
now to prove X

cyclic

a

b + c
=
X

cyclic

f(a) ≥ 3

2
, where f(x) =

x

1− x
.

Since f is convex on (0, 1), Jensen’s Inequality shows that

1

3

X

cyclic

f(a) ≥ f

„
a + b + c

3

«
= f

„
1

3

«
=

1

2
or

X

cyclic

f(a) ≥ 3

2
.

Proof 12. (Cao Minh Quang) Assume that a + b + c = 1. Note that ab + bc + ca ≤
1
3
(a + b + c)2 = 1

3
. More strongly, we establish that

a

b + c
+

b

c + a
+

c

a + b
≥ 3− 9

2
(ab + bc + ca)

or „
a

b + c
+

9a(b + c)

4

«
+

„
b

c + a
+

9b(c + a)

4

«
+

„
c

a + b
+

9c(a + b)

4

«
≥ 3.

The AM-GM inequality shows that

X

cyclic

a

b + c
+

9a(b + c)

4
≥
X

cyclic

2

r
a

b + c
· 9a(b + c)

4
=
X

cyclic

3a = 3.
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6.4. Cauchy-Schwarz and Hölder. We begin with the following famous theorem:

Theorem 6.4. (The Cauchy-Schwarz Inequality) Whenever a1, · · · , an, b1, · · · , bn ∈ R, we
have

(a1
2 + · · ·+ an

2)(b1
2 + · · ·+ bn

2) ≥ (a1b1 + · · ·+ anbn)2.

First Proof. Let A =
√

a1
2 + · · ·+ an

2 and B =
p

b1
2 + · · ·+ bn

2. In the case when
A = 0, we get a1 = · · · = an = 0. Thus, the given inequality clearly holds. From now on,
we assume that A, B > 0. Since the inequality is homogeneous, we may normalize to

1 = a1
2 + · · ·+ an

2 = b1
2 + · · ·+ bn

2.

We now need to to show that

|a1b1 + · · ·+ anbn| ≤ 1.

Indeed, we deduce

|a1b1 + · · ·+ anbn| ≤ |a1b1|+ · · ·+ |anbn| ≤ a1
2 + b1

2

2
+ · · ·+ an

2 + bn
2

2
= 1.

˜

Second Proof. It immediately follows from The Lagrange Identity:
 

nX
i=1

ai
2

! 
nX

i=1

bi
2

!
−
 

nX
i=1

aibi

!2

=
X

1≤i<j≤n

(aibj − ajbi)
2 .

˜

Delta 75. [IMO 2003/5 IRL] Let n be a positive integer and let x1 ≤ · · · ≤ xn be real
numbers. Prove that

0
@ X

1≤i,j≤n

|xi − xj |
1
A

2

≤ 2
`
n2 − 1

´

3

X

1≤i,j≤n

(xi − xj)
2 .

Show that the equality holds if and only if x1, · · · , xn is an arithmetic progression.

Delta 76. (Darij Grinberg) Suppose that 0 < a1 ≤ · · · ≤ an and 0 < b1 ≤ · · · ≤ bn be real
numbers. Show that

1

4

 
nX

k=1

ak

!2 nX

k=1

bk

!2

>

 
nX

k=1

ak
2

! 
nX

k=1

bk
2

!
−
 

nX

k=1

akbk

!2

Delta 77. [LL 1971 AUT] Let a, b, c be positive real numbers, 0 < a ≤ b ≤ c. Prove that
for any x, y, z > 0 the following inequality holds:

(a + c)2

4ac
(x + y + z)2 ≥ (ax + by + cz)

“x

a
+

y

b
+

z

c

”
.

Delta 78. [LL 1987 AUS] Let a1, a2, a3, b1, b2, b3 be positive real numbers. Prove that

(a1b2 + a1b3 + a2b1 + a2b3 + a3b1 + a3b2)
2 ≥ 4 (a1a2 + a2a3 + a3a1) (b1b2 + b2b3 + b3b1)

and show that the two sides of the inequality are equal if and only if a1
b1

= a2
b2

= a3
b3

.

Delta 79. [PF] Let a1, · · · , an, b1, · · · , bn ∈ R. Suppose that x ∈ [0, 1]. Show that

 
nX

i=1

ai
2 + 2x

X
i<j

aiaj

! 
nX

i=1

bi
2 + 2x

X
i<j

bibj

!
≥
0
@

nX
i=1

aibi + x
X

i≤j

aibj

1
A

2

.
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Delta 80. Let a1, · · · , an, b1, · · · , bn be positive real numbers. Show that8
>>>>><
>>>>>:

(1)
p

(a1 + · · ·+ an)(b1 + · · ·+ bn) ≥ √
a1b1 + · · ·+√

anbn,

(2) a1
2

b1
+ · · ·+ an

2

bn
≥ (a1+···+an)2

b1+···+bn
,

(3) a1
b12 + · · ·+ an

bn
2 ≥ 1

a1+···+an

“
a1
b1

+ · · ·+ an
bn

”2

,

(4) a1
b1

+ · · ·+ an
bn
≥ (a1+···+an)2

a1b1+···+anbn
.

Delta 81. [SL 1993 USA] Prove that

a

b + 2c + 3d
+

b

c + 2d + 3a
+

c

d + 2a + 3b
+

d

a + 2b + 3c
≥ 2

3

for all positive real numbers a, b, c, d.

Epsilon 93. (APMO 1991) Let a1, · · · , an, b1, · · · , bn be positive real numbers such that
a1 + · · ·+ an = b1 + · · ·+ bn. Show that

a1
2

a1 + b1
+ · · ·+ an

2

an + bn
≥ a1 + · · ·+ an

2
.

Epsilon 94. Let a, b ≥ 0 with a + b = 1. Prove thatp
a2 + b +

p
a + b2 +

√
1 + ab ≤ 3.

Show that the equality holds if and only if (a, b) = (1, 0) or (a, b) = (0, 1).

Epsilon 95. [LL 1992 UNK] (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x
+ 1

y
+ 1

z
=

2, √
x + y + z ≥ √

x− 1 +
p

y − 1 +
√

z − 1.

We now apply The Cauchy-Schwarz Inequality to prove Nesbitt’s Inequality.

Proposition 6.3. (Nesbitt) For all positive real numbers a, b, c, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof 13. Applying The Cauchy-Schwarz Inequality, we have

((b + c) + (c + a) + (a + b))

„
1

b + c
+

1

c + a
+

1

a + b

«
≥ 32.

It follows that
a + b + c

b + c
+

a + b + c

c + a
+

a + b + c

a + b
≥ 9

2
or

3 +
X

cyclic

a

b + c
≥ 9

2
.

Proof 14. The Cauchy-Schwarz Inequality yields

X

cyclic

a

b + c

X

cyclic

a(b + c) ≥
0
@X

cyclic

a

1
A

2

or X

cyclic

a

b + c
≥ (a + b + c)2

2(ab + bc + ca)
≥ 3

2
.

Epsilon 96. (Gazeta Matematicã) Prove that, for all a, b, c > 0,
p

a4 + a2b2 + b4+
p

b4 + b2c2 + c4+
p

c4 + c2a2 + a4 ≥ a
p

2a2 + bc+b
p

2b2 + ca+c
p

2c2 + ab.

Epsilon 97. (KMO Winter Program Test 2001) Prove that, for all a, b, c > 0,
p

(a2b + b2c + c2a) (ab2 + bc2 + ca2) ≥ abc + 3
p

(a3 + abc) (b3 + abc) (c3 + abc)
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Epsilon 98. (Andrei Ciupan) Let a, b, c be positive real numbers such that

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≥ 1.

Show that a + b + c ≥ ab + bc + ca.

We now illustrate normalization techniques to establish classical theorems. Using the
same idea in the proof of The Cauchy-Schwarz Inequality, we find a natural generalization
:

Theorem 6.5. Let aij(i, j = 1, · · · , n) be positive real numbers. Then, we have

(a11
n + · · ·+ a1n

n) · · · (an1
n + · · ·+ ann

n) ≥ (a11a21 · · · an1 + · · ·+ a1na2n · · · ann)n.

Proof. The inequality is homogeneous. We make the normalizations:

(ai1
n + · · ·+ ain

n)
1
n = 1

or

ai1
n + · · ·+ ain

n = 1,

for all i = 1, · · · , n. Then, the inequality takes the form

a11a21 · · · an1 + · · ·+ a1na2n · · · ann ≤ 1

or
nX

i=1

ai1 · · · ain ≤ 1.

Hence, it suffices to show that, for all i = 1, · · · , n,

ai1 · · · ain ≤ 1

n

where ai1
n + · · ·+ ain

n = 1. To finish the proof, it remains to show the following homo-
geneous inequality. ˜

Theorem 6.6. (The AM-GM Inequality) Let a1, · · · , an be positive real numbers. Then,
we have

a1 + · · ·+ an

n
≥ n
√

a1 · · · an.

Proof. Since it’s homogeneous, we may rescale a1, · · · , an so that a1 · · · an = 1. 14 We
want to show that

a1 · · · an = 1 =⇒ a1 + · · ·+ an ≥ n.

The proof is by induction on n. If n = 1, it’s trivial. If n = 2, then we get a1+a2−2 = a1+
a2− 2

√
a1a2 = (

√
a1−√a2)

2 ≥ 0. Now, we assume that it holds for some positive integer
n ≥ 2. And let a1, · · · , an+1 be positive numbers such that a1 · · · anan+1=1. We may
assume that a1 ≥ 1 ≥ a2. (Why?) It follows that a1a2 +1−a1−a2 = (a1−1)(a2−1) ≤ 0
so that a1a2 + 1 ≤ a1 + a2. Since (a1a2)a3 · · · an = 1, by the induction hypothesis, we
have

a1a2 + a3 + · · ·+ an+1 ≥ n.

It follows that a1 + a2 − 1 + a3 + · · ·+ an+1 ≥ n. ˜

14Set xi = ai

(a1···an)
1
n

(i = 1, · · · , n). Then, we get x1 · · ·xn = 1 and it becomes x1+· · ·+xn ≥
n.
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We now make simple observation. Let a, b > 0 and m, n ∈ N. Take x1 = · · · = xm = a
and xm+1 = · · · = xxm+n = b. Applying the AM-GM inequality to x1, · · · , xm+n > 0, we
obtain

ma + nb

m + n
≥ (ambn)

1
m+n or

m

m + n
a +

n

m + n
b ≥ a

m
m+n b

n
m+n .

Hence, for all positive rational numbers ω1 and ω2 with ω1 + ω2 = 1, we get

ω1 a + ω2 b ≥ a ω1b ω2 .

We now immediately have

Theorem 6.7. Let ω1, ω2 > 0 with ω1 + ω2 = 1. For all x, y > 0, we have

ω1 x + ω2 y ≥ x ω1y ω2 .

Proof. We can choose a sequence a1, a2, a3, · · · ∈ (0, 1) of rational numbers such that

lim
n→∞

an = ω1.

Set bi = 1− ai, where i ∈ N. Then, b1, b2, b3, · · · ∈ (0, 1) is a sequence of rational numbers
with

lim
n→∞

bn = ω2.

From the previous observation, we have an x + bn y ≥ xanybn . By taking the limits to
both sides, we get the result. ˜

We can extend the above arguments to the n-variables.

Theorem 6.8. (The Weighted AM-GM Inequality) Let ω1, · · · , ωn > 0 with ω1+· · ·+ωn = 1.
For all x1, · · · , xn > 0, we have

ω1 x1 + · · ·+ ωn xn ≥ x1
ω1 · · ·xn

ωn .

Since we now get the weighted version of The AM-GM Inequality, we establish weighted
version of The Cauchy-Schwarz Inequality.

Epsilon 99. (Hölder’s Inequality) Let xij (i = 1, · · · , m, j = 1, · · ·n) be positive real num-
bers. Suppose that ω1, · · · , ωn are positive real numbers satisfying ω1 + · · · + ωn = 1.
Then, we have

nY
j=1

 
mX

i=1

xij

!ωj

≥
mX

i=1

 
nY

j=1

xij
ωj

!
.

My brain is open. - P. Erdős
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7. Convexity and Its Applications

The art of doing mathematics consists in finding that special case
which contains all the germs of generality.

- D. Hilbert

7.1. Jensen’s Inequality. In the previous section, we deduced the weighted AM-GM in-
equality from The AM-GM Inequality. We use the same idea to study the following
functional inequalities.

Epsilon 100. Let f : [a, b] −→ R be a continuous function. Then, the followings are
equivalent.

(1) For all n ∈ N, the following inequality holds.

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn)

for all x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 + · · ·+ ωn = 1.
(2) For all n ∈ N, the following inequality holds.

r1f(x1) + · · ·+ rnf(xn) ≥ f(r1 x1 + · · ·+ rn xn)

for all x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1.
(3) For all N ∈ N, the following inequality holds.

f(y1) + · · ·+ f(yN )

N
≥ f

“y1 + · · ·+ yN

N

”

for all y1, · · · , yN ∈ [a, b].
(4) For all k ∈ {0, 1, 2, · · · }, the following inequality holds.

f(y1) + · · ·+ f(y2k )

2k
≥ f

“y1 + · · ·+ y2k

2k

”

for all y1, · · · , y2k ∈ [a, b].
(5) We have 1

2
f(x) + 1

2
f(y) ≥ f

`
x+y

2

´
for all x, y ∈ [a, b].

(6) We have λf(x) + (1− λ)f(y) ≥ f (λx + (1− λ)y) for all x, y ∈ [a, b]
and λ ∈ (0, 1).

Definition 7.1. A real valued function f : [a, b] −→ R is said to be convex if the inequality

λf(x) + (1− λ)f(y) ≥ f (λx + (1− λ)y)

holds for all x, y ∈ [a, b] and λ ∈ (0, 1).

The above proposition says that

Corollary 7.1. (Jensen’s Inequality) If f : [a, b] −→ R is a continuous convex function, then
for all x1, · · · , xn ∈ [a, b], we have

f(x1) + · · ·+ f(xn)

n
≥ f

“x1 + · · ·+ xn

n

”
.

Delta 82. [SL 1998 AUS] Let r1, · · · , rn be real numbers greater than or equal to 1. Prove
that

1

r1 + 1
+ · · ·+ 1

rn + 1
≥ n

n
√

r1 · · · rn + 1
.

Corollary 7.2. (The Weighted Jensen’s Inequality) Let f : [a, b] −→ R be a continuous
convex function. Let ω1, · · · , ωn > 0 with ω1 + · · · + ωn = 1. For all x1, · · · , xn ∈ [a, b],
we have

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).
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In fact, we can almost drop the continuity of f . As an exercise, show that every convex
function on [a, b] is continuous on (a, b). Hence, every convex function on R is continuous
on R.

Corollary 7.3. (The Convexity Criterion I) If a continuous function f : [a, b] −→ R satisfies
the midpoint convexity

f(x) + f(y)

2
≥ f

“x + y

2

”

for all x, y ∈ [a, b], then the function f is convex on [a, b].

Delta 83. (The Convexity Criterion II) Let f : [a, b] −→ R be a continuous function which
are differentiable twice in (a, b). Show that (1) f ′′(x) ≥ 0 for all x ∈ (a, b) if and only if
(2) f is convex on (a, b).

We now present an inductive proof of The Weighted Jensen’s Inequality. It turns out
that we can completely drop the continuity of f .

Third Proof. It clearly holds for n = 1, 2. We now assume that it holds for some n ∈ N.
Let x1, · · · , xn, xn+1 ∈ [a, b] and ω1, · · · , ωn+1 > 0 with ω1 + · · · + ωn+1 = 1. Since we
have the equality

ω1

1− ωn+1
+ · · ·+ ωn

1− ωn+1
= 1,

by the induction hypothesis, we obtain

ω1f(x1) + · · ·+ ωn+1f(xn+1)

= (1− ωn+1)

„
ω1

1− ωn+1
f(x1) + · · ·+ ωn

1− ωn+1
f(xn)

«
+ ωn+1f(xn+1)

≥ (1− ωn+1)f

„
ω1

1− ωn+1
x1 + · · ·+ ωn

1− ωn+1
xn

«
+ ωn+1f(xn+1)

≥ f

„
(1− ωn+1)

»
ω1

1− ωn+1
x1 + · · ·+ ωn

1− ωn+1
xn

–
+ ωn+1xn+1

«

= f(ω1x1 + · · ·+ ωn+1xn+1).

˜
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7.2. Power Mean Inequality. The notion of convexity is one of the most important con-
cepts in analysis. Jensen’s Inequality is the most powerful tool in theory of inequalities.
We begin with a convexity proof of The Weighted AM-GM Inequality.

Theorem 7.1. (The Weighted AM-GM Inequality) Let ω1, · · · , ωn > 0 with ω1+· · ·+ωn = 1.
For all x1, · · · , xn > 0, we have

ω1 x1 + · · ·+ ωn xn ≥ x1
ω1 · · ·xn

ωn .

Proof. It is a straightforward consequence of the concavity of ln x. Indeed, The Weighted
Jensen’s Inequality shows that

ln(ω1 x1 + · · ·+ ωn xn) ≥ ω1 ln(x1) + · · ·+ ωn ln(xn) = ln(x1
ω1 · · ·xn

ωn).

˜

The Power Mean Inequality can be proved by exploiting Jensen’s inequality in two
ways. We begin with two simple lemmas.

Lemma 7.1. Let a, b, and c be positive real numbers. Let

f(x) = ln

„
ax + bx + cx

3

«

for all x ∈ R. Then, we obtain f ′(0) = ln 3
√

abc.

Proof. We compute

f ′(x) =
ax ln a + bx ln b + cx ln c

ax + bx + cx
.

It follows that

f ′(0) =
ln a + ln b + ln c

3
= ln

3
√

abc.

˜

Lemma 7.2. Let f : R −→ R be a continuous function. Suppose that f is monotone
increasing on (0,∞) and monotone increasing on (−∞, 0). Then, the function f is mono-
tone increasing on R.

Proof. We first show that f is monotone increasing on [0,∞). By the hypothesis, it
remains to show that f(x) ≥ f(0) for all x > 0. For all ε ∈ (0, x), we have f(x) ≥ f(ε).
Since f is continuous at 0, we obtain

f(x) ≥ lim
ε→0+

f(ε) = f(0).

Similarly, we find that f is monotone increasing on (−∞, 0]. We now show that f is
monotone increasing on R. Let x and y be real numbers with x > y. We want to show
that f(x) ≥ f(y). In case 0 6∈ (x, y), we get the result by the hypothesis. In case x ≥ 0 ≥ y,
it follows that f(x) ≥ f(0) ≥ f(y). ˜

Theorem 7.2. (Power Mean inequality for Three Variables) Let a, b, and c be positive real
numbers. We define a function M(a,b,c) : R −→ R by

M(a,b,c)(0) =
3
√

abc , M(a,b,c)(r) =

„
ar + br + cr

3

« 1
r

(r 6= 0).

Then, M(a,b,c) is a monotone increasing continuous function.
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First Proof. Write M(r) = M(a,b,c)(r). We first establish that the function M is continu-
ous. Since M is continuous at r for all r 6= 0, it’s enough to show that

lim
r→0

M(r) =
3
√

abc.

Let f(x) = ln
“

ax+bx+cx

3

”
, where x ∈ R. Since f(0) = 0, the above lemma implies that

lim
r→0

f(r)

r
= lim

r→0

f(r)− f(0)

r − 0
= f ′(0) = ln

3
√

abc .

Since ex is a continuous function, this means that

lim
r→0

M(r) = lim
r→0

e
f(r)

r = eln
3√

abc =
3
√

abc.

Now, we show that the function M is monotone increasing. It will be enough to establish
that M is monotone increasing on (0,∞) and monotone increasing on (−∞, 0). We first
show that M is monotone increasing on (0,∞). Let x ≥ y > 0. We want to show that

„
ax + bx + cx

3

« 1
x

≥
„

ay + by + cy

3

« 1
y

.

After the substitution u = ay, v = ay, w = az, it becomes
 

u
x
y + v

x
y + w

x
y

3

! 1
x

≥
“u + v + w

3

” 1
y

.

Since it is homogeneous, we may normalize to u + v + w = 3. We are now required to
show that

G(u) + G(v) + G(w)

3
≥ 1,

where G(t) = t
x
y , where t > 0. Since x

y
≥ 1, we find that G is convex. Jensen’s inequality

shows that
G(u) + G(v) + G(w)

3
≥ G

“u + v + w

3

”
= G(1) = 1.

Similarly, we may deduce that M is monotone increasing on (−∞, 0). ˜

We’ve learned that the convexity of f(x) = xλ (λ ≥ 1) implies the monotonicity of
the power means. Now, we shall show that the convexity of x ln x also implies The Power
Mean Inequality.

Second Proof of the Monotonicity. Write f(x) = M(a,b,c)(x). We use the increasing func-
tion theorem. It’s enough to show that f ′(x) ≥ 0 for all x 6= 0. Let x ∈ R − {0}. We
compute

f ′(x)

f(x)
=

d

dx
(ln f(x)) = − 1

x2
ln

„
ax + bx + cx

3

«
+

1

x

1
3

(ax ln a + bx ln b + cx ln c)
1
3
(ax + bx + cx)

or
x2f ′(x)

f(x)
= − ln

„
ax + bx + cx

3

«
+

ax ln ax + bx ln bx + cx ln cx

ax + bx + cx
.

To establish f ′(x) ≥ 0, we now need to establish that

ax ln ax + bx ln bx + cx ln cx ≥ (ax + bx + cx) ln

„
ax + bx + cx

3

«
.

Let us introduce a function f : (0,∞) −→ R by f(t) = t ln t, where t > 0. After the
substitution p = ax, q = ay, r = az, it becomes

f(p) + f(q) + f(r) ≥ 3f
“p + q + r

3

”
.

Since f is convex on (0,∞), it follows immediately from Jensen’s Inequality. ˜
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In particular, we deduce The RMS-AM-GM-HM Inequality for three variables.

Corollary 7.4. For all positive real numbers a, b, and c, we haver
a2 + b2 + c2

3
≥ a + b + c

3
≥ 3
√

abc ≥ 3
1
a

+ 1
b

+ 1
c

.

Proof. The Power Mean Inequality implies that

M(a,b,c)(2) ≥ M(a,b,c)(1) ≥ M(a,b,c)(0) ≥ M(a,b,c)(−1).

˜
Delta 84. [SL 2004 THA] Let a, b, c > 0 and ab + bc + ca = 1. Prove the inequality

3

r
1

a
+ 6b +

3

r
1

b
+ 6c +

3

r
1

c
+ 6a ≤ 1

abc
.

Delta 85. [SL 1998 RUS] Let x, y, and z be positive real numbers such that xyz = 1.
Prove that

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

Delta 86. [LL 1992 POL] For positive real numbers a, b, c, define

A =
a + b + c

3
, G =

3
√

abc, H =
3

1
a

+ 1
b

+ 1
c

.

Prove that „
A

G

«3

≥ 1

4
+

3

4
· A

H
.

Using the convexity of x ln x or the convexity of xλ (λ ≥ 1), we can also establish the
monotonicity of the power means for n positive real numbers.

Theorem 7.3. (The Power Mean Inequality) Let x1, · · · , xn be positive real numbers. The
power mean of order r is defined by

M(x1,··· ,xn)(0) = n
√

x1 · · ·xn , M(x1,··· ,xn)(r) =

„
xr

1 + · · ·+ xn
r

n

« 1
r

(r 6= 0).

Then, the function M(x1,··· ,xn) : R −→ R is continuous and monotone increasing.

Corollary 7.5. (The Geometric Mean as a Limit) Let x1, · · · , xn > 0. Then,

n
√

x1 · · ·xn = lim
r→0

„
x1

r + · · ·+ xn
r

n

« 1
r

.

Theorem 7.4. (The RMS-AM-GM-HM Inequality) For all x1, · · · , xn > 0, we have
r

x1
2 + · · ·+ xn

2

n
≥ x1 + · · ·+ xn

n
≥ n
√

x1 · · ·xn ≥ n
1

x1
+ · · ·+ 1

xn

.

Delta 87. [SL 2004 IRL] Let a1, · · · , an be positive real numbers, n > 1. Denote by gn

their geometric mean, and by A1, · · · , An the sequence of arithmetic means defined by

Ak =
a1 + · · ·+ ak

k
, k = 1, · · · , n.

Let Gn be the geometric mean of A1, · · · , An. Prove the inequality

n + 1 ≥ n

r
Gn

An
+

gn

Gn

and establish the cases of equality.
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7.3. Hardy-Littlewood-Pólya Inequality. We first meet a famous inequality established by
the Romanian mathematician T. Popoviciu.

Theorem 7.5. (Popoviciu’s Inequality) Let f : [a, b] −→ R be a convex function. For all
x, y, z ∈ [a, b], we have

f(x) + f(y) + f(z) + 3f
“x + y + z

3

”
≥ 2f

“x + y

2

”
+ 2f

“y + z

2

”
+ 2f

“z + x

2

”
.

Proof. We break the symmetry. Since the inequality is symmetric, we may assume that
x ≤ y ≤ z.

Case 1. y ≥ x+y+z
3

: The key idea is to make the following geometric observation:

z + x

2
,

x + y

2
∈
h
x,

x + y + z

3

i
.

It guarantees the existence of two positive weights λ1, λ2 ∈ [0, 1] satisfying that
8
><
>:

z+x
2

= (1− λ1) x + λ1
x+y+z

3
,

x+y
2

= (1− λ2) x + λ2
x+y+z

3
,

λ1 + λ2 = 3
2
.

Now, Jensen’s inequality shows that

f
“x + y

2

”
+ f

“y + z

2

”
+ f

“z + x

2

”

≤ (1− λ2) f(x) + λ2f
“x + y + z

3

”
+

f(y) + f(z)

2
+ (1− λ1) f(x) + λ1f

“x + y + z

3

”

≤ 1

2
(f(x) + f(y) + f(z)) +

3

2
f
“x + y + z

3

”
.

The proof of the second case uses the same idea.

Case 2. y ≤ x+y+z
3

: We make the following geometric observation:

z + x

2
,

y + z

2
∈
hx + y + z

3
, z
i
.

It guarantees the existence of two positive weights µ1, µ2 ∈ [0, 1] satisfying that
8
><
>:

z+x
2

= (1− µ1) z + µ1
x+y+z

3
,

y+z
2

= (1− µ2) z + µ2
x+y+z

3
,

µ1 + µ2 = 3
2
.

Jensen’s inequality implies that

f
“x + y

2

”
+ f

“y + z

2

”
+ f

“z + x

2

”

≤ f(x) + f(y)

2
+ (1− µ2) f(z) + µ2f

“x + y + z

3

”
+ (1− µ1) f(z) + µ1f

“x + y + z

3

”

≤ 1

2
(f(x) + f(y) + f(z)) +

3

2
f
“x + y + z

3

”
.

˜

Epsilon 101. Let x, y, z be nonnegative real numbers. Then, we have

3xyz + x3 + y3 + z3 ≥ 2
“
(xy)

3
2 + (yz)

3
2 + (zx)

3
2

”
.

Extending the proof of Popoviciu’s Inequality, we can establish a majorization inequal-
ity.

Definition 7.2. We say that a vector x = (x1, · · · , xn) ∈ Rn majorizes a vector y =
(y1, · · · , yn) ∈ Rn if we have
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(1) x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,
(2) x1 + · · ·+ xk ≥ y1 + · · ·+ yk for all 1 ≤ k ≤ n− 1,
(3) x1 + · · ·+ xn = y1 + · · ·+ yn.

In this case, we write x Â y.

Theorem 7.6. (The Hardy-Littlewood-Pólya Inequality) Let f : [a, b] −→ R be a convex
function. Suppose that (x1, · · · , xn) majorizes (y1, · · · , yn), where x1, · · · , xn, y1, · · · , yn ∈
[a, b]. Then, we obtain

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

Epsilon 102. Let ABC be an acute triangle. Show that

cos A + cos B + cos C ≥ 1.

Epsilon 103. Let ABC be a triangle. Show that

tan 2

„
A

4

«
+ tan 2

„
B

4

«
+ tan 2

„
C

4

«
≤ 1.

Epsilon 104. Use The Hardy-Littlewood-Pólya Inequality to deduce Popoviciu’s Inequality.

Epsilon 105. [IMO 1999/2 POL] Let n be an integer with n ≥ 2. (a) Determine the least
constant C such that the inequality

X

1≤i<j≤n

xixj(x
2
i + x2

j ) ≤ C

0
@ X

1≤i≤n

xi

1
A

4

holds for all real numbers x1, · · · , xn ≥ 0.
(b) For this constant C, determine when equality holds.

It’s not that I’m so smart, it’s just that I stay with problems longer. - A. Einstein
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8. Epsilons

God has a transfinite book with all the theorems and their best
proofs

- P. Erdős

Epsilon 1. [NS] Let a and b be positive integers such that

ak | bk+1

for all positive integers k. Show that b is divisible by a.

Solution. Let p be a prime. Our job is to establish the equality

ordp (b) ≥ ordp (a) .

According to the condition that bk+1 is divisibly by ak, we find that the inequality

(k + 1)ordp (b) = ordp

“
bk+1

”
≥ ordp

“
ak
”

= k ordp (a)

or
ordp (b)

ordp (a)
≥ k

k + 1

holds for all positive integers k. Letting k →∞, we have the estimation

ordp (b)

ordp (a)
≥ 1.

˜
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Epsilon 2. [IMO 1972/3 UNK] Let m and n be arbitrary non-negative integers. Prove
that

(2m)!(2n)!

m!n!(m + n)!
is an integer.

Solution. We want to show that L = (2m)!(2n)! is divisible by R = m!n!(m + n)! Let p
be a prime. Our job is to establish the inequality

ordp (L) ≥ ordp (R) .

or ∞X

k=1

„ —
2m

pk

�
+

—
2n

pk

� «
≥

∞X

k=1

„ —
m

pk

�
+

—
n

pk

�
+

—
m + n

pk

� «
.

It is an easy job to check the auxiliary inequality

b2xc+ b2yc ≥ bxc+ byc+ bx + yc
holds for all real numbers x and y. ˜
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Epsilon 3. Let n ∈ N. Show that Ln := lcm(1, 2, · · · , 2n) is divisible by Rn :=
`
2n
n

´
= (2n)!

(n!)2
.

Solution. Let p be a prime. We want to show the inequality

ordp (Kn) ≤ ordp (Ln) .

Now, we first compute ordp (Kn).

ordp (Kn) = ordp

„
(2n)!

(n!)2

«
= ordp ( (2n)! )− 2ordp ( n! ) =

∞X

k=1

„ —
2n

pk

�
− 2

—
n

pk

� «
.

The key observation is that both 2n
pk and n

pk vanish for all sufficiently large integer k. Let

N denote the the largest integer N ≥ 0 such that pN ≤ 2n. The maximality of the
exponent N = ordp (Ln) guarantees that, whenever k > N , both 2n

pk and n
pk are smaller

than 1, so that the term b 2n
pk c − 2b n

pk c vanishes. It follows that

ordp (Kn) =

NX

k=1

„ —
2n

pk

�
− 2

—
n

pk

� «
.

Since b2xc − 2 bxc is either 0 or 1 for all x ∈ R, this gives the estimation

ordp (Kn) ≤
NX

k=1

1 = N.

However, since Ln is the least common multiple of 1, · · · , 2n, we see that ordp (Ln) is the
largest integer N ≥ 0 such that pN ≤ 2n ˜
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Epsilon 4. Let f : N→ R+ be a function satisfying the conditions:
(a) f(mn) = f(m)f(n) for all positive integers m and n, and
(b) f(n + 1) ≥ f(n) for all positive integers n.

Then, there is a constant α ∈ R such that f(n) = nα for all n ∈ N.

Proof. We have f(1) = 1. Our job is to show that the function

ln f(n)

ln n
is constant when n > 1. Assume to the contrary that

ln f(m)

ln m
>

ln f(n)

ln n

for some positive integers m, n > 1. Writing f(m) = mx and f(n) = ny, we have x > y or

ln n

ln m
>

ln n

ln m
· y

x

So, we can pick a positive rational number A
B

, where A, B ∈ N, so that

ln n

ln m
>

A

B
>

ln n

ln m
· y

x
.

Hence, mA < nB and mAx > nBy. One the one hand, since f is monotone increasing,
the first inequality mA < nB means that f

`
mA
´ ≤ f

`
nB
´
. On the other hand, since

f
`
mA
´

= f(m)A = mAx and f
`
nB
´

= f(n)B = nBy, the second inequality mAx > nBy

means that

f
“
mA
”

= mAx > nBy = f
“
nB
”

This is a contradiction. ˜
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Epsilon 5. (Putnam 1963/A2) Let f : N → N be a strictly increasing function satisfying
that f(2) = 2 and f(mn) = f(m)f(n) for all relatively prime m and n. Then, f is the
identity function on N.

Proof. Since f is strictly increasing, we find that f(n + 1) ≥ f(n) + 1 for all positive
integers n. It follows that f(n + k) ≥ f(n) + k for all positive integers n and k. We now
determine p = f(3). On the one hand, we obtain

f(18) ≥ f(15) + 3 ≥ f(3)f(5) + 3 ≥ f(3)(f(3) + 2) + 3 = p2 + 2p + 3.

On the other hand, we obtain

f(18) = f(2)f(9) ≤ 2(f(10)−1) = 2f(2)f(5)−2 ≤ 4(f(6)−1)−2 = 4f(2)f(3)−6 = 8p−6.

Combining these two, we deduce p2 + 2p + 3 ≤ 8p − 6 or (p − 3)2 ≤ 0. So, we have
f(3) = p = 3.

We now prove that f
`
2l + 1

´
= 2l + 1 for all positive integers l. Since f(3) = 3, it

clearly holds for l = 1. Assuming that f
`
2l + 1

´
= 2l + 1 for some positive integer l, we

obtain

f
“
2l+1 + 2

”
= f(2)f

“
2l + 1

”
= 2

“
2l + 1

”
= 2l+1 + 2.

Since f is strictly increasing, this means that f
`
2l + k

´
= 2l +k for all k ∈ {1, · · · , 2l +2}.

In particular, we get f
`
2l+1 + 1

´
= 2l+1 + 1, as desired.

Now, we find that f(n) = n for all positive integers n. It clearly holds for n = 1, 2.

Let l be a fixed positive integer. We have f
`
2l + 1

´
= 2l + 1 and f

`
2l+1 + 1

´
= 2l+1 + 1.

Since f is strictly increasing, this means that f
`
2l + k

´
= 2l +k for all k ∈ {1, · · · , 2l +1}.

Since it holds for all positive integers l, we conclude that f(n) = n for all n ≥ 3. This
completes the proof. ˜
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Epsilon 6. Let a, b, c be positive real numbers. Prove the inequality`
1 + a2´ `1 + b2´ `1 + c2´ ≥ (a + b)(b + c)(c + a).

Show that the equality holds if and only if (a, b, c) = (1, 1, 1).

Solution. The inequality has the symmetric face:`
1 + a2´ `1 + b2´ · `1 + b2´ `1 + c2´ · `1 + c2´ `1 + a2´ ≥ (a + b)2(b + c)2(c + a)2.

Now, the symmetry of this expression gives the right approach. We check that, for x, y > 0,`
1 + x2´ `1 + y2´ ≥ (x + y)2

with the equality condition xy = 1. However, it immediately follows from the identity`
1 + x2´ `1 + y2´− (x + y)2 = (1− xy)2.

It is easy to check that the equality in the original inequalty occurs only when a = b =
c = 1. ˜



INFINITY 93

Epsilon 7. (Poland 2006) Let a, b, c be positive real numbers with ab+bc+ca = abc. Prove
that

a4 + b4

ab(a3 + b3)
+

b4 + c4

bc(b3 + c3)
+

c4 + a4

ca(c3 + a3)
≥ 1.

Solution. We first notice that the constraint can be written as
1

a
+

1

b
+

1

c
= 1.

It is now enough to establish the auxiliary inequality

x4 + y4

xy(x3 + y3)
≥ 1

2

„
1

x
+

1

y

«

or
2
`
x4 + y4´ ≥ `x3 + y3´ (x + y) ,

where x, y > 0. However, we obtain

2
`
x4 + y4´− `x3 + y3´ (x + y) = x4 + y4 − x3y − xy3 =

`
x3 − y3´ (x− y) ≥ 0.

˜
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Epsilon 8. (APMO 1996) Let a, b, c be the lengths of the sides of a triangle. Prove that
√

a + b− c +
√

b + c− a +
√

c + a− b ≤ √
a +

√
b +

√
c.

Proof. The left hand side admits the following decomposition√
c + a− b +

√
a + b− c

2
+

√
a + b− c +

√
b + c− a

2
+

√
b + c− a +

√
c + a− b

2
.

We now use the inequality
√

x+
√

y

2
≤
q

x+y
2

to deduce
√

c + a− b +
√

a + b− c

2
≤ √

a,

√
a + b− c +

√
b + c− a

2
≤
√

b,
√

b + c− a +
√

c + a− b

2
≤ √

c.

Adding these three inequalities, we get the result. ˜
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Epsilon 9. Let a, b, c be the lengths of a triangle. Show that

a

b + c
+

b

c + a
+

c

a + b
< 2.

Proof. Since the inequality is symmetric in the three variables, we may assume that a ≤
b ≤ c. We obtain

a

b + c
≤ a

a + b
,

b

c + a
≤ b

a + b
,

c

a + b
< 1.

Adding these three inequalities, we get the result. ˜
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Epsilon 10. (USA 1980) Prove that, for all positive real numbers a, b, c ∈ [0, 1],

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1.

Solution. Since the inequality is symmetric in the three variables, we may assume that
0 ≤ a ≤ b ≤ c ≤ 1. Our first step is to bring the estimation

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
≤ a

a + b + 1
+

b

a + b + 1
+

c

a + b + 1
≤ a + b + c

a + b + 1
.

It now remains to check that
a + b + c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1.

or

(1− a)(1− b)(1− c) ≤ 1− c

a + b + 1
or

(1− a)(1− b)(a + b + 1) ≤ 1.

We indeed obtain the estimation

(1− a)(1− b)(a + b + 1) ≤ (1− a)(1− b)(1 + a)(1 + b) =
`
1− a2´ `1− b2´ ≤ 1.

˜
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Epsilon 11. [AE, p. 186] Show that, for all a, b, c ∈ [0, 1],

a

1 + bc
+

b

1 + ca
+

c

1 + ab
≤ 2.

Proof. Since the inequality is symmetric in the three variables, we may begin with the
assumption 0 ≤ a ≥ b ≥ c ≤ 1. We first give term-by-term estimation:

a

1 + bc
≤ a

1 + ab
,

b

1 + ca
≤ b

1 + ab
,

c

1 + ab
≤ 1

1 + ab
.

Summing up these three, we reach

a

1 + bc
+

b

1 + ca
+

c

1 + ab
≤ a + b + 1

1 + ab
.

We now want to show the inequality

a + b + 1

1 + ab
≤ 2

or
a + b + 1 ≤ 2 + 2ab

or
a + b ≤ 1 + 2ab.

However, it is immediate that 1+2ab−a−b = ab+(1−a)(1−b) is clearly non-negative. ˜
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Epsilon 12. [SL 2006 KOR] Let a, b, c be the lengths of the sides of a triangle. Prove the
inequality √

b + c− a√
b +

√
c−√a

+

√
c + a− b√

c +
√

a−
√

b
+

√
a + b− c√

a +
√

b−√c
≤ 3.

Solution. Since the inequality is symmetric in the three variables, we may assume that
a ≥ b ≥ c. We claim that √

a + b− c√
a +

√
b−√c

≤ 1

and √
b + c− a√

b +
√

c−√a
+

√
c + a− b√

c +
√

a−
√

b
≤ 2.

It is clear that the denominators are positive. So, the first inequality is equivalent to
√

a +
√

b ≥
√

a + b− c +
√

c.

or “√
a +

√
b
”2

≥
“√

a + b− c +
√

c
”2

or √
ab ≥

p
c(a + b− c)

or
ab ≥ c(a + b− c),

which immediately follows from (a− c)(b− c) ≥ 0. Now, we prove the second inequality.

Setting p =
√

a+
√

b and q =
√

a−
√

b, we obtain a−b = pq and p ≥ 2
√

c. It now becomes
√

c− pq√
c− q

+

√
c + pq√
c + q

≤ 2.

We now apply The Cauchy-Schwartz Inequality to deduce
„√

c− pq√
c− q

+

√
c + pq√
c + q

«2

≤
„

c− pq√
c− q

+
c + pq√

c + q

«„
1√

c− q
+

1√
c + q

«

=
2
`
c
√

c− pq2
´

c− q2
· 2

√
c

c− q2

= 4
c2 −√cpq2

(c− q2)2

≤ 4
c2 − 2cq2

(c− q2)2

≤ 4
c2 − 2cq2 + q4

(c− q2)2

≤ 4.

We find that the equality holds if and only if a = b = c. ˜
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Epsilon 13. Let f(x, y) = xy
`
x3 + y3

´
for x, y ≥ 0 with x + y = 2. Prove the inequality

f(x, y) ≤ f

„
1 +

1√
3
, 1− 1√

3

«
= f

„
1− 1√

3
, 1 +

1√
3

«
.

First Solution. We write (x, y) = (1 + ε, 1− ε) for some ε ∈ (−1, 1). It follows that

f(x, y) = (1 + ε) (1− ε)
`
(1 + ε)3 + (1− ε)3

´

=
`
1− ε2

´ `
6ε2 + 2

´

= −6

„
ε2 − 1

3

«2

+
8

3

≤ 8

3

= f

„
1± 1√

3
, 1∓ 1√

3

«
.

˜
Second Solution. The AM-GM Inequality gives

f(x, y) = xy(x + y)
`
(x + y)2 − 3xy

´
= 2xy(4− 4xy) ≤ 2

3

„
3xy + (4− 3xy)

2

«2

=
8

3
.

˜
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Epsilon 14. Let a, b ≥ 0 with a + b = 1. Prove thatp
a2 + b +

p
a + b2 +

√
1 + ab ≤ 3.

Show that the equality holds if and only if (a, b) = (1, 0) or (a, b) = (0, 1).

First Solution. We may begin with the assumption a ≥ 1
2
≥ b. The AM-GM Inequality

yields
2 + b ≥ 1 + (1 + ab) ≥ 2

√
1 + ab

with the equality b = 0. We next show that

3 + a ≥ 4
p

a2 − a + 1

or
(3 + a)2 ≥ 16

`
a2 − a + 1

´

or
(15a− 7)(1− a) ≥ 0.

Since we have a ∈ ˆ 1
2
, 1
˜
, the inequality clearly holds with the equality a = 1. Since we

have
a2 + b = a2 − a + 1 = a + (1− a)2 = a + b2

we conclude that

2
p

a2 + b + 2
p

a + b2 + 2
√

1 + ab ≤ 3 + a + (2 + b) = 6.

˜
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Epsilon 15. (USA 1981) Let ABC be a triangle. Prove that

sin 3A + sin 3B + sin 3C ≤ 3
√

3

2
.

Solution. We observe that the sine function is not cocave on [0, 3π] and that it is negative
on (π, 2π). Since the inequality is symmetric in the three variables, we may assume that
A ≤ B ≤ C. Observe that A + B + C = π and that 3A, 3B, 3C ∈ [0, 3π]. It is clear that
A ≤ π

3
≤ C.

We see that either 3B ∈ [2π, 3π) or 3C ∈ (0, π) is impossible. In the case when 3B ∈
[π, 2π), we obtain the estimation

sin 3A + sin 3B + sin 3C ≤ 1 + 0 + 1 = 2 <
3
√

3

2
.

So, we may assume that 3B ∈ (0, π). Similarly, in the case when 3C ∈ [π, 2π], we obtain

sin 3A + sin 3B + sin 3C ≤ 1 + 1 + 0 = 2 <
3
√

3

2
.

Hence, we also assume 3C ∈ (2π, 3π). Now, our assmptions become A ≤ B < 1
3
π and

2
3
π < C. After the substitution θ = C − 2

3
π, the trigonometric inequality becomes

sin 3A + sin 3B + sin 3θ ≤ 3
√

3

2
.

Since 3A, 3B, 3θ ∈ (0, π) and since the sine function is concave on [0, π], Jensen’s Inequality
gives

sin 3A+sin 3B+sin 3θ ≤ 3 sin

„
3A + 3B + 3θ

3

«
= 3 sin

„
3A + 3B + 3C − 2π

3

«
= 3 sin

“π

3

”
.

Under the assumption A ≤ B ≤ C, the equality occurs only when (A, B, C) =
`

1
9
π, 1

9
π, 7

9
π
´
.
˜
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Epsilon 16. (Chebyshev’s Inequality) Let x1, · · · , xn and y1, · · · yn be two monotone in-
creasing sequences of real numbers:

x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn.

Then, we have the estimation
nX

i=1

xiyi ≥ 1

n

 
nX

i=1

xi

! 
nX

i=1

yi

!
.

Proof. We observe that two sequences are similarly ordered in the sense that

(xi − xj) (yi − yj) ≥ 0

for all 1 ≤ i, j ≤ n. Now, the given inequality is an immediate consequence of the identity

1

n

nX
i=1

xiyi − 1

n

 
nX

i=1

xi

!
1

n

 
nX

i=1

yi

!
=

1

n2

X

1≤i,j≤n

(xi − xj) (yi − yj) .

˜
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Epsilon 17. (United Kingdom 2002) For all a, b, c ∈ (0, 1), show that

a

1− a
+

b

1− b
+

c

1− c
≥ 3 3

√
abc

1− 3
√

abc
.

First Solution. Since the inequality is symmetric in the three variables, we may assume
that a ≥ b ≥ c. Then, we have 1

1−a
≥ 1

1−b
≥ 1

1−c
. By Chebyshev’s Inequality, The

AM-HM Inequality and The AM-GM Inequality, we obtain

a

1− a
+

b

1− b
+

c

1− c
≥ 1

3
(a + b + c)

„
1

1− a
+

1

1− b
+

1

1− c

«

≥ 1

3
(a + b + c)

„
9

(1− a) + (1− b) + (1− c)

«

=
1

3

„
a + b + c

3− (a + b + c)

«

≥ 1

3
· 3 3

√
abc

3− 3 3
√

abc

˜
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Epsilon 18. [IMO 1995/2 RUS] Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

First Solution. After the substitution a = 1
x
, b = 1

y
, c = 1

z
, we get xyz = 1. The inequality

takes the form
x2

y + z
+

y2

z + x
+

z2

x + y
≥ 3

2
.

Since the inequality is symmetric in the three variables, we may assume that x ≥ y ≥ z.
Observe that x2 ≥ y2 ≥ z2 and 1

y+z
≥ 1

z+x
≥ 1

x+y
. Chebyshev’s Inequality and The

AM-HM Inequality offer the estimation

x2

y + z
+

y2

z + x
+

z2

x + y
≥ 1

3

`
x2 + y2 + z2´

„
1

y + z
+

1

z + x
+

1

x + y

«

≥ 1

3

`
x2 + y2 + z2´

„
9

(y + z) + (z + x) + (x + y)

«

=
3

2
· x2 + y2 + z2

x + y + z
.

Finally, we have x2 + y2 + z2 ≥ 1
3
(x + y + z)2 ≥ (x + y + z) 3

√
xyz = x + y + z. ˜
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Epsilon 19. (Iran 1996) Let x, y, z be positive real numbers. Prove that

(xy + yz + zx)

„
1

(x + y)2
+

1

(y + z)2
+

1

(z + x)2

«
≥ 9

4
.

First Solution. [MEK1] We assume that x ≥ y ≥ z ≥ 0 and y > 0 (not excluding z = 0).
Let F denote the left hand side of the inequality. We define

A = (2x + 2y − z)(x− z)(y − z) + z(x + y)2,
B = 1

4
x(x + y − 2z)(11x + 11y + 2z),

C = (x + y)(x + z)(y + z),
D = (x + y + z)(x + y − 2z) + x(y − z) + y(z − x) + (x− y)2,
E = 1

4
(x + y)z(x + y + 2z)2(x + y − 2z)2.

It can be verified that

C2(4F − 9) = (x− y)2[(x + y)(A + B + C) +
1

2
(x + z)(y + z)D] + E.

The right hand side is clearly nonnegative. It becomes an equality only for x = y = z and
for x = y > 0, z = 0. ˜
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Epsilon 20. (APMO 1991) Let a1, · · · , an, b1, · · · , bn be positive real numbers such that
a1 + · · ·+ an = b1 + · · ·+ bn. Show that

a1
2

a1 + b1
+ · · ·+ an

2

an + bn
≥ a1 + · · ·+ an

2
.

First Solution. The key observation is the following identity:
nX

i=1

ai
2

ai + bi
=

1

2

nX
i=1

ai
2 + bi

2

ai + bi
,

which is equivalent to
nX

i=1

ai
2

ai + bi
=

nX
i=1

bi
2

ai + bi
,

which immediately follows from
nX

i=1

ai
2

ai + bi
−

nX
i=1

bi
2

ai + bi
=

nX
i=1

ai
2 − bi

2

ai + bi
=

nX
i=1

(ai − bi) =

nX
i=1

ai −
nX

i=1

bi = 0.

Our strategy is to establish the following symmetric inequality

1

2

nX
i=1

ai
2 + bi

2

ai + bi
≥ a1 + · · ·+ an + b1 + · · ·+ bn

4
.

It now remains to check the the auxiliary inequality

a2 + b2

a + b
≥ a + b

2
,

where a, b > 0. Indeed, we have 2
`
a2 + b2

´− (a + b)2 = (a− b)2 ≥ 0. ˜
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Epsilon 21. Let x, y, z be positive real numbers. Show the cyclic inequality
x

2x + y
+

y

2y + z
+

z

2z + x
≤ 1.

Solution. We first break the homogeneity. The original inequality can be rewritten as

1

2 + y
x

+
1

2 + z
y

+
1

2 + x
z

≤ 1

The key idea is to employ the substitution

a =
y

x
, b =

z

y
, c =

x

z
.

It follows that abc = 1. It now admits the symmetry in the variables:

1

2 + a
+

1

2 + b
+

1

2 + c
≤ 1

Clearing denominators, it becomes

(2 + a)(2 + b) + (2 + b)(2 + c) + (2 + c)(2 + a) ≤ (2 + a)(2 + b)(2 + c)

or
12 + 4(a + b + c) + ab + bc + ca ≤ 8 + 4(a + b + c) + 2(ab + bc + ca) + 1

or
3 ≤ ab + bc + ca.

Applying The AM-GM Inequality, we obtain ab + bc + ca ≥ 3 (abc)
1
3 = 3. ˜
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Epsilon 22. Let x, y, z be positive real numbers with x + y + z = 3. Show the cyclic
inequality

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ 1.

Proof. We begin with the observation

x3 − y3

x2 + xy + y2
+

y3 − z3

y2 + yz + z2
+

z3 − x3

z2 + zx + x2

= (x− y) + (y − z) + (z − x)

= 0

or

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
=

y3

x2 + xy + y2
+

z3

y2 + yz + z2
+

x3

z2 + zx + x2
.

Our strategy is to establish the following symmetric inequality

x3 + y3

x2 + xy + y2
+

y3 + z3

y2 + yz + z2
+

z3 + x3

z2 + zx + x2
≥ 2.

It now remains to check the the auxiliary inequality

a3 + b3

a2 + ab + b2
≥ a + b

3
,

where a, b > 0. Indeed, we obtain the equality

3
`
a3 + b3´− (a + b)

`
a2 + ab + b2´ = 2(a + b)(a− b)2.

We now conclude that

x3 + y3

x2 + xy + y2
+

y3 + z3

y2 + yz + z2
+

z3 + x3

z2 + zx + x2
≥ x + y

3
+

y + z

3
+

z + x

3
= 2.

˜



INFINITY 109

Epsilon 23. [SL 1985 CAN] Let x, y, z be positive real numbers. Show the cyclic inequality

x2

x2 + yz
+

y2

y2 + zx
+

z2

z2 + xy
≤ 2.

First Solution. We first break the homogeneity. The original inequality can be rewritten
as

1

1 + yz
x2

+
1

1 + zx
y2

+
1

1 + xy
z2

≤ 2

The key idea is to employ the substitution

a =
yz

x2
, b =

zx

y2
, c =

z2

xy
.

It then follows that abc = 1. It now admits the symmetry in the variables:

1

1 + a
+

1

1 + b
+

1

1 + c
≤ 2

Since it is symmetric in the three variables, we may break the symmetry. Let’s assume
a ≤ b, c. Since it is obvious that 1

1+a
< 1, it is enough to check the estimation

1

1 + b
+

1

1 + c
≤ 1

or equivalently
2 + b + c

1 + b + c + bc
≤ 1

or equivalently
bc ≥ 1.

However, it follows from abc = 1 and from a ≤ b, c that a ≤ 1 and so that bc ≥ 1. ˜



110 INFINITY

Epsilon 24. [SL 1990 THA] Let a, b, c, d ≥ 0 with ab + bc + cd + da = 1. show that

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
.

Solution. Since the constraint ab + bc + cd + da = 1 is not symmetric in the variables, we
cannot consider the case when a ≥ b ≥ c ≥ d only. We first make the observation that

a2 + b2 + c2 + d2 =
a2 + b2

2
+

b2 + c2

2
+

c2 + d2

2
+

d2 + a2

2
≥ ab + bc + cd + da = 1.

Our strategy is to establish the following result. It is symmetric.

Let a, b, c, d ≥ 0 with a2 + b2 + c2 + d2 ≥ 1. Then, we obtain

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
.

We now exploit the symmetry! Since everything is symmetric in the variables, we may as-
sume that a ≥ b ≥ c ≥ d. Two applications of Chebyshev’s Inequality and one application
of The AM-GM Inequality yield

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c

≥ 1

4

`
a3 + b3 + c3 + d3´

„
1

b + c + d
+

1

c + d + a
+

1

d + a + b
+

1

a + b + c

«

≥ 1

4

`
a3 + b3 + c3 + d3´ 42

(b + c + d) + (c + d + a) + (d + a + b) + (a + b + c)

≥ 1

42

`
a2 + b2 + c2 + d2´ (a + b + c + d)

42

3(a + b + c + d)

=
1

3
.

˜
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Epsilon 25. [IMO 2000/2 USA] Let a, b, c be positive numbers such that abc = 1. Prove
that „

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
≤ 1.

First Solution. Since abc = 1, we can make the substitution a = x
y
, b = y

z
, c = z

x
for some

positive real numbers x, y, z.15 Then, it becomes a well-known symmetric inequality:„
x

y
− 1 +

z

y

«“y

z
− 1 +

x

z

”“ z

x
− 1 +

y

x

”
≤ 1

or
xyz ≥ (y + z − x)(z + x− y)(x + y − z).

˜

15For example, take x = 1, y = 1
a
, z = 1

ab
.
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Epsilon 26. [IMO 1983/6 USA] Let a, b, c be the lengths of the sides of a triangle. Prove
that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

First Solution. After setting a = y + z, b = z + x, c = x + y for x, y, z > 0, it becomes

x3z + y3x + z3y ≥ x2yz + xy2z + xyz2

or
x2

y
+

y2

z
+

z2

x
≥ x + y + z.

However, an application of The Cauchy-Schwarz Inequality gives

(y + z + x)

„
x2

y
+

y2

z
+

z2

x

«
≥ (x + y + z)2.

˜
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Epsilon 27. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

First Solution. Write a = y + z, b = z + x, c = x + y for x, y, z > 0. It’s equivalent to

((y + z)2 + (z + x)2 + (x + y)2)2 ≥ 48(x + y + z)xyz,

which can be obtained as following :

((y + z)2 + (z + x)2 + (x + y)2)2 ≥ 16(yz + zx + xy)2 ≥ 16 · 3(xy · yz + yz · zx + xy · yz).

Here, we used the well-known inequalities p2+q2 ≥ 2pq and (p+q+r)2 ≥ 3(pq+qr+rp). ˜
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Epsilon 28. (Hadwiger-Finsler Inequality) For any triangle ABC with sides a, b, c and area
F , the following inequality holds.

2ab + 2bc + 2ca− (a2 + b2 + c2) ≥ 4
√

3F.

First Proof. After the substitution a = y + z, b = z + x, c = x + y, where x, y, z > 0, it
becomes

xy + yz + zx ≥
p

3xyz(x + y + z),

which follows from the identity

(xy + yz + zx)2 − 3xyz(x + y + z) =
(xy − yz)2 + (yz − zx)2 + (zx− xy)2

2
.

˜
Second Proof. We now present a convexity proof. It is easy to deduce

tan
A

2
+ tan

B

2
+ tan

C

2
=

2ab + 2bc + 2ca− (a2 + b2 + c2)

4F
.

Since the function tan x is convex on
`
0, π

2

´
, Jensen’s Inequality implies that

2ab + 2bc + 2ca− (a2 + b2 + c2)

4F
≥ 3 tan

 
A
2

+ B
2

+ C
2

3

!
=
√

3.

˜
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Epsilon 29. (Tsintsifas) Let p, q, r be positive real numbers and let a, b, c denote the sides
of a triangle with area F . Then, we have

p

q + r
a2 +

q

r + p
b2 +

r

p + q
c2 ≥ 2

√
3F.

Proof. (V. Pambuccian) By Hadwiger-Finsler Inequality, it suffices to show that

p

q + r
a2 +

q

r + p
b2 +

r

p + q
c2 ≥ 1

2
(a + b + c)2 − (a2 + b2 + c2)

or „
p + q + r

q + r

«
a2 +

„
p + q + r

r + p

«
b2 +

„
p + q + r

p + q

«
c2 ≥ 1

2
(a + b + c)2

or

((q + r) + (r + p) + (p + q))

„
1

q + r
a2 +

1

r + p
b2 +

1

p + q
c2

«
≥ (a + b + c)2 .

However, this is a straightforward consequence of The Cauchy-Schwarz Inequality. ˜
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Epsilon 30. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

First Proof. ([LC1], Carlitz) We begin with the following lemma.

Lemma 8.1. We have

a1
2(a2

2 + b2
2 − c2

2) + b1
2(b2

2 + c2
2 − a2

2) + c1
2(c2

2 + a2
2 − b2

2) > 0.

Proof. Observe that it’s equivalent to

(a1
2 + b1

2 + c1
2)(a2

2 + b2
2 + c2

2) > 2(a1
2a2

2 + b1
2b2

2 + c1
2c2

2).

From Heron’s Formula, we find that, for i = 1, 2,

16Fi
2 = (ai

2+bi
2+ci

2)2−2(ai
4+bi

4+ci
4) > 0 or ai

2+bi
2+ci

2 >

q
2(ai

4 + bi
4 + ci

4) .

The Cauchy-Schwarz Inequality implies that

(a1
2+b1

2+c1
2)(a2

2+b2
2+c2

2) > 2

q
(a1

4 + b1
4 + c1

4)(a2
4 + b2

4 + c2
4) ≥ 2(a1

2a2
2+b1

2b2
2+c1

2c2
2).

˜

By the lemma, we obtain

L = a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) > 0,

Hence, we need to show that

L2 − (16F1
2)(16F2

2) ≥ 0.

One may easily check the following identity

L2 − (16F1
2)(16F2

2) = −4(UV + V W + WU),

where

U = b1
2c2

2 − b2
2c1

2, V = c1
2a2

2 − c2
2a1

2 and W = a1
2b2

2 − a2
2b1

2.

Using the identity

a1
2U + b1

2V + c1
2W = 0 or W = −a1

2

c1
2
U − b1

2

c1
2
V,

one may also deduce that

UV + V W + WU = −a1
2

c1
2

„
U − c1

2 − a1
2 − b1

2

2a1
2

V

«2

− 4a1
2b1

2 − (c1
2 − a1

2 − b1
2)2

4a1
2c1

2
V 2.

It follows that

UV + V W + WU = −a1
2

c1
2

„
U − c1

2 − a1
2 − b1

2

2a1
2

V

«2

− 16F1
2

4a1
2c1

2
V 2 ≤ 0.

˜

Second Proof. ([LC2], Carlitz) We rewrite it in terms of a1, b1, c1, a2, b2, c2:

(a1
2 + b1

2 + c1
2)(a2

2 + b2
2 + c2

2)− 2(a1
2a2

2 + b1
2b2

2 + c1
2c2

2)

≥
r“`

a1
2 + b1

2 + c1
2
´2 − 2(a1

4 + b1
4 + c1

4)
”“`

a2
2 + b2

2 + c2
2
´2 − 2(a2

4 + b2
4 + c2

4)
”
.

We employ the following substitutions

x1 = a1
2 + b1

2 + c1
2, x2 =

√
2 a1

2, x3 =
√

2 b1
2, x4 =

√
2 c1

2,

y1 = a2
2 + b2

2 + c2
2, y2 =

√
2 a2

2, y3 =
√

2 b2
2, y4 =

√
2 c2

2.
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We now observe

x1
2 > x2

2 + y3
2 + x4

2 and y1
2 > y2

2 + y3
2 + y4

2.

We now apply Aczél’s inequality to get the inequality

x1y1 − x2y2 − x3y3 − x4y4 ≥
p

(x1
2 − (x2

2 + y3
2 + x4

2)) (y1
2 − (y2

2 + y3
2 + y4

2)).

˜
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Epsilon 31. (Aczél’s Inequality) If a1, · · · , an, b1, · · · , bn > 0 satisfies the inequality

a1
2 ≥ a2

2 + · · ·+ an
2 and b1

2 ≥ b2
2 + · · ·+ bn

2,

then the following inequality holds.

a1b1 − (a2b2 + · · ·+ anbn) ≥
q

(a1
2 − (a2

2 + · · ·+ an
2))
`
b1

2 − `b2
2 + · · ·+ bn

2
´´

Proof. [MV] The Cauchy-Schwarz Inequality shows that

a1b1 ≥
q

(a2
2 + · · ·+ an

2)(b2
2 + · · ·+ bn

2) ≥ a2b2 + · · ·+ anbn.

Then, the above inequality is equivalent to

(a1b1 − (a2b2 + · · ·+ anbn))2 ≥ `a1
2 − `a2

2 + · · ·+ an
2´´ `b1

2 − `b2
2 + · · ·+ bn

2´´ .

In case a1
2 − (a2

2 + · · ·+ an
2) = 0, it’s trivial. Hence, we now assume that a1

2 − (a2
2 +

· · ·+ an
2) > 0. The main trick is to think of the following quadratic polynomial

P(x) = (a1x−b1)
2−

nX
i=2

(aix−bi)
2 =

 
a1

2 −
nX

i=2

ai
2

!
x2+2

 
a1b1 −

nX
i=2

aibi

!
x+

 
b1

2 −
nX

i=2

bi
2

!
.

We now observe that

P
„

b1

a1

«
= −

nX
i=2

„
ai

„
b1

a1

«
− bi

«2

.

Since P
“

b1
a1

”
≤ 0 and since the coefficient of x2 in the quadratic polynomial P is positive,

P should have at least one real root. Therefore, P has nonnegative discriminant. It follows
that  

2

 
a1b1 −

nX
i=2

aibi

!!2

− 4

 
a1

2 −
nX

i=2

ai
2

! 
b1

2 −
nX

i=2

bi
2

!
≥ 0.

˜
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Epsilon 32. If A, B, C, X, Y , Z denote the magnitudes of the corresponding angles of
triangles ABC, and XY Z, respectively, then

cot A cot Y + cot A cot Z + cot B cot Z + cot B cot X + cot C cot X + cot C cot Y ≥ 2.

Proof. By the Cosine Law in triangle ABC, we have cos A = (b2 + c2 − a2)/2bc. On the
other hand, since sin A = 2S/bc, we deduce that

cot A = cos A : sin A =
b2 + c2 − a2

2bc
:

2S

bc
=

b2 + c2 − a2

4S
.

Analogously, we have that cot B = (c2 + a2 − b2)/4S, and so,

cot A + cot B =
b2 + c2 − a2

4S
+

c2 + a2 − b2

4S
=

2c2

4S
=

c2

2S
.

Now since cot Z = (x2 + y2 − z2)/4T , it follows that

cot A cot Z + cot B cot Z = (cot A + cot B) · cot Z

=
c2

2S
· x2 + y2 − z2

4T

=
c2
`
x2 + y2 − z2

´

8ST
.

Similarly, we obtain

cot B cot X + cot C cot X =
a2
`
y2 + z2 − x2

´

8ST
,

and

cot C cot Y + cot A cot Y =
b2
`
z2 + x2 − y2

´

8ST
.

Hence, we conclude that

cot A cot Y + cot A cot Z + cot B cot Z + cot B cot X + cot C cot X + cot C cot Y

= (cot B cot X + cot C cot X) + (cot C cot Y + cot A cot Y ) + (cot A cot Z + cot B cot Z)

=
a2
`
y2 + z2 − x2

´

8ST
+

b2
`
z2 + x2 − y2

´

8ST
+

c2
`
x2 + y2 − z2

´

8ST

=
a2
`
y2 + z2 − x2

´
+ b2

`
z2 + x2 − y2

´
+ c2

`
x2 + y2 − z2

´

8ST
.

From the Neuberg-Pedoe Inequality, we have

a2 `y2 + z2 − x2´+ b2 `z2 + x2 − y2´+ c2 `x2 + y2 − z2´ ≥ 16ST,

and so

cot A cot Y + cot A cot Z + cot B cot Z + cot B cot X + cot C cot X + cot C cot Y ≥ 2,

with equality if and only if the triangles ABC and XY Z are similar. ˜
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Epsilon 33. (Vasile Cârtoaje) Let a, b, c, x, y, z be nonnegative reals. Prove the inequality

(ay + az + bz + bx + cx + cy)2 ≥ 4 (bc + ca + ab) (yz + zx + xy) ,

with equality if and only if a : x = b : y = c : z.

Proof. According to the Conway substitution theorem, since a, b, c are nonnegative reals,
there exists a triangle ABC with area S = 1

2

√
bc + ca + ab and with its angles A, B,

C satisfying cot A = a
2S

, cot B = b
2S

, cot C = c
2S

(note that we cannot denote the
sidelengths of triangle ABC by a, b, c here, since a, b, c already stand for something
different). Similarly, since x, y, z are nonnegative reals, there exists a triangle XY Z with
area T = 1

2

√
yz + zx + xy and with its angles X, Y , Z satisfying cot X = x

2T
, cot Y = y

2T
,

cot Z = z
2T

. Now, by Epsilon 32, we have

cot A cot Y + cot A cot Z + cot B cot Z + cot B cot X + cot C cot X + cot C cot Y ≥ 2,

which rewrites as
a

2S
· y

2T
+

a

2S
· z

2T
+

b

2S
· z

2T
+

b

2S
· x

2T
+

c

2S
· x

2T
+

c

2T
· y

2T
≥ 2,

and thus,

ay + az + bz + bx + cx + cy

≥ 2 · 2S · 2T

= 2 · 2 · 1

2

√
bc + ca + ab · 2 · 1

2

√
yz + zx + xy

= 2
p

(bc + ca + ab) (yz + zx + xy).

Upon squaring, this becomes

(ay + az + bz + bx + cx + cy)2 ≥ 4 (bc + ca + ab) (yz + zx + xy) .

˜
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Epsilon 34. (Walter Janous, Crux Mathematicorum) If u, v, w, x, y, z are six reals such
that the terms y+z, z+x, x+y, v+w, w+u, u+v, and vw+wu+uv are all nonnegative,
then

x

y + z
· (v + w) +

y

z + x
· (w + u) +

z

x + y
· (u + v) ≥

p
3 (vw + wu + uv).

Proof. According to the Conway substitution theorem, since the reals v + w, w + u, u + v
and vw + wu + uv are all nonnegative, there exists a triangle ABC with sidelengths
a =

√
v + w, b =

√
w + u, c =

√
u + v and area S = 1

2

√
vw + wu + uv. Applying the

Extended Tsintsifas Inequality to this triangle ABC and to the reals x, y, z satisfying the
condition that the reals y + z, z + x, x + y are all positive, we obtain

x

y + z
· a2 +

y

z + x
· b2 +

z

x + y
· c2 ≥ 2

√
3S,

which rewrites as
x

y + z
· `√v + w

´2
+

y

z + x
· `√w + u

´2
+

z

x + y
· `√u + v

´2 ≥ 2
√

3 · 1

2

√
vw + wu + uv,

and thus,
x

y + z
· (v + w) +

y

z + x
· (w + u) +

z

x + y
· (u + v) ≥

p
3 (vw + wu + uv).

˜
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Epsilon 35. (Tran Quang Hung) In any triangle ABC with sidelengths a, b, c, circumradius
R, inradius r, and area S, we have that

a2 +b2 +c2 ≥ 4S
√

3+(a−b)2 +(b−c)2 +(c−a)2 +16Rr

„X
cos2

A

2
−
X

cos
B

2
cos

C

2

«
.

Proof. We know that Hadwiger-Finsler’s Inequality states that

x2 + y2 + z2 − 4T
√

3 ≥ (x− y)2 + (y − z)2 + (z − x)2,

for any triangle XY Z with sidelengths x, y, z, and area T . Let us apply this for the
triangle XY Z = IaIbIc, where X = Ia, Y = Ib, Z = Ic are the excenters of ABC. In this
case, it is well-known that

x = 4R cos
A

2
, y = 4R cos

B

2
, z = 4R cos

C

2
, T = 2sR,

where s is the semiperimeter of triangle ABC. Therefore,

16R2

„
cos2

A

2
+ cos2

B

2
+ cos2

C

2

«
− 8s

√
3

≥ 16R2

"„
cos2

A

2
− cos2

B

2

«2

+

„
cos2

B

2
− cos2

C

2

«2

+

„
cos2

C

2
− cos2

A

2

«2
#

,

which according to the well-known formulas

cos
A

2
=

r
s(s− a)

bc
, cos

B

2
=

r
s(s− b)

ca
, cos

C

2
=

r
s(s− c)

ab
,

easily reduces to

a2 +b2 +c2 ≥ 4S
√

3+(a−b)2 +(b−c)2 +(c−a)2 +16Rr

„X
cos2

A

2
−
X

cos
B

2
cos

C

2

«
.

˜
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Epsilon 36. For all θ ∈ R, we have

sin (3θ) = 4 sin θ sin
“π

3
+ θ
”

sin

„
2π

3
+ θ

«
.

Proof. It follows that

sin (3θ) = 3 sin θ − 4 sin3 θ

= sin θ
`
3 cos2 θ − sin2 θ

´

= 4 sin θ

„√
3

2
cos θ +

1

2
sin θ

«„√
3

2
cos θ − 1

2
sin θ

«

= 4 sin θ sin
“π

3
+ θ
”

sin

„
2π

3
+ θ

«
.

˜
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Epsilon 37. For all A, B, C ∈ R with A + B + C = 2π, we have

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1.

Proof. Our job is to show that the quadratic eqaution

t2 + (2 cos B cos C) t + cos2 B + cos2 C − 1 = 0

has a root t = cos A. We find that it admits roots

t =
−2 cos B cos C ±

p
4 cos2 B cos2 C − 4 (cos2 B + cos2 C − 1)

2

= − cos B cos C ±
p

(1− cos2 B) (1− cos2 C)

= − cos B cos C ± | sin B sin C|.
Since we have

− cos B cos C + sin B sin C = − cos(B + C) = − cos (π −A) = cos A,

we find that t = cos A satisfies the quadratic equation, as desired. ˜
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Epsilon 38. [SL 2005 KOR] In an acute triangle ABC, let D, E, F , P , Q, R be the feet
of perpendiculars from A, B, C, A, B, C to BC, CA, AB, EF , FD, DE, respectively.
Prove that

p(ABC)p(PQR) ≥ p(DEF )2,

where p(T ) denotes the perimeter of triangle T .

Solution. Let’s euler this problem. Let ρ be the circumradius of the triangle ABC. It’s
easy to show that BC = 2ρ sin A and EF = 2ρ sin A cos A. Since DQ = 2ρ sin C cos B cos A,
DR = 2ρ sin B cos C cos A, and \FDE = π − 2A, the Cosine Law gives us

QR2 = DQ2 + DR2 − 2DQ ·DR cos(π − 2A)

= 4ρ2 cos2 A
ˆ
(sin C cos B)2 + (sin B cos C)2 + 2 sin C cos B sin B cos C cos(2A)

˜

or

QR = 2ρ cos A
p

f(A, B, C),

where

f(A, B, C) = (sin C cos B)2 + (sin B cos C)2 + 2 sin C cos B sin B cos C cos(2A).

So, what we need to attack is the following inequality:
0
@X

cyclic

2ρ sin A

1
A
0
@X

cyclic

2ρ cos A
p

f(A, B, C)

1
A ≥

0
@X

cyclic

2ρ sin A cos A

1
A

2

or 0
@X

cyclic

sin A

1
A
0
@X

cyclic

cos A
p

f(A, B, C)

1
A ≥

0
@X

cyclic

sin A cos A

1
A

2

.

Our job is now to find a reasonable lower bound of
p

f(A, B, C). Once again, we express
f(A, B, C) as the sum of two squares. We observe that

f(A, B, C) = (sin C cos B)2 + (sin B cos C)2 + 2 sin C cos B sin B cos C cos(2A)

= (sin C cos B + sin B cos C)2 + 2 sin C cos B sin B cos C [−1 + cos(2A)]

= sin2(C + B)− 2 sin C cos B sin B cos C · 2 sin2 A

= sin2 A [1− 4 sin B sin C cos B cos C] .

So, we shall express 1 − 4 sin B sin C cos B cos C as the sum of two squares. The trick is
to replace 1 with

`
sin2 B + cos2 B

´ `
sin2 C + cos2 C

´
. Indeed, we get

1− 4 sin B sin C cos B cos C =
`
sin2 B + cos2 B

´ `
sin2 C + cos2 C

´− 4 sin B sin C cos B cos C

= (sin B cos C − sin C cos B)2 + (cos B cos C − sin B sin C)2

= sin2(B − C) + cos2(B + C)

= sin2(B − C) + cos2 A.

It therefore follows that

f(A, B, C) = sin2 A
ˆ
sin2(B − C) + cos2 A

˜ ≥ sin2 A cos2 A

so that X

cyclic

cos A
p

f(A, B, C) ≥
X

cyclic

sin A cos2 A.

So, we can complete the proof if we establish that
0
@X

cyclic

sin A

1
A
0
@X

cyclic

sin A cos2 A

1
A ≥

0
@X

cyclic

sin A cos A

1
A

2

.
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Indeed, one sees that it’s a direct consequence of The Cauchy-Schwarz Inequality

(p + q + r)(x + y + z) ≥ (
√

px +
√

qy +
√

rz)2,

where p, q, r, x, y and z are positive real numbers.
˜

Remark 8.1. Alternatively, one may obtain another lower bound of f(A, B, C):

f(A, B, C) = (sin C cos B)2 + (sin B cos C)2 + 2 sin C cos B sin B cos C cos(2A)

= (sin C cos B − sin B cos C)2 + 2 sin C cos B sin B cos C [1 + cos(2A)]

= sin2(B − C) + 2
sin(2B)

2
· sin(2C)

2
· 2 cos2 A

≥ cos2 A sin(2B) sin(2C).

Then, we can use this to offer a lower bound of the perimeter of triangle PQR:

p(PQR) =
X

cyclic

2ρ cos A
p

f(A, B, C) ≥
X

cyclic

2ρ cos2 A
√

sin 2B sin 2C

So, one may consider the following inequality:

p(ABC)
X

cyclic

2ρ cos2 A
√

sin 2B sin 2C ≥ p(DEF )2

or 0
@2ρ

X

cyclic

sin A

1
A
0
@X

cyclic

2ρ cos2 A
√

sin 2B sin 2C

1
A ≥

0
@2ρ

X

cyclic

sin A cos A

1
A

2

.

or 0
@X

cyclic

sin A

1
A
0
@X

cyclic

cos2 A
√

sin 2B sin 2C

1
A ≥

0
@X

cyclic

sin A cos A

1
A

2

.

However, it turned out that this doesn’t hold. Disprove this!
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Epsilon 39. [IMO 2001/1 KOR] Let ABC be an acute-angled triangle with O as its
circumcenter. Let P on line BC be the foot of the altitude from A. Assume that \BCA ≥
\ABC + 30◦. Prove that \CAB + \COP < 90◦.

Solution. The angle inequality \CAB+\COP < 90◦ can be written as \COP < \PCO.
This can be shown if we establish the length inequality OP > PC. Since the power of
P with respect to the circumcircle of ABC is OP 2 = R2 − BP · PC, where R is the
circumradius of the triangle ABC, it becomes R2 − BP · PC > PC2 or R2 > BC · PC.
We euler this. It’s an easy job to get BC = 2R sin A and PC = 2R sin B cos C. Hence,
we show the inequality R2 > 2R sin A · 2R sin B cos C or sin A sin B cos C < 1

4
. Since

sin A < 1, it suffices to show that sin A sin B cos C < 1
4
. Finally, we use the angle condition

\C ≥ \B + 30◦ to obtain the trigonometric inequality

sin B cos C =
sin(B + C)− sin(C −B)

2
≤ 1− sin(C −B)

2
≤ 1− sin 30◦

2
=

1

4
.

˜
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Epsilon 40. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Second Proof. [AE, p.171] Let ABC be a triangle with sides BC = a, CA = b and AB = c.
After taking the point P on the same side of BC as the vertex A so that 4PBC is
equilateral, we use The Cosine Law to deduce the geometric identity

AP 2 = b2 + c2 − 2bc cos
˛̨
˛C − π

6

˛̨
˛

= b2 + c2 − 2bc cos
“
C − π

6

”

= b2 + c2 − bc cos C −
√

3bc sin C

= b2 + c2 − b2 + c2 − a2

2
− 2

√
3K

which implies the geometric inequality

b2 + c2 − b2 + c2 − a2

2
≥ 2

√
3K

or equivalently

a2 + b2 + c2 ≥ 4
√

3S.

˜
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Epsilon 41. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Third Proof. [DP2] We take the point P on the same side of B1C1 as the vertex A1 so that
4PB1C1 ∼ 4A2B2C2. Now, we use The Cosine Law to deduce the geometric identity

a2
2A1P

2

= a2
2b1

2 + b2
2a1

2 − 2a1a2b1b2 cos |C1 − C2|
= a2

2b1
2 + b2

2a1
2 − 2a1a2b1b2 cos (C1 − C2)

= a2
2b1

2 + b2
2a1

2 − 1

2
(2a1b1 cos C1) (2a2b2 cos C2)− 8

„
1

2
a1b1 sin C1

«„
1

2
a2b2 sin C2

«

= a2
2b1

2 + b2
2a1

2 − 1

2

`
a1

2 + b1
2 − c1

2´ `a1
2 + b1

2 − c1
2´− 8F1F2,

which implies the geometric inequality

a2
2b1

2 + b2
2a1

2 − 1

2

`
a1

2 + b1
2 − c1

2´ `a1
2 + b1

2 − c1
2´ ≥ 8F1F2

or equivalently

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

˜
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Epsilon 42. (Barrow’s Inequality) Let P be an interior point of a triangle ABC and let
U , V , W be the points where the bisectors of angles BPC, CPA, APB cut the sides
BC,CA,AB respectively. Then, we have

PA + PB + PC ≥ 2(PU + PV + PW ).

Proof. ([MB] and [AK]) Let d1 = PA, d2 = PB, d3 = PC, l1 = PU , l2 = PV , l3 = PW ,
2θ1 = \BPC, 2θ2 = \CPA, and 2θ3 = \APB. We need to show that d1 + d2 + d3 ≥
2(l1 + l2 + l3). It’s easy to deduce the following identities

l1 =
2d2d3

d2 + d3
cos θ1, l2 =

2d3d1

d3 + d1
cos θ2, and l3 =

2d1d2

d1 + d2
cos θ3,

It now follows that

l1 + l2 + l3 ≤
√

d2d3 cos θ1 +
√

d3d1 cos θ2 +
√

d1d2 cos θ3 ≤ 1

2
(d1 + d2 + d3) .

˜
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Epsilon 43. ([AK], Abi-Khuzam) Let x1, · · · , x4 be positive real numbers. Let θ1, · · · , θ4

be real numbers such that θ1 + · · ·+ θ4 = π. Then, we have

x1 cos θ1 +x2 cos θ2 +x3 cos θ3 +x4 cos θ4 ≤
r

(x1x2 + x3x4)(x1x3 + x2x4)(x1x4 + x2x3)

x1x2x3x4
.

Proof. Let p = x1
2+x2

2

2x1x2
+ x3

2+x4
2

2x3x4
q = x1x2+x3x4

2
and λ =

q
p
q
. In the view of θ1 + θ2 +

(θ3 + θ4) = π and θ3 + θ4 + (θ1 + θ2) = π, we have

x1 cos θ1 + x2 cos θ2 + λ cos(θ3 + θ4) ≤ pλ =
√

pq,

and
x3 cos θ3 + x4 cos θ4 + λ cos(θ1 + θ2) ≤ q

λ
=
√

pq.

Since cos(θ3 + θ4) + cos(θ1 + θ2) = 0, adding these two above inequalities yields

x1 cos θ1+x2 cos θ2+x3 cos θ3+x4 cos θ4 ≤ 2
√

pq =

r
(x1x2 + x3x4)(x1x3 + x2x4)(x1x4 + x2x3)

x1x2x3x4
.

˜
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Epsilon 44. [IMO 1991/5 FRA] Let ABC be a triangle and P an interior point in ABC.
Show that at least one of the angles \PAB, \PBC, \PCA is less than or equal to 30◦.

First Proof. Set A1 = A, A2 = B, A3 = C, A4 = A and write \PAiAi+1 = θi. Let
H1, H2, H3 denote the feet of perpendiculars from P to the sides BC, CA, AB, respec-
tively. Now, we assume to the contrary that θ1, θ2, θ3 > π

6
. Since the angle sum of a

triangle is 180◦, it is immediate that θ1, θ2, θ3 < 5π
6

. Hence,

PHi

PAi+1
= sin θi >

1

2
,

for all i = 1, 2, 3. We now find that

2 (PH1 + PH2 + PH3) > PA2 + PA3 + PA1,

which contradicts for The Erdős-Mordell Theorem. ˜
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Epsilon 45. Any triangle has the same Brocard angles.

Proof. More strongly, we show that the isogonal conjugate of the first Brocard point
is the second Brocard point. Let Ω1, Ω2 denote the Brocard points of a triangle ABC,
respectively. Let ω1, ω2 be the corresponding Brocard angles. Take the isogonal conjugate
point Ω of Ω1. Then, by the definition of isogonal conjugate point, we find that

\ΩBA = \Ω2CB = \Ω2AC = ω1.

Hence, we see that the interior point Ω is the the second Brocard point of ABC. By the
uniqueness of the second Brocard point of ABC, we see that Ω = Ω2 and that ω1 = ω2. ˜



134 INFINITY

Epsilon 46. The Brocard angle ω of the triangle ABC satisfies

cot ω = cot A + cot B + cot C.

Proof. Let Ω denote the first Brocard point of ABC. We only prove it in the case when
ABC is acute. Let AH, PQ denote the altitude from A, Q, respectively. Both angles
\B and \C are acute, the point H lies on the interior side of BC. Let P 6= Ω be the
intersubsection point of the circumcircle of triangle ΩCA with ray BΩ. Since \APB =
\APΩ = \ACΩ = ω = \ΩBC = \PBC, we find that AP is parallel to BC so that
AH = PQ. Since \A is acute or since \PCB = \PBA + \C = \B + \C = 180◦ − \A
is obtuse, we see that the point H lies on the outside of side BC. Since the four points
B, H, C, Q are collinear in this order, we have BQ = BH +HC +CQ. It thus follows that

cot ω =
BQ

PQ
=

BH

AH
+

HC

AH
+

CQ

PQ
= cot A + cot B + cot C.

˜
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Epsilon 47. (The Trigonometric Version of Ceva’s Theorem) For an interior point P of a
triangle A1A2A3, we write

\A3A1A2 = α1, \PA1A2 = ϑ1, \PA1A3 = θ1,

\A1A2A3 = α2, \PA2A3 = ϑ2, \PA2A1 = θ2,

\A2A3A1 = α3, \PA3A1 = ϑ3, \PA3A2 = θ3.

Then, we find a hidden symmetry:

sin ϑ1

sin θ1
· sin ϑ2

sin θ2
· sin ϑ3

sin θ3
= 1

or equivalently

1

sin α1 sin α2 sin α3
= [cot ϑ1 − cot α1] [cot ϑ2 − cot α2] [cot ϑ3 − cot α3] .

Proof. Applying The Sine Law, we have

sin ϑ1

sin θ1
=

PA2

PA1
,

sin ϑ2

sin θ2
=

PA3

PA2
,

sin ϑ3

sin θ3
=

PA1

PA3
.

It follows that
sin ϑ1

sin θ1
· sin ϑ2

sin θ2
· sin ϑ3

sin θ3
=

PA2

PA1
· PA3

PA2
· PA1

PA3
= 1.

We now observe that, for i = 1, 2, 3,

cot ϑi − cot αi =
cos ϑi

sin ϑi
− cos αi

sin αi
=

sin (αi − ϑi)

sin αi sin ϑi
=

sin θi

sin αi sin ϑi
.

It therefore follows that

[cot ϑ1 − cot α1] [cot ϑ2 − cot α2] [cot ϑ3 − cot α3]

=
sin θ1

sin α1 sin ϑ1
· sin θ2

sin α2 sin ϑ2
· sin θ3

sin α3 sin ϑ3

=
1

sin α1 sin α2 sin α3
· sin θ1

sin ϑ1
· sin θ2

sin ϑ2
· sin θ3

sin ϑ3

=
1

sin α1 sin α2 sin α3
.

˜
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Epsilon 48. Let P be an interior point of a triangle ABC. Show that

cot (\PAB) + cot (\PBC) + cot (\PCA) ≥ 3
√

3.

Proof. Set A1 = A, A2 = B, A3 = C, A4 = A and write \Ai = αi and \PAiAi+1 = ϑi

for i = 1, 2, 3. Our job is to establish the inequality

cot ϑ1 + cot ϑ2 + cot ϑ3 ≥ 3
√

3.

We begin with The Trigonometric Version of Ceva’s Theorem

1

sin α1 sin α2 sin α3
= [cot ϑ1 − cot α1] [cot ϑ2 − cot α2] [cot ϑ3 − cot α3] .

We first apply The AM-GM Inequality and Jensen’s Inequality to deduce

sin α1 sin α2 sin α3 ≤
„

sin α1 + sin α2 + sin α3

3

«3

≤ sin3
“α1 + α2 + α3

3

”
=

„√
3

2

«3

or „
2√
3

«3

≤ [cot ϑ1 − cot α1] [cot ϑ2 − cot α2] [cot ϑ3 − cot α3] .

Since ϑi ∈ (0, αi), the monotonicity of the cotangent function shows that cot αi − cot ϑi

is positive. Hence, by The AM-GM Inequality, the above inequality guarantees that

2√
3

≤ 3
p

[cot ϑ1 − cot α1] [cot ϑ2 − cot α2] [cot ϑ3 − cot α3]

≤ [cot ϑ1 − cot α1] + [cot ϑ2 − cot α2] + [cot ϑ3 − cot α3]

3

=
[cot ϑ1 + cot ϑ2 + cot ϑ3]− [cot α1 + cot α2 + cot α3]

3
or

cot ϑ1 + cot ϑ2 + cot ϑ3 ≥ cot α1 + cot α2 + cot α3 + 2
√

3.

Since we know cot α1 + cot α2 + cot α3 ≥
√

3, we get the desired inequality. ˜
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Epsilon 49. [IMO 1961/2 POL] (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Fourth Proof. ([RW], R. Weitzenböck) Let ABC be a triangle with sides a, b, and c. To
euler it, we toss the picture on the real plane R2 with the coordinates A(α, β), B

`−a
2
, 0
´

and C
`

a
2
, 0
´
. Now, we obtain

`
a2 + b2 + c2´2 −

“
4
√

3S
”2

=

„
3

2
a2 +

`
α2 − β2´

«2

+ 16α2β2 ≥ 0.

˜
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Epsilon 50. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Fourth Proof. (By a participant from KMO16 summer program.) We toss 4A1B1C1 and
4A2B2C2 onto the real plane R2:

A1(0, p1), B1(p2, 0), C1(p3, 0), A2(0, q1), B2(q2, 0), and C2(q3, 0).

It therefore follows from the inequality x2 + y2 ≥ 2|xy| that

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2)

= (p3 − p2)
2(2q1

2 + 2q1q2) + (p1
2 + p3

2)(2q2
2 − 2q2q3) + (p1

2 + p2
2)(2q3

2 − 2q2q3)

= 2(p3 − p2)
2q1

2 + 2(q3 − q2)
2p1

2 + 2(p3q2 − p2q3)
2

≥ 2((p3 − p2)q1)
2 + 2((q3 − q2)p1)

2

≥ 4|(p3 − p2)q1| · |(q3 − q2)p1|
= 16F1F2 .

˜

16Korean Mathematical Olympiads
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Epsilon 51. (USA 2003) Let ABC be a triangle. A circle passing through A and B
intersects the segments AC and BC at D and E, respectively. Lines AB and DE intersect
at F , while lines BD and CF intersect at M . Prove that MF = MC if and only if
MB ·MD = MC2.

Solution. (Darij Grinberg) By Ceva’s theorem, applied to the triangle BCF and the con-
current cevians BM , CA and FE (in fact, these cevians concur at the point D), we
have

MF

MC
· EC

EB
· AB

AF
= 1.

Hence, MF
MC

= AF
AB

· EB
EC

= AF
AB

: EC
EB

. Thus, MF = MC holds if and only if AF
AB

= EC
EB

.

But by Thales’ theorem, AF
AB

= EC
EB

is equivalent to AE|FC, and obviously we have
AE|FC if and only if \EAC = \ACF . Now, since the points A, B, D and E lie on
one circle, we have that \EAD = \EBD, what rewrites as \EAC = \CBM . On other
hand, we trivially have that \ACF = \DCM . Thus, \EAC = \ACF if and only if
\CBM = \DCM . Now, as it is clear that \CMB = \DMC, we have \CBM = \DCM
if and only if the triangles CMB and DMC are similar. But, the triangles CMB and
DMC are similar if and only if MB

MC
= MC

MD
. This is finally equivalent to MB ·MD = MC2,

and so, by combining all these equivalences, the conclusion follows. ˜
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Epsilon 52. [TD] Let P be an arbitrary point in the plane of a triangle ABC with the
centroid G. Show the following inequalities

(1) BC · PB · PC + AB · PA · PB + CA · PC · PA ≥ BC ·CA ·AB and

(2) PA
3 ·BC + PB

3 · CA + PC
3 ·AB ≥ 3PG ·BC · CA ·AB.

Solution. We only check the first inequality. We regard A, B, C, P as complex numbers
and assume that P corresponds to 0. We’re required to prove that

|(B − C)BC|+ |(A−B)AB|+ |(C −A)CA| ≥ |(B − C)(C −A)(A−B)|.
It remains to apply The Triangle Inequality to the algebraic identity

(B − C)BC + (A−B)AB + (C −A)CA = −(B − C)(C −A)(A−B).

˜
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Epsilon 53. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2.
Then, we have

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Fifth Proof. ([GC], G. Chang) We regard A, B, C, A′, B′, C′ as complex numbers and as-
sume that C corresponds to 0. Rewriting the both sides in the inequality in terms of
complex numbers, we get

a1
2(b2

2 + c2
2 − a2

2) + b1
2(c2

2 + a2
2 − b2

2) + c1
2(a2

2 + b2
2 − c2

2)

= 2
“
|A′|2|B|2 + |A|2|B′|2

”
− `AB + AB

´ `
A′B′ + A′B

´

and
16F1F2 = ± `AB −AB

´ `
A′B′ + A′B′´ ,

where the sign begin chose to make the right hand positive. According to whether the
triangle ABC and the triangle A′B′C′ have the same orientation or not, we obtain either

a1
2(b2

2 +c2
2−a2

2)+b1
2(c2

2 +a2
2−b2

2)+c1
2(a2

2 +b2
2−c2

2)−16F1F2 = 2
˛̨
AB′ −A′B

˛̨2

or

a1
2(b2

2 +c2
2−a2

2)+b1
2(c2

2 +a2
2−b2

2)+c1
2(a2

2 +b2
2−c2

2)−16F1F2 = 2
˛̨
AB′ −A′B

˛̨2
.

This completes the proof. ˜
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Epsilon 54. [SL 2002 KOR] Let ABC be a triangle for which there exists an interior point
F such that \AFB = \BFC = \CFA. Let the lines BF and CF meet the sides AC
and AB at D and E, respectively. Prove that AB + AC ≥ 4DE.

Solution. Let AF = x, BF = y, CF = z and let ω = cos 2π
3

+ i sin 2π
3

. We can toss the
pictures on C so that the points F , A, B, C, D, and E are represented by the complex
numbers 0, x, yω, zω2, d, and e. It’s an easy exercise to establish that DF = xz

x+z
and

EF = xy
x+y

. This means that d = − xz
x+z

ω and e = − xy
x+y

ω. We’re now required to prove

that

|x− yω|+ |zω2 − x| ≥ 4

˛̨
˛̨ −zx

z + x
ω +

xy

x + y
ω2

˛̨
˛̨ .

Since |ω| = 1 and ω3 = 1, we have |zω2 − x| = |ω(zω2 − x)| = |z − xω|. Therefore, we
need to prove

|x− yω|+ |z − xω| ≥
˛̨
˛̨ 4zx

z + x
− 4xy

x + y
ω

˛̨
˛̨ .

More strongly, we establish that |(x − yω) + (z − xω)| ≥
˛̨
˛ 4zx

z+x
− 4xy

x+y
ω
˛̨
˛ or |p − qω| ≥

|r − sω|, where p = z + x, q = y + x, r = 4zx
z+x

and s = 4xy
x+y

. It’s clear that p ≥ r > 0 and

q ≥ s > 0. It follows that

|p− qω|2−|r − sω|2 = (p−qω)(p− qω)−(r−sω)(r − sω) = (p2−r2)+(pq−rs)+(q2−s2) ≥ 0.

It’s easy to check that the equality holds if and only if 4ABC is equilateral. ˜
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Epsilon 55. (APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca).

First Solution. Choose A, B, C ∈ `
0, π

2

´
with a =

√
2 tan A, b =

√
2 tan B, and c =√

2 tan C. Using the trigonometric identity 1 + tan2 θ = 1
cos2θ

, one may rewrite it as

4

9
≥ cos A cos B cos C (cos A sin B sin C + sin A cos B sin C + sin A sin B cos C) .

One may easily check the following trigonometric identity

cos(A+B+C) = cos A cos B cos C−cos A sin B sin C−sin A cos B sin C−sin A sin B cos C.

Then, the above trigonometric inequality takes the form

4

9
≥ cos A cos B cos C (cos A cos B cos C − cos(A + B + C)) .

Let θ = A+B+C
3

. Applying The AM-GM Inequality and Jesen’s Inequality, we have

cos A cos B cos C ≤
„

cos A + cos B + cos C

3

«3

≤ cos3 θ.

We now need to show that
4

9
≥ cos3 θ(cos3 θ − cos 3θ).

Using the trigonometric identity

cos 3θ = 4 cos3 θ − 3 cos θ or cos3 θ − cos 3θ = 3 cos θ − 3 cos3 θ,

it becomes
4

27
≥ cos4 θ

`
1− cos2 θ

´
,

which follows from The AM-GM Inequality
„

cos2 θ

2
· cos2 θ

2
· `1− cos2 θ

´« 1
3

≤ 1

3

„
cos2 θ

2
+

cos2 θ

2
+
`
1− cos2 θ

´«
=

1

3
.

One find that the equality holds if and only if tan A = tan B = tan C = 1√
2

if and only if

a = b = c = 1. ˜



144 INFINITY

Epsilon 56. (Latvia 2002) Let a, b, c, d be the positive real numbers such that

1

1 + a4
+

1

1 + b4
+

1

1 + c4
+

1

1 + d4
= 1.

Prove that abcd ≥ 3.

First Solution. We can write a2 = tan A, b2 = tan B, c2 = tan C, d2 = tan D, where
A, B, C, D ∈ `0, π

2

´
. Then, the algebraic identity becomes the following trigonometric

identity :
cos2 A + cos2 B + cos2 C + cos2 D = 1.

Applying The AM-GM Inequality, we obtain

sin2 A = 1− cos2 A = cos2 B + cos2 C + cos2 D ≥ 3 (cos B cos C cos D)
2
3 .

Similarly, we obtain

sin2 B ≥ 3 (cos C cos D cos A)
2
3 , sin2 C ≥ 3 (cos D cos A cos B)

2
3 , and sin2 D ≥ 3 (cos A cos B cos C)

2
3 .

Multiplying these four inequalities, we get the result! ˜
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Epsilon 57. (Korea 1998) Let x, y, z be the positive reals with x + y + z = xyz. Show
that

1√
1 + x2

+
1p

1 + y2
+

1√
1 + z2

≤ 3

2
.

First Solution. We give a convexity proof. We can write x = tan A, y = tan B, z = tan C,

where A, B, C ∈ `0, π
2

´
. Using the fact that 1 + tan2 θ =

`
1

cos θ

´2
, we rewrite it in the

terms of A, B, C :

cos A + cos B + cos C ≤ 3

2
.

It follows from tan(π − C) = −z = x+y
1−xy

= tan(A + B) and from π − C, A + B ∈ (0, π)

that π − C = A + B or A + B + C = π. Hence, it suffices to show the following. ˜
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Epsilon 58. (USA 2001) Let a, b, and c be nonnegative real numbers such that a2 + b2 +
c2 + abc = 4. Prove that 0 ≤ ab + bc + ca− abc ≤ 2.

Solution. Notice that a, b, c > 1 implies that a2 + b2 + c2 +abc > 4. If a ≤ 1, then we have
ab + bc + ca − abc ≥ (1 − a)bc ≥ 0. We now prove that ab + bc + ca − abc ≤ 2. Letting
a = 2p, b = 2q, c = 2r, we get p2 + q2 + r2 + 2pqr = 1. By the above exercise, we can
write

a = 2 cos A, b = 2 cos B, c = 2 cos C for some A, B, C ∈
h
0,

π

2

i
with A + B + C = π.

We are required to prove

cos A cos B + cos B cos C + cos C cos A− 2 cos A cos B cos C ≤ 1

2
.

One may assume that A ≥ π
3

or 1− 2 cos A ≥ 0. Note that

cos A cos B+cos B cos C+cos C cos A−2 cos A cos B cos C = cos A(cos B+cos C)+cos B cos C(1−2 cos A).

We apply Jensen’s Inequality to deduce cos B+cos C ≤ 3
2
−cos A. Note that 2 cos B cos C =

cos(B − C) + cos(B + C) ≤ 1− cos A. These imply that

cos A(cos B+cos C)+cos B cos C(1−2 cos A) ≤ cos A

„
3

2
− cos A

«
+

„
1− cos A

2

«
(1−2 cos A).

However, it’s easy to verify that cos A
`

3
2
− cos A

´
+
`

1−cos A
2

´
(1− 2 cos A) = 1

2
. ˜
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Epsilon 59. [IMO 2001/2 KOR] Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

First Solution. To remove the square roots, we make the following substitution :

x =
a√

a2 + 8bc
, y =

b√
b2 + 8ca

, z =
c√

c2 + 8ab
.

Clearly, x, y, z ∈ (0, 1). Our aim is to show that x + y + z ≥ 1. We notice that

a2

8bc
=

x2

1− x2
,

b2

8ac
=

y2

1− y2
,

c2

8ab
=

z2

1− z2
=⇒ 1

512
=

„
x2

1− x2

«„
y2

1− y2

«„
z2

1− z2

«
.

Hence, we need to show that

x + y + z ≥ 1, where 0 < x, y, z < 1 and (1− x2)(1− y2)(1− z2) = 512(xyz)2.

However, 1 > x + y + z implies that, by The AM-GM Inequality,

(1−x2)(1−y2)(1−z2) > ((x+y+z)2−x2)((x+y+z)2−y2)((x+y+z)2−z2) = (x+x+y+z)(y+z)

(x+y+y+z)(z+x)(x+y+z+z)(x+y) ≥ 4(x2yz)
1
4 ·2(yz)

1
2 ·4(y2zx)

1
4 ·2(zx)

1
2 ·4(z2xy)

1
4 ·2(xy)

1
2

= 512(xyz)2. This is a contradiction ! ˜
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Epsilon 60. [IMO 1995/2 RUS] Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Second Solution. After the substitution a = 1
x
, b = 1

y
, c = 1

z
, we get xyz = 1. The

inequality takes the form
x2

y + z
+

y2

z + x
+

z2

x + y
≥ 3

2
.

It follows from The Cauchy-Schwarz Inequality that

[(y + z) + (z + x) + (x + y)]

„
x2

y + z
+

y2

z + x
+

z2

x + y

«
≥ (x + y + z)2

so that, by The AM-GM Inequality,

x2

y + z
+

y2

z + x
+

z2

x + y
≥ x + y + z

2
≥ 3(xyz)

1
3

2
=

3

2
.

˜
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Epsilon 61. (Korea 1998) Let x, y, z be the positive reals with x + y + z = xyz. Show
that

1√
1 + x2

+
1p

1 + y2
+

1√
1 + z2

≤ 3

2
.

Second Solution. The starting point is letting a = 1
x
, b = 1

y
, c = 1

z
. We find that

a + b + c = abc is equivalent to 1 = xy + yz + zx. The inequality becomes

x√
x2 + 1

+
yp

y2 + 1
+

z√
z2 + 1

≤ 3

2

or
xp

x2 + xy + yz + zx
+

yp
y2 + xy + yz + zx

+
zp

z2 + xy + yz + zx
≤ 3

2
or

xp
(x + y)(x + z)

+
yp

(y + z)(y + x)
+

zp
(z + x)(z + y)

≤ 3

2
.

By the AM-GM inequality, we have

xp
(x + y)(x + z)

=
x
p

(x + y)(x + z)

(x + y)(x + z)
≤ 1

2

x[(x + y) + (x + z)]

(x + y)(x + z)
=

1

2

„
x

x + z
+

x

x + z

«
.

In a like manner, we obtain

yp
(y + z)(y + x)

≤ 1

2

„
y

y + z
+

y

y + x

«
and

zp
(z + x)(z + y)

≤ 1

2

„
z

z + x
+

z

z + y

«
.

Adding these three yields the required result. ˜
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Epsilon 62. [IMO 2000/2 USA] Let a, b, c be positive numbers such that abc = 1. Prove
that „

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
≤ 1.

Second Solution. ([IV], Ilan Vardi) Since abc = 1, we may assume that a ≥ 1 ≥ b. 17 It
follows that

1−
„

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
=

„
c +

1

c
− 2

«„
a +

1

b
− 1

«
+

(a− 1)(1− b)

a
. 18

˜
Third Solution. As in the first solution, after the substitution a = x

y
, b = y

z
, c = z

x
for x,

y, z > 0, we can rewrite it as xyz ≥ (y + z − x)(z + x − y)(x + y − z). Without loss of
generality, we can assume that z ≥ y ≥ x. Set y − x = p and z − x = q with p, q ≥ 0. It’s
straightforward to verify that

xyz − (y + z − x)(z + x− y)(x + y − z) = (p2 − pq + q2)x + (p3 + q3 − p2q − pq2).

Since p2 − pq + q2 ≥ (p − q)2 ≥ 0 and p3 + q3 − p2q − pq2 = (p − q)2(p + q) ≥ 0, we get
the result. ˜
Fourth Solution. (From the IMO 2000 Short List) Using the condition abc = 1, it’s straight-
forward to verify the equalities

2 =
1

a

„
a− 1 +

1

b

«
+ c

„
b− 1 +

1

c

«
,

2 =
1

b

„
b− 1 +

1

c

«
+ a

„
c− 1 +

1

a

«
,

2 =
1

c

„
c− 1 +

1

a

«
+ b

„
a− 1 +

1

c

«
.

In particular, they show that at most one of the numbers u = a − 1 + 1
b
, v = b − 1 + 1

c
,

w = c− 1 + 1
a

is negative. If there is such a number, we have
„

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
= uvw < 0 < 1.

And if u, v, w ≥ 0, The AM-GM Inequality yields

2 =
1

a
u + cv ≥ 2

r
c

a
uv, 2 =

1

b
v + aw ≥ 2

r
a

b
vw, 2 =

1

c
w + aw ≥ 2

r
b

c
wu.

Thus, uv ≤ a
c
, vw ≤ b

a
, wu ≤ c

b
, so (uvw)2 ≤ a

c
· b

a
· c

b
= 1. Since u, v, w ≥ 0, this

completes the proof. ˜

17Why? Note that the inequality is not symmetric in the three variables. Check it!
18For a verification of the identity, see [IV].
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Epsilon 63. Let a, b, c be positive real numbers satisfying a + b + c = 1. Show that

a

a + bc
+

b

b + ca
+

√
abc

c + ab
≤ 1 +

3
√

3

4
.

Solution. We want to establish that

1

1 + bc
a

+
1

1 + ca
b

+

q
ab
c

1 + ab
c

≤ 1 +
3
√

3

4
.

Set x =
q

bc
a

, y =
p

ca
b

, z =
q

ab
c

. We need to prove that

1

1 + x2
+

1

1 + y2
+

z

1 + z2
≤ 1 +

3
√

3

4
,

where x, y, z > 0 and xy + yz + zx = 1. It’s not hard to show that there exists A, B, C ∈
(0, π) with

x = tan
A

2
, y = tan

B

2
, z = tan

C

2
, and A + B + C = π.

The inequality becomes

1

1 +
`
tan A

2

´2 +
1

1 +
`
tan B

2

´2 +
tan C

2

1 +
`
tan C

2

´2 ≤ 1 +
3
√

3

4

or

1 +
1

2
(cos A + cos B + sin C) ≤ 1 +

3
√

3

4
or

cos A + cos B + sin C ≤ 3
√

3

2
.

˜
Note that cos A + cos B = 2 cos

`
A+B

2

´
cos
`

A−B
2

´
. Since

˛̨
A−B

2

˛̨
< π

2
, this means that

cos A + cos B ≤ 2 cos

„
A + B

2

«
= 2 cos

„
π − C

2

«
.

It will be enough to show that

2 cos

„
π − C

2

«
+ sin C ≤ 3

√
3

2
,

where C ∈ (0, π). This is a one-variable inequality.19 It’s left as an exercise for the reader.

19 Differentiate! Shiing-Shen Chern
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Epsilon 64. (Latvia 2002) Let a, b, c, d be the positive real numbers such that

1

1 + a4
+

1

1 + b4
+

1

1 + c4
+

1

1 + d4
= 1.

Prove that abcd ≥ 3.

Second Solution. (given by Jeong Soo Sim at the KMO Weekend Program 2007) We need
to prove the inequality a4b4c4d4 ≥ 81. After making the substitution

A =
1

1 + a4
, B =

1

1 + b4
, C =

1

1 + c4
, D =

1

1 + d4
,

we obtain

a4 =
1−A

A
, b4 =

1−B

B
, c4 =

1− C

C
, d4 =

1−D

D
.

The constraint becomes A + B + C + D = 1 and the inequality can be written as

1−A

A
· 1−B

B
· 1− C

C
· 1−D

D
≥ 81.

or
B + C + D

A
· C + D + A

B
· D + A + B

C
· A + B + C

D
≥ 81.

or
(B + C + D)(C + D + A)(D + A + B)(A + B + C) ≥ 81ABCD.

However, this is an immediate consequence of The AM-GM Inequality:

(B+C+D)(C+D+A)(D+A+B)(A+B+C) ≥ 3 (BCD)
1
3 ·3 (CDA)

1
3 ·3 (DAB)

1
3 ·3 (ABC)

1
3 .

˜
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Epsilon 65. [LL 1992 UNK] (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x
+ 1

y
+ 1

z
=

2, √
x + y + z ≥ √

x− 1 +
p

y − 1 +
√

z − 1.

First Solution. We begin with the algebraic substitution a =
√

x− 1, b =
√

y − 1, c =√
z − 1. Then, the condition becomes

1

1 + a2
+

1

1 + b2
+

1

1 + c2
= 2 ⇔ a2b2 + b2c2 + c2a2 + 2a2b2c2 = 1

and the inequality is equivalent to
p

a2 + b2 + c2 + 3 ≥ a + b + c ⇔ ab + bc + ca ≤ 3

2
.

Let p = bc, q = ca, r = ab. Our job is to prove that p+q+r ≤ 3
2

where p2+q2+r2+2pqr =
1. Now, we can make the trigonometric substitution

p = cos A, q = cos B, r = cos C for some A, B, C ∈
“
0,

π

2

”
with A + B + C = π.

What we need to show is now that cos A + cos B + cos C ≤ 3
2
. It follows from Jensen’s

Inequality. ˜
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Epsilon 66. (Belarus 1998) Prove that, for all a, b, c > 0,

a

b
+

b

c
+

c

a
≥ a + b

b + c
+

b + c

c + a
+ 1.

Solution. After writing x = a
b

and y = c
b
, we get

c

a
=

y

x
,

a + b

b + c
=

x + 1

1 + y
,

b + c

c + a
=

1 + y

y + x
.

One may rewrite the inequality as

x3y2 + x2 + x + y3 + y2 ≥ x2y + 2xy + 2xy2.

Apply The AM-GM Inequality to obtain

x3y2 + x

2
≥ x2y,

x3y2 + x + y3 + y3

2
≥ 2xy2, x2 + y2 ≥ 2xy.

Adding these three inequalities, we get the result. The equality holds if and only if
x = y = 1 or a = b = c. ˜
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Epsilon 67. [SL 2001 ] Let x1, · · · , xn be arbitrary real numbers. Prove the inequality.
x1

1 + x1
2

+
x2

1 + x1
2 + x2

2
+ · · ·+ xn

1 + x1
2 + · · ·+ xn

2
<
√

n.

First Solution. We only consider the case when x1, · · · , xn are all nonnegative real num-
bers.(Why?)20 Let x0 = 1. After the substitution yi = x0

2 + · · ·+ xi
2 for all i = 0, · · · , n,

we obtain xi =
√

yi − yi−1. We need to prove the following inequality
nX

i=0

√
yi − yi−1

yi
<
√

n.

Since yi ≥ yi−1 for all i = 1, · · · , n, we have an upper bound of the left hand side:
nX

i=0

√
yi − yi−1

yi
≤

nX
i=0

√
yi − yi−1√
yiyi−1

=

nX
i=0

r
1

yi−1
− 1

yi

We now apply the Cauchy-Schwarz inequality to give an upper bound of the last term:

nX
i=0

r
1

yi−1
− 1

yi
≤
vuutn

nX
i=0

„
1

yi−1
− 1

yi

«
=

s
n

„
1

y0
− 1

yn

«
.

Since y0 = 1 and yn > 0, this yields the desired upper bound
√

n.
˜

Second Solution. We may assume that x1, · · · , xn are all nonnegative real numbers. Let
x0 = 0. We make the following algebraic substitution

ti =
xi√

x0
2 + · · ·+ xi

2
, ci =

1√
1 + ti

2
and si =

ti√
1 + ti

2

for all i = 0, · · · , n. It’s an easy exercise to show that xi
x02+···+xi

2 = c0 · · · cisi. Since

si =
√

1− ci
2 , the desired inequality becomes

c0c1

p
1− c1

2 + c0c1c2

p
1− c2

2 + · · ·+ c0c1 · · · cn

p
1− cn

2 <
√

n.

Since 0 < ci ≤ 1 for all i = 1, · · · , n, we have
nX

i=1

c0 · · · ci

p
1− ci

2 ≤
nX

i=1

c0 · · · ci−1

p
1− ci

2 =

nX
i=1

p
(c0 · · · ci−1)2 − (c0 · · · ci−1ci)2.

Since c0 = 1, by The Cauchy-Schwarz Inequality, we obtain

nX
i=1

p
(c0 · · · ci−1)2 − (c0 · · · ci−1ci)2 ≤

vuutn

nX
i=1

[(c0 · · · ci−1)2 − (c0 · · · ci−1ci)2] =
p

n [1− (c0 · · · cn)2].

˜

20 x1
1+x12 + x2

1+x12+x22 + · · ·+ xn
1+x12+···+xn

2 ≤ |x1|
1+x12 +

|x2|
1+x12+x22 + · · ·+ |xn|

1+x12+···+xn
2 .
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Epsilon 68. Let a, b, c be the lengths of a triangle. Show that

a

b + c
+

b

c + a
+

c

a + b
< 2.

Solution. We don’t employ The Ravi Substitution! It follows from the triangle inequality
that X

cyclic

a

b + c
<
X

cyclic

a
1
2
(a + b + c)

= 2.

˜
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Epsilon 69. [IMO 2001/2 KOR] Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Second Solution. Let’s try to find a new lower bound of (x + y + z)2 where x, y, z > 0.

There are well-known lower bounds such as 3(xy + yz + zx) and 9(xyz)
2
3 . Here, we break

the symmetry. We notice that

(x + y + z)2 = x2 + y2 + z2 + xy + xy + yz + yz + zx + zx.

We apply The AM-GM Inequality to the right hand side except the term x2:

y2 + z2 + xy + xy + yz + yz + zx + zx ≥ 8x
1
2 y

3
4 z

3
4 .

It follows that

(x + y + z)2 ≥ x2 + 8x
1
2 y

3
4 z

3
4 = x

1
2

“
x

3
2 + 8y

3
4 z

3
4

”
.

We proved the estimation, for x, y, z > 0,

x + y + z ≥
r

x
1
2

“
x

3
2 + 8y

3
4 z

3
4

”
.

It follows that
X

cyclic

x
3
4q

x
3
2 + 8y

3
4 z

3
4

≥
X

cyclic

x

x + y + z
= 1.

After the substitution x = a
4
3 , y = b

4
3 , and z = c

4
3 , it now becomes the inequality

X

cyclic

a√
a2 + 8bc

≥ 1.

˜
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Epsilon 70. [IMO 2005/3 KOR] Let x, y, and z be positive numbers such that xyz ≥ 1.
Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.

First Solution. It’s equivalent to the following inequality
„

x2 − x5

x5 + y2 + z2
+ 1

«
+

„
y2 − y5

y5 + z2 + x2
+ 1

«
+

„
z2 − z5

z5 + x2 + y2
+ 1

«
≤ 3

or

x2 + y2 + z2

x5 + y2 + z2
+

x2 + y2 + z2

y5 + z2 + x2
+

x2 + y2 + z2

z5 + x2 + y2
≤ 3.

With The Cauchy-Schwarz Inequality and the fact that xyz ≥ 1, we have

(x5 + y2 + z2)(yz + y2 + z2) ≥ (x2 + y2 + z2)2

or

x2 + y2 + z2

x5 + y2 + z2
≤ yz + y2 + z2

x2 + y2 + z2
.

Taking the cyclic sum, we reach

x2 + y2 + z2

x5 + y2 + z2
+

x2 + y2 + z2

y5 + z2 + x2
+

x2 + y2 + z2

z5 + x2 + y2
≤ 2 +

xy + yz + zx

x2 + y2 + z2
≤ 3.

˜

Second Solution. The main idea is to think of 1 as follows :

x5

x5 + y2 + z2
+

y5

y5 + z2 + x2
+

z5

z5 + x2 + y2
≥ 1 ≥ x2

x5 + y2 + z2
+

y2

y5 + z2 + x2
+

z2

z5 + x2 + y2
.

We first show the left-hand. It follows from y4 + z4 ≥ y3z + yz3 = yz(y2 + z2) that

x(y4 + z4) ≥ xyz(y2 + z2) ≥ y2 + z2 or
x5

x5 + y2 + z2
≥ x5

x5 + xy4 + xz4
=

x4

x4 + y4 + z4
.

Taking the cyclic sum, we have the required inequality. It remains to show the right-hand.
As in the first solution, The Cauchy-Schwarz Inequality and xyz ≥ 1 imply that

(x5 + y2 + z2)(yz + y2 + z2) ≥ (x2 + y2 + z2)2 or
x2(yz + y2 + z2)

(x2 + y2 + z2)2
≥ x2

x5 + y2 + z2
.

Taking the cyclic sum, we have

X

cyclic

x2(yz + y2 + z2)

(x2 + y2 + z2)2
≥
X

cyclic

x2

x5 + y2 + z2
.

Our job is now to establish the following homogeneous inequality

1 ≥
X

cyclic

x2(yz + y2 + z2)

(x2 + y2 + z2)2
⇔ (x2+y2+z2)2 ≥ 2

X

cyclic

x2y2+
X

cyclic

x2yz ⇔
X

cyclic

x4 ≥
X

cyclic

x2yz.

However, by The AM-GM Inequality, we obtain

X

cyclic

x4 =
X

cyclic

x4 + y4

2
≥
X

cyclic

x2y2 =
X

cyclic

x2

„
y2 + z2

2

«
≥
X

cyclic

x2yz.

˜
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Remark 8.2. Here is an alternative way to reach the right hand side inequality. We claim
that

2x4 + y4 + z4 + 4x2y2 + 4x2z2

4(x2 + y2 + z2)2
≥ x2

x5 + y2 + z2
.

We do this by proving

2x4 + y4 + z4 + 4x2y2 + 4x2z2

4(x2 + y2 + z2)2
≥ x2yz

x4 + y3z + yz3

because xyz ≥ 1 implies that

x2yz

x4 + y3z + yz3
=

x2

x5

xyz
+ y2 + z2

≥ x2

x5 + y2 + z2
.

Hence, we need to show the homogeneous inequality

(2x4 + y4 + z4 + 4x2y2 + 4x2z2)(x4 + y3z + yz3) ≥ 4x2yz(x2 + y2 + z2)2.

However, this is a straightforward consequence of The AM-GM Inequality.

(2x4 + y4 + z4 + 4x2y2 + 4x2z2)(x4 + y3z + yz3)− 4x2yz(x2 + y2 + z2)2

= (x8 + x4y4 + x6y2 + x6y2 + y7z + y3z5) + (x8 + x4z4 + x6z2 + x6z2 + yz7 + y5z3)

+2(x6y2 + x6z2)− 6x4y3z − 6x4yz3 − 2x6yz

≥ 6 6
p

x8 · x4y4 · x6y2 · x6y2 · y7z · y3z5 + 6 6
p

x8 · x4z4 · x6z2 · x6z2 · yz7 · y5z3

+2
p

x6y2 · x6z2 − 6x4y3z − 6x4yz3 − 2x6yz

= 0.

Taking the cyclic sum, we obtain

1 =
X

cyclic

2x4 + y4 + z4 + 4x2y2 + 4x2z2

4(x2 + y2 + z2)2
≥
X

cyclic

x2

x5 + y2 + z2
.

Third Solution. (by an IMO 2005 contestant Iurie Boreico21 from Moldova) We establish
that

x5 − x2

x5 + y2 + z2
≥ x5 − x2

x3(x2 + y2 + z2)
.

It follows immediately from the identity

x5 − x2

x5 + y2 + z2
− x5 − x2

x3(x2 + y2 + z2)
=

(x3 − 1)2x2(y2 + z2)

x3(x2 + y2 + z2)(x5 + y2 + z2)
.

Taking the cyclic sum and using xyz ≥ 1, we have

X

cyclic

x5 − x2

x5 + y2 + z2
≥ 1

x5 + y2 + z2

X

cyclic

„
x2 − 1

x

«
≥ 1

x5 + y2 + z2

X

cyclic

`
x2 − yz

´ ≥ 0.

˜

21He received the special prize for this solution.
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Epsilon 71. (KMO Weekend Program 2007) Prove that, for all a, b, c, x, y, z > 0,

ax

a + x
+

by

b + y
+

cz

c + z
≤ (a + b + c)(x + y + z)

a + b + c + x + y + z
.

Solution. (by Sanghoon at the KMO Weekend Program 2007) We need the following
lemma:

Lemma 8.2. For all p, q, ω1, ω2 > 0, we have

pq

p + q
≤ ω1

2p + ω2
2q

(ω1 + ω2)
2 .

Proof. After expanding, it becomes

(p + q)
`
ω1

2p + ω2
2q
´− (ω1 + ω2)

2 pq ≥ 0.

However, it can be written as
(ω1p− ω2q)

2 ≥ 0.

˜
Now, taking (p, q, ω1, ω2) = (a, x, x + y + z, a + b + c) in the lemma, we get

ax

a + x
≤ (x + y + z)2a + (a + b + c)2x

(x + y + z + a + b + c)2
.

Similarly, we obtain
by

b + y
≤ (x + y + z)2b + (a + b + c)2y

(x + y + z + a + b + c)2

and
cz

c + z
≤ (x + y + z)2c + (a + b + c)2z

(x + y + z + a + b + c)2
.

Adding the above three inequalities, we get

ax

a + x
+

by

b + y
+

cz

c + z
≤ (x + y + z)2(a + b + c) + (a + b + c)2(x + y + z)

(x + y + z + a + b + c)2
.

or
ax

a + x
+

by

b + y
+

cz

c + z
≤ (a + b + c)(x + y + z)

a + b + c + x + y + z
,

as desired.
˜
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Epsilon 72. (USAMO Summer Program 2002) Let a, b, c be positive real numbers. Prove
that „

2a

b + c

« 2
3

+

„
2b

c + a

« 2
3

+

„
2c

a + b

« 2
3

≥ 3.

Proof. Establish the inequality
„

2a

b + c

« 2
3

≥ 3

„
a

a + b + c

«
.

˜
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Epsilon 73. (APMO 2005) Let a, b, c be positive real numbers with abc = 8. Prove that

a2

p
(1 + a3)(1 + b3)

+
b2

p
(1 + b3)(1 + c3)

+
c2

p
(1 + c3)(1 + a3)

≥ 4

3

Proof. Use the auxiliary inequality

1√
1 + x3

≥ 2

2 + x2
.

˜



INFINITY 163

Epsilon 74. (Titu Andreescu, Gabriel Dospinescu) Let x, y, and z be real numbers such
that x, y, z ≤ 1 and x + y + z = 1. Prove that

1

1 + x2
+

1

1 + y2
+

1

1 + z2
≤ 27

10
.

Solution. Employ the following inequality

1

1 + t2
≤ −27

50
(t− 2) ,

where t ≤ 1. ˜
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Epsilon 75. (Japan 1997) Let a, b, and c be positive real numbers. Prove that

(b + c− a)2

(b + c)2 + a2
+

(c + a− b)2

(c + a)2 + b2
+

(a + b− c)2

(a + b)2 + c2
≥ 3

5
.

Solution. Because of the homogeneity of the inequality, we may normalize to a+b+c = 1.
It takes the form

(1− 2a)2

(1− a)2 + a2
+

(1− 2b)2

(1− b)2 + b2
+

(1− 2c)2

(1− c)2 + c2
≥ 3

5
or

1

2a2 − 2a + 1
+

1

2b2 − 2b + 1
+

1

2c2 − 2c + 1
≤ 27

5
.

We find that the equation of the tangent line of f(x) = 1
2x2−2x+1

at x = 1
3

is given by

y =
54

25
x +

27

25
and that

f(x)−
„

54

25
x +

27

25

«
= −2(3x− 1)2(6x + 1)

25(2x2 − 2x + 1)
≤ 0.

for all x > 0. It follows that
X

cyclic

f(a) ≤
X

cyclic

54

25
a +

27

25
=

27

5
.

˜
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Epsilon 76. [IMO 1984/1 FRG] Let x, y, z be nonnegative real numbers such that x+y+z =
1. Prove that 0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

First Solution. Using the constraint x+y+z = 1, we reduce the inequality to homogeneous
one:

0 ≤ (xy + yz + zx)(x + y + z)− 2xyz ≤ 7

27
(x + y + z)3.

The left hand side inequality is trivial because it’s equivalent to

0 ≤ xyz +
X
sym

x2y.

The right hand side inequality simplifies to

7
X

cyclic

x3 + 15xyz − 6
X
sym

x2y ≥ 0.

In the view of

7
X

cyclic

x3 + 15xyz − 6
X
sym

x2y =

0
@2

X

cyclic

x3 −
X
sym

x2y

1
A+ 5

0
@3xyz +

X

cyclic

x3 −
X
sym

x2y

1
A ,

it’s enough to show that

2
X

cyclic

x3 ≥
X
sym

x2y

and
3xyz +

X

cyclic

x3 ≥
X
sym

x2y.

The first inequality follows from

2
X

cyclic

x3 −
X
sym

x2y =
X

cyclic

(x3 + y3)−
X

cyclic

(x2y + xy2) =
X

cyclic

(x3 + y3 − x2y − xy2) ≥ 0.

The second inequality can be rewritten asX

cyclic

x(x− y)(x− z) ≥ 0,

which is a particular case of Schur’s Theorem. ˜
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Epsilon 77. [LL 1992 UNK] (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x
+ 1

y
+ 1

z
=

2, √
x + y + z ≥ √

x− 1 +
p

y − 1 +
√

z − 1.

Second Solution. After the algebraic substitution a = 1
x
, b = 1

y
, c = 1

z
, we are required to

prove that r
1

a
+

1

b
+

1

c
≥
r

1− a

a
+

r
1− b

b
+

r
1− c

c
,

where a, b, c ∈ (0, 1) and a + b + c = 2. Using the constraint a + b + c = 2, we obtain a
homogeneous inequality

s
1

2
(a + b + c)

„
1

a
+

1

b
+

1

c

«
≥
s

a+b+c
2

− a

a
+

s
a+b+c

2
− b

b
+

s
a+b+c

2
− c

c

or s
(a + b + c)

„
1

a
+

1

b
+

1

c

«
≥
r

b + c− a

a
+

r
c + a− b

b
+

r
a + b− c

c
,

which immediately follows from The Cauchy-Schwarz Inequalitys
[(b + c− a) + (c + a− b) + (a + b− c)]

„
1

a
+

1

b
+

1

c

«
≥
r

b + c− a

a
+

r
c + a− b

b
+

r
a + b− c

c
.

˜
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Epsilon 78. Let x, y, z be nonnegative real numbers. Then, we have

3xyz + x3 + y3 + z3 ≥ 2
“
(xy)

3
2 + (yz)

3
2 + (zx)

3
2

”
.

First Solution. By Schur’s Inequality and The AM-GM Inequality, we have

3xyz +
X

cyclic

x3 ≥
X

cyclic

x2y + xy2 ≥
X

cyclic

2(xy)
3
2 .

˜
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Epsilon 79. Let t ∈ (0, 3]. For all a, b, c ≥ 0, we have

(3− t) + t(abc)
2
t +

X

cyclic

a2 ≥ 2
X

cyclic

ab.

Proof. After setting x = a
2
3 , y = b

2
3 , z = c

2
3 , it becomes

3− t + t(xyz)
3
t +

X

cyclic

x3 ≥ 2
X

cyclic

(xy)
3
2 .

By the previous epsilon, it will be enough to show that

3− t + t(xyz)
3
t ≥ 3xyz,

which is a straightforward consequence of the weighted AM-GM inequality :

3− t

3
· 1 +

t

3
(xyz)

3
t ≥ 1

3−t
3

“
(xyz)

3
t

” t
3

= 3xyz.

One may check that the equality holds if and only if a = b = c = 1. ˜
Remark 8.3. In particular, we obtain non-homogeneous inequalities

5

2
+

1

2
(abc)4 + a2 + b2 + c2 ≥ 2(ab + bc + ca),

2 + (abc)2 + a2 + b2 + c2 ≥ 2(ab + bc + ca),

1 + 2abc + a2 + b2 + c2 ≥ 2(ab + bc + ca).
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Epsilon 80. (APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca).

Second Solution. After expanding, it becomes

8 + (abc)2 + 2
X

cyclic

a2b2 + 4
X

cyclic

a2 ≥ 9
X

cyclic

ab.

From the inequality (ab− 1)2 + (bc− 1)2 + (ca− 1)2 ≥ 0, we obtain

6 + 2
X

cyclic

a2b2 ≥ 4
X

cyclic

ab.

Hence, it will be enough to show that

2 + (abc)2 + 4
X

cyclic

a2 ≥ 5
X

cyclic

ab.

Since 3(a2 + b2 + c2) ≥ 3(ab + bc + ca), it will be enough to show that

2 + (abc)2 +
X

cyclic

a2 ≥ 2
X

cyclic

ab,

which is a particular case of the previous epsilon. ˜
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Epsilon 81. [IMO 2000/2 USA] Let a, b, c be positive numbers such that abc = 1. Prove
that „

a− 1 +
1

b

«„
b− 1 +

1

c

«„
c− 1 +

1

a

«
≤ 1.

Second Solution. It is equivalent to the following homogeneous inequality:
„

a− (abc)1/3 +
(abc)2/3

b

«„
b− (abc)1/3 +

(abc)2/3

c

«„
c− (abc)1/3 +

(abc)2/3

a

«
≤ abc.

After the substitution a = x3, b = y3, c = z3 with x, y, z > 0, it becomes„
x3 − xyz +

(xyz)2

y3

«„
y3 − xyz +

(xyz)2

z3

«„
z3 − xyz +

(xyz)2

x3

«
≤ x3y3z3,

which simplifies to`
x2y − y2z + z2x

´ `
y2z − z2x + x2y

´ `
z2x− x2y + y2z

´ ≤ x3y3z3

or
3x3y3z3 +

X

cyclic

x6y3 ≥
X

cyclic

x4y4z +
X

cyclic

x5y2z2

or
3(x2y)(y2z)(z2x) +

X

cyclic

(x2y)3 ≥
X
sym

(x2y)2(y2z)

which is a special case of Schur’s Inequality. ˜
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Epsilon 82. (Tournament of Towns 1997) Let a, b, c be positive numbers such that abc = 1.
Prove that

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≤ 1.

Solution. We can rewrite the given inequality as following :

1

a + b + (abc)1/3
+

1

b + c + (abc)1/3
+

1

c + a + (abc)1/3
≤ 1

(abc)1/3
.

We make the substitution a = x3, b = y3, c = z3 with x, y, z > 0. Then, it becomes

1

x3 + y3 + xyz
+

1

y3 + z3 + xyz
+

1

z3 + x3 + xyz
≤ 1

xyz

which is equivalent to

xyz
X

cyclic

(x3 + y3 + xyz)(y3 + z3 + xyz) ≤ (x3 + y3 + xyz)(y3 + z3 + xyz)(z3 + x3 + xyz)

or X
sym

x6y3 ≥
X
sym

x5y2z2 !

We now obtain X
sym

x6y3 =
X

cyclic

x6y3 + y6x3

≥
X

cyclic

x5y4 + y5x4

=
X

cyclic

x5(y4 + z4)

≥
X

cyclic

x5(y2z2 + y2z2)

=
X
sym

x5y2z2.

˜
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Epsilon 83. (Muirhead’s Theorem) Let a1, a2, a3, b1, b2, b3 be real numbers such that

a1 ≥ a2 ≥ a3 ≥ 0, b1 ≥ b2 ≥ b3 ≥ 0, a1 ≥ b1, a1 + a2 ≥ b1 + b2, a1 + a2 + a3 = b1 + b2 + b3.

Let x, y, z be positive real numbers. Then, we haveX
sym

xa1ya2za3 ≥
X
sym

xb1yb2zb3 .

Solution. We distinguish two cases.

Case 1. b1 ≥ a2: It follows from a1 ≥ a1+a2−b1 and from a1 ≥ b1 that a1 ≥ max(a1+a2−
b1, b1) so that max(a1, a2) = a1 ≥ max(a1+a2−b1, b1). From a1+a2−b1 ≥ b1+a3−b1 = a3

and a1 + a2 − b1 ≥ b2 ≥ b3, we have max(a1 + a2 − b1, a3) ≥ max(b2, b3). It follows that
X
sym

xa1ya2za3 =
X

cyclic

za3(xa1ya2 + xa2ya1)

≥
X

cyclic

za3(xa1+a2−b1yb1 + xb1ya1+a2−b1)

=
X

cyclic

xb1(ya1+a2−b1za3 + ya3za1+a2−b1)

≥
X

cyclic

xb1(yb2zb3 + yb3zb2)

=
X
sym

xb1yb2zb3 .

Case 2. b1 ≤ a2 : It follows from 3b1 ≥ b1 + b2 + b3 = a1 + a2 + a3 ≥ b1 + a2 + a3

that b1 ≥ a2 + a3 − b1 and that a1 ≥ a2 ≥ b1 ≥ a2 + a3 − b1. Therefore, we have
max(a2, a3) ≥ max(b1, a2 + a3 − b1) and max(a1, a2 + a3 − b1) ≥ max(b2, b3). It follows
that X

sym

xa1ya2za3 =
X

cyclic

xa1(ya2za3 + ya3za2)

≥
X

cyclic

xa1(yb1za2+a3−b1 + ya2+a3−b1zb1)

=
X

cyclic

yb1(xa1za2+a3−b1 + xa2+a3−b1za1)

≥
X

cyclic

yb1(xb2zb3 + xb3zb2)

=
X
sym

xb1yb2zb3 .

˜
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Epsilon 84. [IMO 1995/2 RUS] Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Third Solution. It’s equivalent to

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2(abc)4/3
.

Set a = x3, b = y3, c = z3 with x, y, z > 0. Then, it becomes
X

cyclic

1

x9(y3 + z3)
≥ 3

2x4y4z4
.

Clearing denominators, this can be rewritten asX
sym

x12y12 + 2
X
sym

x12y9z3 +
X
sym

x9y9z6 ≥ 3
X
sym

x11y8z5 + 6x8y8z8

or X
sym

x12y12 −
X
sym

x11y8z5

!
+2

 X
sym

x12y9z3 −
X
sym

x11y8z5

!
+

 X
sym

x9y9z6 −
X
sym

x8y8z8

!
≥ 0,

By Muirhead’s Theorem, every term on the left hand side is nonnegative. ˜
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Epsilon 85. (Iran 1996) Let x, y, z be positive real numbers. Prove that

(xy + yz + zx)

„
1

(x + y)2
+

1

(y + z)2
+

1

(z + x)2

«
≥ 9

4
.

Second Solution. It’s equivalent to

4
X
sym

x5y + 2
X

cyclic

x4yz + 6x2y2z2 −
X
sym

x4y2 − 6
X

cyclic

x3y3 − 2
X
sym

x3y2z ≥ 0.

We rewrite this as following
 X

sym

x5y −
X
sym

x4y2

!
+3

 X
sym

x5y −
X
sym

x3y3

!
+2xyz

0
@3xyz +

X

cyclic

x3 −
X
sym

x2y

1
A ≥ 0.

By Muirhead’s Theorem and Schur’s Inequality, it’s a sum of three nonnegative terms. ˜
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Epsilon 86. Let x, y, z be nonnegative real numbers with xy + yz + zx = 1. Prove that

1

x + y
+

1

y + z
+

1

z + x
≥ 5

2
.

Solution. Using xy + yz + zx = 1, we homogenize the given inequality as following :

(xy + yz + zx)

„
1

x + y
+

1

y + z
+

1

z + x

«2

≥
„

5

2

«2

or
4
X
sym

x5y +
X
sym

x4yz + 14
X
sym

x3y2z + 38x2y2z2 ≥
X
sym

x4y2 + 3
X
sym

x3y3

or X
sym

x5y −
X
sym

x4y2

!
+3

 X
sym

x5y −
X
sym

x3y3

!
+xyz

 X
sym

x3 + 14
X
sym

x2y + 38xyz

!
≥ 0.

By Muirhead’s Theorem, we get the result. In the above inequality, without the condition
xy + yz + zx = 1, the equality holds if and only if x = y, z = 0 or y = z, x =
0 or z = x, y = 0. Since xy + yz + zx = 1, the equality occurs when (x, y, z) =
(1, 1, 0), (1, 0, 1), (0, 1, 1). ˜
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Epsilon 87. [SC] If ma,mb,mc are medians and ra,rb,rc the exradii of a triangle, prove
that

rarb

mamb
+

rbrc

mbmc
+

rcra

mcma
≥ 3.

Solution. Set 2s = a + b + c. Using the well-known identities

ra =

r
s(s− b)(s− c)

s− a
, ma =

1

2

p
2b2 + 2c2 − a2, etc.

we obtain X

cyclic

rbrc

mbmc
=
X

cyclic

4s(s− a)p
(2c2 + 2a2 − b2)(2a2 + 2b2 − c2)

.

Applying the AM-GM inequality, we obtain
X

cyclic

rbrc

mbmc
≥
X

cyclic

8s(s− a)

(2c2 + 2a2 − b2) + (2a2 + 2b2 − c2)
=
X

cyclic

2(a + b + c)(b + c− a)

4a2 + b2 + c2
.

Thus, it will be enough to show that
X

cyclic

2(a + b + c)(b + c− a)

4a2 + b2 + c2
≥ 3.

After expanding the above inequality, we see that it becomes

2
X

cyclic

a6+4
X

cyclic

a4bc+20
X
sym

a3b2c+68
X

cyclic

a3b3+16
X

cyclic

a5b ≥ 276a2b2c2+27
X

cyclic

a4b2.

We note that this cannot be proven by just applying Muirhead’s Theorem. Since a, b,
c are the sides of a triangle, we can make The Ravi Substitution a = y + z, b = z + x,
c = x + y, where x, y, z > 0. After some brute-force algebra, we can rewrite the above
inequality as

25
X
sym

x6 + 230
X
sym

x5y + 115
X
sym

x4y2 + 10
X
sym

x3y3 + 80
X
sym

x4yz

≥ 336
X
sym

x3y2z + 124
X
sym

x2y2z2.

Now, by Muirhead’s Theorem, we get the result ! ˜
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Epsilon 88. Let P(u, v, w) ∈ R[u, v, w] be a homogeneous symmetric polynomial with degree
3. Then the following two statements are equivalent.

(a) P(1, 1, 1), P(1, 1, 0), P(1, 0, 0) ≥ 0.
(b) P(x, y, z) ≥ 0 for all x, y, z ≥ 0.

Proof. [SR1] We only prove that (a) implies (b). Let

P (u, v, w) = A
X

cyclic

u3 + B
X
sym

u2v + Cuvw.

Letting p = P (1, 1, 1) = 3A + 6B + C, q = P (1, 1, 0) = A + B, and r = P (1, 0, 0) = A, we
have A = r, B = q − r, C = p− 6q + 3r, and p, q, r ≥ 0. For x, y, z ≥ 0, we have

P (x, y, z) = r
X

cyclic

x3 + (q − r)
X
sym

x2y + (p− 6q + 3r)xyz

= r

0
@X

cyclic

x3 + 3xyz −
X
sym

x2y

1
A+ q

 X
sym

x2y −
X
sym

xyz

!
+ pxyz

≥ 0.

˜
Remark 8.4. Here is an alternative way to prove the inequality P (x, y, z) ≥ 0.

Case 1. q ≥ r : We compute

P (x, y, z) =
r

2

 X
sym

x3 −
X
sym

xyz

!
+ (q − r)

 X
sym

x2y −
X
sym

xyz

!
+ pxyz.

Every term on the right hand side is nonnegative.

Case 2. q ≤ r : We compute

P (x, y, z) =
q

2

 X
sym

x3 −
X
sym

xyz

!
+ (r − q)

0
@X

cyclic

x3 + 3xyz −
X
sym

x2y

1
A+ pxyz.

Every term on the right hand side is nonnegative.
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Epsilon 89. [IMO 2001/2 KOR] Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Third Solution. We offer a convexity proof. We make the substitution

x =
a

a + b + c
, y =

b

a + b + c
, z =

c

a + b + c
.

The inequality becomes

xf(x2 + 8yz) + yf(y2 + 8zx) + zf(z2 + 8xy) ≥ 1,

where f(t) = 1√
t
.22 Since f is convex on R+ and x + y + z = 1, we apply (the weighted)

Jensen’s Inequality to obtain

xf(x2 +8yz)+ yf(y2 +8zx)+ zf(z2 +8xy) ≥ f(x(x2 +8yz)+ y(y2 +8zx)+ z(z2 +8xy)).

Note that f(1) = 1. Since the function f is strictly decreasing, it suffices to show that

1 ≥ x(x2 + 8yz) + y(y2 + 8zx) + z(z2 + 8xy).

Using x + y + z = 1, we homogenize it as

(x + y + z)3 ≥ x(x2 + 8yz) + y(y2 + 8zx) + z(z2 + 8xy).

However, it is easily seen from

(x+y+z)3−x(x2+8yz)−y(y2+8zx)−z(z2+8xy) = 3[x(y−z)2+y(z−x)2+z(x−y)2] ≥ 0.

˜
Fourth Solution. We begin with the substitution

x =
bc

a2
, y =

ca

b2
, z =

ab

c2
.

Then, we get xyz = 1 and the inequality becomes

1√
1 + 8x

+
1√

1 + 8y
+

1√
1 + 8z

≥ 1

which is equivalent toX

cyclic

p
(1 + 8x)(1 + 8y) ≥

p
(1 + 8x)(1 + 8y)(1 + 8z).

After squaring both sides, it’s equivalent to

8(x + y + z) + 2
p

(1 + 8x)(1 + 8y)(1 + 8z)
X

cyclic

√
1 + 8x ≥ 510.

Recall that xyz = 1. The AM-GM Inequality gives us x + y + z ≥ 3,

(1+8x)(1+8y)(1+8z) ≥ 9x
8
9 ·9y

8
9 ·9z

8
9 = 729 and

X

cyclic

√
1 + 8x ≥

X

cyclic

q
9x

8
9 ≥ 9(xyz)

4
27 = 9.

Using these three inequalities, we get the result. ˜

22Dividing by a + b + c gives the equivalent inequality
P

cyclic

a
a+b+cr

a2
(a+b+c)2

+ 8bc
(a+b+c)2

≥ 1.
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Epsilon 90. [IMO 1983/6 USA] Let a, b, c be the lengths of the sides of a triangle. Prove
that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Second Solution. We present a convexity proof. After setting a = y+z, b = z+x, c = x+y
for x, y, z > 0, it becomes

x3z + y3x + z3y ≥ x2yz + xy2z + xyz2

or
x2

y
+

y2

z
+

z2

x
≥ x + y + z.

Since it’s homogeneous, we can restrict our attention to the case x + y + z = 1. Then, it
becomes

yf

„
x

y

«
+ zf

“y

z

”
+ xf

“ z

x

”
≥ 1,

where f(t) = t2. Since f is convex on R, we apply (the weighted) Jensen’s Inequality to
obtain

yf

„
x

y

«
+ zf

“y

z

”
+ xf

“ z

x

”
≥ f

„
y · x

y
+ z · y

z
+ x · z

x

«
= f(1) = 1.

˜
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Epsilon 91. (KMO Winter Program Test 2001) Prove that, for all a, b, c > 0,
p

(a2b + b2c + c2a) (ab2 + bc2 + ca2) ≥ abc + 3
p

(a3 + abc) (b3 + abc) (c3 + abc)

First Solution. Dividing by abc, it becomess„
a

c
+

b

a
+

c

b

«„
c

a
+

a

b
+

b

c

«
≥ 1 + 3

s„
a2

bc
+ 1

«„
b2

ca
+ 1

«„
c2

ab
+ 1

«
.

After the substitution x = a
b
, y = b

c
, z = c

a
, we obtain the constraint xyz = 1. It takes

the form

p
(x + y + z) (xy + yz + zx) ≥ 1 + 3

s“x

z
+ 1
”“ y

x
+ 1
”„ z

y
+ 1

«
.

From the constraint xyz = 1, we obtain the identity
“x

z
+ 1
”“ y

x
+ 1
”„ z

y
+ 1

«
=
“x + z

z

”“y + x

x

”„z + y

y

«
= (z + x)(x + y)(y + z).

Hence, we are required to prove thatp
(x + y + z) (xy + yz + zx) ≥ 1 + 3

p
(x + y)(y + z)(z + x).

Now, we offer two ways to finish the proof.

First Method. Observe that

(x + y + z) (xy + yz + zx) = (x + y)(y + z)(z + x) + xyz = (x + y)(y + z)(z + x) + 1.

Letting p = 3
p

(x + y)(y + z)(z + x), the inequality we want to prove now becomes
p

p3 + 1 ≥ 1 + p.

Applying The AM-GM Inequality yields

p ≥ 3
q

2
√

xy · 2√yz · 2√zx = 2.

It follows that
(p3 + 1)− (1 + p)2 = p(p + 1)(p− 2) ≥ 0,

as desired.

Second Method. More strongly, we establish that, for all x, y, z > 0,

p
(x + y + z) (xy + yz + zx) ≥ 1 +

1

3

„
y + z√

yz
+

z + x√
zx

+
x + y√

xy

«
.

However, an application of The Cauchy-Schwarz Inequality yields

[x + (y + z)] [yz + x(y + z)] ≥
“√

xyz +
p

x(y + z)2
”2

=

„
1 +

y + z√
yz

«2

or p
(x + y + z) (xy + yz + zx) ≥ 1 +

y + z√
yz

.

Similarly, we also have
p

(x + y + z) (xy + yz + zx) ≥ 1 +
z + x√

zx
.

and p
(x + y + z) (xy + yz + zx) ≥ 1 +

x + y√
xy

.

Adding these three, we get the desired inequality. ˜
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Epsilon 92. [IMO 1999/2 POL] Let n be an integer with n ≥ 2.

(a) Determine the least constant C such that the inequality

X

1≤i<j≤n

xixj

`
x2

i + x2
j

´ ≤ C

0
@ X

1≤i≤n

xi

1
A

4

holds for all real numbers x1, · · · , xn ≥ 0.
(b) For this constant C, determine when equality holds.

First Solution. (Marcin E. Kuczma23) For x1 = · · · = xn = 0, it holds for any C ≥ 0.
Hence, we consider the case when x1 + · · ·+ xn > 0. Since the inequality is homogeneous,
we may normalize to x1 + · · ·+ xn = 1. From the assumption x1 + · · ·+ xn = 1, we have

F(x1, · · · , xn) =
X

1≤i<j≤n

xixj

`
x2

i + x2
j

´

=
X

1≤i<j≤n

xi
3xj +

X

1≤i<j≤n

xixj
3

=
X

1≤i≤n

xi
3
X

j 6=i

xi

=
X

1≤i≤n

xi
3(1− xi)

=

nX
i=1

xi(xi
2 − xi

3).

We claim that C = 1
8
. It suffices to show that F(x1, · · · , xn) ≤ 1

8
= F ` 1

2
, 1

2
, 0, · · · , 0

´
.

Lemma 8.3. 0 ≤ x ≤ y ≤ 1
2

implies x2 − x3 ≤ y2 − y3.

Proof. Since x + y ≤ 1, we get x + y ≥ (x + y)2 ≥ x2 + xy + y2. Since y − x ≥ 0, this
implies that y2 − x2 ≥ y3 − x3 or y2 − y3 ≥ x2 − x3, as desired. ˜
Case 1. 1

2
≥ x1 ≥ x2 ≥ · · · ≥ xn:

nX
i=1

xi(xi
2 − xi

3) ≤
nX

i=1

xi

 „
1

2

«2

−
„

1

2

«3
!

=
1

8

nX
i=1

xi =
1

8
.

Case 2. x1 ≥ 1
2
≥ x2 ≥ · · · ≥ xn: Let x1 = x and y = 1 − x = x2 + · · · + xn. Since

y ≥ x2, · · · , xn,

F(x1, · · · , xn) = x3y +

nX
i=2

xi(xi
2 − xi

3) ≤ x3y +

nX
i=2

xi(y
2 − y3) = x3y + y(y2 − y3).

Since x3y + y(y2 − y3) = x3y + y3(1− y) = xy(x2 + y2), it remains to show that

xy(x2 + y2) ≤ 1

8
.

Using x + y = 1, we homogenize the above inequality as following.

xy(x2 + y2) ≤ 1

8
(x + y)4.

However, we immediately find that (x + y)4 − 8xy(x2 + y2) = (x− y)4 ≥ 0.

˜

23I slightly modified his solution in [AS].
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Epsilon 93. (APMO 1991) Let a1, · · · , an, b1, · · · , bn be positive real numbers such that
a1 + · · ·+ an = b1 + · · ·+ bn. Show that

a1
2

a1 + b1
+ · · ·+ an

2

an + bn
≥ a1 + · · ·+ an

2
.

Second Solution. By The Cauchy-Schwarz Inequality, we have
 

nX
i=1

ai + bi

! 
nX

i=1

ai
2

ai + bi

!
≥
 

nX
i=1

ai

!2

or
nX

i=1

ai
2

ai + bi
≥

`Pn
i=1

´2
Pn

i=1 ai +
Pn

i=1 bi
=

1

2

nX
i=1

ai

˜
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Epsilon 94. Let a, b ≥ 0 with a + b = 1. Prove thatp
a2 + b +

p
a + b2 +

√
1 + ab ≤ 3.

Show that the equality holds if and only if (a, b) = (1, 0) or (a, b) = (0, 1).

Second Solution. The Cauchy-Schwarz Inequality shows thatp
a2 + b +

p
a + b2 +

√
1 + ab ≤

p
3 (a2 + b + a + b2 + 1 + ab)

=
p

3 (a2 + ab + b2 + a + b + 1)

≤
p

3 ((a + b)2 + a + b + 1)

= 3.

˜
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Epsilon 95. [LL 1992 UNK] (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x
+ 1

y
+ 1

z
=

2, √
x + y + z ≥ √

x− 1 +
p

y − 1 +
√

z − 1.

Third Solution. We first note that
x− 1

x
+

y − 1

y
+

z − 1

z
= 1.

Apply The Cauchy-Schwarz Inequality to deduce

√
x + y + z =

s
(x + y + z)

„
x− 1

x
+

y − 1

y
+

z − 1

z

«
≥ √

x− 1 +
p

y − 1 +
√

z − 1.

˜
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Epsilon 96. (Gazeta Matematicã) Prove that, for all a, b, c > 0,
p

a4 + a2b2 + b4+
p

b4 + b2c2 + c4+
p

c4 + c2a2 + a4 ≥ a
p

2a2 + bc+b
p

2b2 + ca+c
p

2c2 + ab.

Solution. We obtain the chain of equalities and inequalities

X

cyclic

p
a4 + a2b2 + b4 =

X

cyclic

s„
a4 +

a2b2

2

«
+

„
b4 +

a2b2

2

«

≥ 1√
2

X

cyclic

 r
a4 +

a2b2

2
+

r
b4 +

a2b2

2

!
(Cauchy − Schwarz)

=
1√
2

X

cyclic

 r
a4 +

a2b2

2
+

r
a4 +

a2c2

2

!

≥
√

2
X

cyclic

4

s„
a4 +

a2b2

2

«„
a4 +

a2c2

2

«
(AM−GM)

≥
√

2
X

cyclic

r
a4 +

a2bc

2
(Cauchy − Schwarz)

=
X

cyclic

p
2a4 + a2bc .

˜
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Epsilon 97. (KMO Winter Program Test 2001) Prove that, for all a, b, c > 0,
p

(a2b + b2c + c2a) (ab2 + bc2 + ca2) ≥ abc + 3
p

(a3 + abc) (b3 + abc) (c3 + abc)

Second Solution. (based on work by an winter program participant) We obtain
p

(a2b + b2c + c2a) (ab2 + bc2 + ca2)

=
1

2

p
[b(a2 + bc) + c(b2 + ca) + a(c2 + ab)] [c(a2 + bc) + a(b2 + ca) + b(c2 + ab)]

≥ 1

2

“√
bc(a2 + bc) +

√
ca(b2 + ca) +

√
ab(c2 + ab)

”
(Cauchy − Schwarz)

≥ 3

2

3
q√

bc(a2 + bc) · √ca(b2 + ca) ·
√

ab(c2 + ab) (AM−GM)

=
1

2
3
p

(a3 + abc) (b3 + abc) (c3 + abc) + 3
p

(a3 + abc) (b3 + abc) (c3 + abc)

≥ 1

2

3
q

2
√

a3 · abc · 2
√

b3 · abc · 2
√

c3 · abc + 3
p

(a3 + abc) (b3 + abc) (c3 + abc) (AM−GM)

= abc + 3
p

(a3 + abc) (b3 + abc) (c3 + abc).

˜
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Epsilon 98. (Andrei Ciupan, Romanian Junior Balkan MO 2007 Team Selection Tests) Let
a, b, c be positive real numbers such that

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≥ 1.

Show that a + b + c ≥ ab + bc + ca.

First Solution. By applying The Cauchy-Schwarz Inequality, we obtain

(a + b + 1)(a + b + c2) ≥ (a + b + c)2

or
1

a + b + 1
≤ c2 + a + b

(a + b + c)2
.

Now by summing cyclically, we obtain

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≤ a2 + b2 + c2 + 2(a + b + c)

(a + b + c)2

But from the condition, we can see that

a2 + b2 + c2 + 2(a + b + c) ≥ (a + b + c)2,

and therefore
a + b + c ≥ ab + bc + ca.

We see that the equality occurs if and only if a = b = c = 1. ˜
Second Solution. (Cezar Lupu) We first observe that

2 ≥
X

cyclic

„
1− 1

a + b + 1

«
=
X

cyclic

a + b

a + b + 1
=
X

cyclic

(a + b)2

(a + b)2 + a + b
.

Apply The Cauchy-Schwarz Inequality to get

2 ≥
X

cyclic

(a + b)2

(a + b)2 + a + b

≥

“P
cyclic a + b

”2

P
cyclic(a + b)2 + a + b

=
4
P

cyclic a2 + 8
P

cyclic ab

2
P

cyclic a2 + 2
P

cyclic ab + 2
P

cyclic a

or
a + b + c ≥ ab + bc + ca.

˜
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Epsilon 99. (Hölder’s Inequality) Let xij (i = 1, · · · , m, j = 1, · · ·n) be positive real num-
bers. Suppose that ω1, · · · , ωn are positive real numbers satisfying ω1 + · · · + ωn = 1.
Then, we have

nY
j=1

 
mX

i=1

xij

!ωj

≥
mX

i=1

 
nY

j=1

xij
ωj

!
.

Proof. Because of the homogeneity of the inequality, we may rescale x1j , · · · , xmj so that
x1j + · · ·+ xmj = 1 for each j ∈ {1, · · · , n}. Then, we need to show that

nY
j=1

1ωj ≥
mX

i=1

nY
j=1

xij
ωj or 1 ≥

mX
i=1

nY
j=1

xij
ωj .

The Weighted AM-GM Inequality provides that
nX

j=1

ωjxij ≥
nY

j=1

xij
ωj (i ∈ {1, · · · , m}) =⇒

mX
i=1

nX
j=1

ωjxij ≥
mX

i=1

nY
j=1

xij
ωj .

However, we immediately have
mX

i=1

nX
j=1

ωjxij =

nX
j=1

mX
i=1

ωjxij =

nX
j=1

ωj

 
mX

i=1

xij

!
=

nX
j=1

ωj = 1.

˜
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Epsilon 100. Let f : [a, b] −→ R be a continuous function. Then, the followings are
equivalent.

(1) For all n ∈ N, the following inequality holds.

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn)

for all x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 + · · ·+ ωn = 1.
(2) For all n ∈ N, the following inequality holds.

r1f(x1) + · · ·+ rnf(xn) ≥ f(r1 x1 + · · ·+ rn xn)

for all x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1.
(3) For all N ∈ N, the following inequality holds.

f(y1) + · · ·+ f(yN )

N
≥ f

“y1 + · · ·+ yN

N

”

for all y1, · · · , yN ∈ [a, b].
(4) For all k ∈ {0, 1, 2, · · · }, the following inequality holds.

f(y1) + · · ·+ f(y2k )

2k
≥ f

“y1 + · · ·+ y2k

2k

”

for all y1, · · · , y2k ∈ [a, b].
(5) We have 1

2
f(x) + 1

2
f(y) ≥ f

`
x+y

2

´
for all x, y ∈ [a, b].

(6) We have λf(x) + (1− λ)f(y) ≥ f (λx + (1− λ)y) for all x, y ∈ [a, b]
and λ ∈ (0, 1).

Solution. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) is obvious.

(2) ⇒ (1) : Let x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 + · · · + ωn = 1. One
may see that there exist positive rational sequences {rk(1)}k∈N, · · · , {rk(n)}k∈N satisfying

lim
k→∞

rk(j) = wj (1 ≤ j ≤ n) and rk(1) + · · ·+ rk(n) = 1 for all k ∈ N.

By the hypothesis in (2), we obtain rk(1)f(x1) + · · · + rk(n)f(xn) ≥ f(rk(1) x1 + · · · +
rk(n) xn). Since f is continuous, taking k →∞ to both sides yields the inequality

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).

(3) ⇒ (2) : Let x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1. We can
find a positive integer N ∈ N so that Nr1, · · · , Nrn ∈ N. For each i ∈ {1, · · · , n}, we can
write ri = pi

N
, where pi ∈ N. It follows from r1 + · · · + rn = 1 that N = p1 + · · · + pn.

Then, (3) implies that

r1f(x1) + · · ·+ rnf(xn)

=

p1 termsz }| {
f(x1) + · · ·+ f(x1)+ · · ·+

pn termsz }| {
f(xn) + · · ·+ f(xn)

N

≥ f

0
BBB@

p1 termsz }| {
x1 + · · ·+ x1 + · · ·+

pn termsz }| {
xn + · · ·+ xn

N

1
CCCA

= f(r1 x1 + · · ·+ rn xn).
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(4) ⇒ (3) : Let y1, · · · , yN ∈ [a, b]. Take a large k ∈ N so that 2k > N . Let

a = y1+···+yN
N

. Then, (4) implies that

f(y1) + · · ·+ f(yN ) + (2k − n)f(a)

2k

=
f(y1) + · · ·+ f(yN ) +

(2k −N) termsz }| {
f(a) + · · ·+ f(a)

2k

≥ f

0
BBBB@

y1 + · · ·+ yN +

(2k −N) termsz }| {
a + · · ·+ a

2k

1
CCCCA

= f(a)

so that

f(y1) + · · ·+ f(yN ) ≥ Nf(a) = Nf
“y1 + · · ·+ yN

N

”
.

(5) ⇒ (4) : We use induction on k. In case k = 0, 1, 2, it clearly holds. Suppose that (4)
holds for some k ≥ 2. Let y1, · · · , y2k+1 ∈ [a, b]. By the induction hypothesis, we obtain

f(y1) + · · ·+ f(y2k ) + f(y2k+1) + · · ·+ f(y2k+1)

≥ 2kf
“y1 + · · ·+ y2k

2k

”
+ 2kf

„
y2k+1 + · · ·+ y2k+1

2k

«

= 2k+1
f
“

y1+···+ y2k

2k

”
+ f

“
y2k+1+···+ y2k+1

2k

”

2

≥ 2k+1f

0
@

y1+···+ y2k

2k +
y2k+1+···+ y2k+1

2k

2

1
A

= 2k+1f
“y1 + · · ·+ y2k+1

2k+1

”
.

Hence, (4) holds for k + 1. This completes the induction.
So far, we’ve established that (1), (2), (3), (4), (5) are all equivalent. Since (1) ⇒

(6) ⇒ (5) is obvious, this completes the proof. ˜
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Epsilon 101. Let x, y, z be nonnegative real numbers. Then, we have

3xyz + x3 + y3 + z3 ≥ 2
“
(xy)

3
2 + (yz)

3
2 + (zx)

3
2

”
.

Second Solution. After employing the substitution

x = e
p
3 , y = e

q
3 , z = e

r
3 ,

the inequality becomes

3e
p+q+r

3 + ep + eq + er ≥ 2
“
e

q+r
2 + e

r+p
2 + e

p+q
2

”

It is a straightforward consequence of Popoviciu’s Inequality. ˜
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Epsilon 102. Let ABC be an acute triangle. Show that

cos A + cos B + cos C ≥ 1.

Proof. Observe that
`

π
2
, π

2
, 0
´

majorize (A, B, C). Since −cosx is convex on
`
0, π

2

´
, The

Hardy-Littlewood-Pólya Inequality implies that

cos A + cos B + cos C ≥ cos
“π

2

”
+ cos

“π

2

”
+ cos 0 = 1.

˜
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Epsilon 103. Let ABC be a triangle. Show that

tan 2

„
A

4

«
+ tan 2

„
B

4

«
+ tan 2

„
C

4

«
≤ 1.

Proof. Observe that (π, 0, 0) majorizes (A, B, C). The convexity of tan 2
`

x
4

´
on [0, π]

yields the estimation:

tan 2

„
A

4

«
+ tan 2

„
B

4

«
+ tan 2

„
C

4

«
≤ tan 2

“π

4

”
+ tan 20 + tan 20 = 1.

˜
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Epsilon 104. Use The Hardy-Littlewood-Pólya Inequality to deduce Popoviciu’s Inequality.

Proof. [NP, p.33] Since the inequality is symmetric, we may assume that x ≥ y ≥ z. We
consider the two cases. In the case when x ≥ x+y+z

3
≥ y ≥ z, the majorization

“
x,

x + y + z

3
,
x + y + z

3
,
x + y + z

3
, y, z

”
Â
“x + y

2
,
x + y

2
,
z + x

2
,
z + x

2
,
y + z

2
,
y + z

2

”

yields Popoviciu’s Inequality. In the case when x ≥ y ≥ x+y+z
3

≥ z, the majorization
“
x, y,

x + y + z

3
,
x + y + z

3
,
x + y + z

3
, z
”
Â
“x + y

2
,
x + y

2
,
z + x

2
,
z + x

2
,
y + z

2
,
y + z

2

”

yields Popoviciu’s Inequality. ˜
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Epsilon 105. [IMO 1999/2 POL] Let n be an integer with n ≥ 2.

Determine the least constant C such that the inequality

X

1≤i<j≤n

xixj

`
x2

i + x2
j

´ ≤ C

0
@ X

1≤i≤n

xi

1
A

4

holds for all real numbers x1, · · · , xn ≥ 0.

Second Solution. (Kin Y. Li24) According to the homogenity of the inequality, we may
normalize to x1 + · · ·+ xn = 1. Our job is to maximize

F(x1, · · · , xn) =
X

1≤i<j≤n

xixj

`
x2

i + x2
j

´

=
X

1≤i<j≤n

xi
3xj +

X

1≤i<j≤n

xixj
3

=
X

1≤i≤n

xi
3
X

j 6=i

xi

=
X

1≤i≤n

xi
3(1− xi)

=

nX
i=1

f(xi),

where f(t) = t3 − t4 is a convex function on
ˆ
0, 1

2

˜
. Since the inequality is symmetric,

we can restrict our attention to the case x1 ≥ x2 ≥ · · · ≥ xn. If 1
2
≥ x1, then we see

that
`

1
2
, 1

2
, 0, · · · 0´ majorizes (x1, · · · , xn). Since x1, · · · , x2, · · · , xn ∈

ˆ
0, 1

2

˜
and since f is

convex on
ˆ
0, 1

2

˜
, by The Hardy-Littlewood-Pólya Inequality, the convexity of f on [0, 1

2
]

implies that
nX

i=1

f(xi) ≤ f

„
1

2

«
+ f

„
1

2

«
+ f(0) + · · ·+ f(0) =

1

8
.

We now consider the case when x1 ≥ 1
2
. We find that (1− x1, 0, · · · 0) majorizes (x2, · · · , xn).

Since 1−x1, x2, · · · , xn ∈
ˆ
0, 1

2

˜
and since f is convex on

ˆ
0, 1

2

˜
, by The Hardy-Littlewood-

Pólya Inequality,
nX

i=2

f(xi) ≤ f (1− x1) + f(0) + · · ·+ f(0) = f (1− x1) .

Setting x1 = 1
2

+ ε for some ε ∈ ˆ0, 1
2

˜
, we obtain

nX
i=1

f(xi) ≤ f(x1) + f (1− x1)

= x1(1− x1)[x1
2 + (1− x1)

2]

=

„
1

4
− ε2

«„
1

2
+ 2ε2

«

= 2

„
1

16
− ε4

«

≤ 1

8
.

˜

24I slightly modified his solution in [KL].
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9.2. IMO Code.

from http://www.imo-official.org

AFG Afghanistan ALB Albania ALG Algeria

ARG Argentina ARM Armenia AUS Australia

AUT Austria AZE Azerbaijan BAH Bahrain

BGD Bangladesh BLR Belarus BEL Belgium

BEN Benin BOL Bolivia BIH BIH
BRA Brazil BRU Brunei BGR Bulgaria

KHM Cambodia CMR Cameroon CAN Canada

CHI Chile CHN CHN COL Colombia

CIS CIS CRI Costa Rica HRV Croatia

CUB Cuba CYP Cyprus CZE Czech Republic

CZS Czechoslovakia DEN Denmark DOM Dominican Republic

ECU Ecuador EST Estonia FIN Finland

FRA France GEO Georgia GDR GDR
GER Germany HEL Greece GTM Guatemala

HND Honduras HKG Hong Kong HUN Hungary

ISL Iceland IND India IDN Indonesia

IRN Islamic Republic of Iran IRL Ireland ISR Israel

ITA Italy JPN Japan KAZ Kazakhstan

PRK PRK KOR Republic of Korea KWT Kuwait

KGZ Kyrgyzstan LVA Latvia LIE Liechtenstein

LTU Lithuania LUX Luxembourg MAC Macau

MKD MKD MAS Malaysia MLT Malta

MRT Mauritania MEX Mexico MDA Republic of Moldova

MNG Mongolia MNE Montenegro MAR Morocco

MOZ Mozambique NLD Netherlands NZL New Zealand

NIC Nicaragua NGA Nigeria NOR Norway

PAK Pakistan PAN Panama PAR Paraguay

PER Peru PHI Philippines POL Poland

POR Portugal PRI Puerto Rico ROU Romania

RUS Russian Federation SLV El Salvador SAU Saudi Arabia

SEN Senegal SRB Serbia SCG Serbia and Montenegro

SGP Singapore SVK Slovakia SVN Slovenia

SAF South Africa ESP Spain LKA Sri Lanka

SWE Sweden SUI Switzerland SYR Syria

TWN Taiwan TJK Tajikistan THA Thailand

TTO Trinidad and Tobago TUN Tunisia TUR Turkey

NCY NCY TKM Turkmenistan UKR Ukraine

UAE United Arab Emirates UNK United Kingdom USA United States of America

URY Uruguay USS USS UZB Uzbekistan

VEN Venezuela VNM Vietnam YUG Yugoslavia

BIH Bosnia and Herzegovina

CHN People’s Republic of China

CIS Commonwealth of Independent States

FRG Federal Republic of Germany

GDR German Democratic Republic

MKD The Former Yugoslav Republic of Macedonia

NCY Turkish Republic of Northern Cyprus

PRK Democratic People’s Republic of Korea

USS Union of the Soviet Socialist Republics


