Matricial R-circular Systems and Random Matrices

Romuald Lenczewski
Instytut Matematyki i Informatyki
Politechnika Wrocławska
UC Berkeley, March 2014

Motivations

Motivations:

- describe asymptotic distributions of random blocks
- construct new random matrix models
- unify concepts of noncommutative independence
(1) If $Y(u, n)$ is a standard complex Hermitian Gaussian random matrix, it converges under the trace to a semicircular operator

$$
\lim _{n \rightarrow \infty} Y(u, n) \rightarrow \omega(u)
$$

under $\tau(n)=\mathbb{E} \circ \operatorname{Tr}(n)$
(2) If $Y(u, n)$ is a standard complex non-Hermitian Gaussian random matrix, it converges to a circular operator

$$
\lim _{n \rightarrow \infty} Y(u, n) \rightarrow \eta(u)
$$

under $\tau(n)=\mathbb{E} \circ \operatorname{Tr}(n)$.

Different approaches

(1) free probability and freeness
(2) operator-valued free probability and freeness with amalgamation
(3) matricially free probability and matricial freeness

Voiculescu's asymptotic freeness and generalizations

(1) Complex independent Hermitian Gaussian random matrices converge to a free semicircular family

$$
\{Y(u, n): u \in \mathcal{U}\} \rightarrow\{\omega(u): u \in \mathcal{U}\}
$$

(2) Complex independent Non-Hermitian Gaussian random matrices converge to a free circular family

$$
\{Y(u, n): u \in \mathcal{U}\} \rightarrow\{\eta(u): u \in \mathcal{U}\}
$$

(3) Generalizations (Dykema, Schlakhtyenko, Hiai-Petz, Benaych-Georges and others)

Philosophy

By asymptotic freeness, large random matrix is a free random variable, so it is natural to
(1) decompose it into large blocks
(2) look for a concept of 'matricial' independence for blocks
(3) find operatorial realizations for large blocks
(4) reduce computations to properties of these operators

Matricial decomposition

(1) decompose the set $[n]:=\{1, \ldots, n\}$ into disjoint intervals

$$
[n]=N_{1} \cup \ldots \cup N_{r}
$$

and set $n_{j}=\left|N_{j}\right|$,
(2) use normalized partial traces

$$
\tau_{j}(n)=\mathbb{E} \circ \operatorname{Tr}_{j}(n)
$$

where

$$
\operatorname{Tr}_{j}(n)(A)=\frac{n}{n_{j}} \operatorname{Tr}(n)\left(D_{j} A D_{j}\right)
$$

and D_{j} is the $n_{j} \times n_{j}$ unit matrix embedded in $M_{n}(\mathbb{C})$ at the right place.

Matricial decomposition

(1) decompose random matrices $Y(u, n)$ into independent blocks

$$
S_{i, j}(u, n)=D_{i} Y(u, n) D_{j}
$$

(2) decompose symmetric blocks $T_{i, j}(u, n)$, built from blocks of the same color:

$$
Y(u, n)=\left(\begin{array}{llll}
S_{1,1}(u, n) & S_{1,2}(u, n) & \ldots & S_{1, r}(u, n) \\
S_{2,1}(u, n) & S_{2,2}(u, n) & \ldots & S_{2, r}(u, n) \\
& . & \ddots & . \\
S_{r, 1}(u, n) & S_{r, 2}(u, n) & \ldots & S_{r, r}(u, n)
\end{array}\right)
$$

Matricial freeness

In order to define a 'matricial' concept of independence,
(1) replace families of variables and subalgebras by arrays

$$
\begin{aligned}
\left\{a_{i}, i \in I\right\} & \rightarrow\left(a_{i, j}\right)_{(i, j) \in J} \\
\left\{\mathcal{A}_{i}, i \in I\right\} & \rightarrow\left(\mathcal{A}_{i, j}\right)_{(i, j) \in J}
\end{aligned}
$$

(2) replace one distinguished state in a unital algebra by an array of states

$$
\varphi \rightarrow\left(\varphi_{i, j}\right)_{(i, j) \in J}
$$

where we set $\varphi_{i, j}=\varphi_{j}$ (state 'under condition' j)

Matricial freeness

The definition of matricial freeness is based on two conditions
(1) 'freeness condition'

$$
\varphi_{i, j}\left(a_{1} a_{2} \ldots a_{n}\right)=0
$$

where $a_{k} \in \mathcal{A}_{i_{k}, j_{k}} \cap \operatorname{Ker} \varphi_{i_{k}, j_{k}}$ and neighbors come from different algebras
(2) 'matriciality condition': subalgebras are not unital, but they have internal units $1_{i, j}$, such that the unit condition

$$
1_{i, j} w=w
$$

holds only if w is a 'reduced word' matricially adapted to (i, j) and otherwise it is zero.

The concept of matricial freeness allows to
(1) unify the main notions of independence
(2) give a unified approach to sums and products of a large class of independent random matrices
(3) find a unified combinatorial description of limit distributions (non-crossing colored partitions)
(9) derive explicit formulas for arbitrary mutliplicative convolutions of Marchenko-Pastur laws
(5) find random matrix models for boolean independence, monotone independence and s-freeness (noncommutative independence defined by subordination)
(0) construct a natural random matrix model for free Meixner laws

Matricially free Fock space of tracial type

Definition

By the matricially free Fock space of tracial type we understand

$$
\mathcal{M}=\bigoplus_{j=1}^{r} \mathcal{M}_{j}
$$

where each summand is of the form

$$
\mathcal{M}_{j}=\mathbb{C} \Omega_{j} \oplus \bigoplus_{m=1}^{\infty} \bigoplus_{\substack{j_{1}, \ldots, j m \\ u_{1}, \ldots, u_{m}}} \mathcal{H}_{j_{1}, j_{2}}\left(u_{1}\right) \otimes \ldots \otimes \mathcal{H}_{j_{m}, j}\left(u_{m}\right)
$$

Creation operators

Definition

Define matricially free creation operators on \mathcal{M} as partial isometries with the action onto basis vactors

$$
\begin{aligned}
\wp_{i, j}(u) \Omega_{j} & =e_{i, j}(u) \\
\wp_{i, j}(u)\left(e_{j, k}(s)\right) & =e_{i, j}(u) \otimes e_{j, k}(s) \\
\wp_{i, j}(u)\left(e_{j, k}(s) \otimes w\right) & =e_{i, j}(u) \otimes e_{j, k}(s) \otimes w
\end{aligned}
$$

for any $i, j, k \in[r]$ and $u, s \in \mathcal{U}$, where $e_{j, k}(s) \otimes w$ is a basis vector. Their actions onto the remaining basis vectors give zero.

Toeplitz-Cuntz-Krieger algebras

Relations

One square matrix of creation operators ($\wp_{i, j}$) gives an array of partial isometries satisfying relations

$$
\begin{gathered}
\sum_{j=1}^{r} \wp_{i, j} \wp_{i, j}^{*}=\wp_{k, i}^{*} \wp_{k, i}-\wp_{i} \text { for any } k \\
\sum_{j=1}^{r} \wp_{k, j}^{*} \wp_{k, j}=1 \text { for any } k
\end{gathered}
$$

where \wp_{i} is the projection onto $\mathbb{C} \Omega_{j}$. The corresponding C*-algebras are Toeplitz-Cuntz-Krieger algebras.

Matricially free Gaussians

Arrays of matricially free Gaussians operators

$$
\omega_{i, j}(u)=\sqrt{d_{j}}\left(\wp_{i, j}(u)+\wp_{i, j}^{*}(u)\right)
$$

play the role of matricial semicircular operators

$$
[\omega(u)]=\left(\begin{array}{llll}
\omega_{1,1}(u) & \omega_{1,2}(u) & \ldots & \omega_{1, r}(u) \\
\omega_{2,1}(u) & \omega_{2,2}(u) & \ldots & \omega_{2, r}(u) \\
\cdot & \cdot & \ddots & . \\
\omega_{r, 1}(u) & \omega_{r, 2}(u) & \ldots & \omega_{r, r}(u)
\end{array}\right)
$$

and generalize semicircular operators. From now on we incorporate scalaras like $\sqrt{d_{j}}$ or more general $\sqrt{b_{i, j}(u)}$ in the operators.

Theorem [Voiculescu]

If $Y(u, n)$ are Hermitian standard Gaussian independent random matrices with complex entries, then

$$
\lim _{n \rightarrow \infty} Y(u, n)=\omega(u)
$$

in the sense of mixed moments under the complete trace $\tau(n)$.

Asymptotic distributions of Hermitian symmetric blocks

Theorem

If $Y(u, n)$ are Hermitian Gaussian independent random matrices with i.b.i.d. complex entries, then

$$
\lim _{n \rightarrow \infty} T_{i, j}(u, n)=\widehat{\omega}_{i, j}(u)
$$

in the sense of mixed moments under partial traces $\tau_{j}(n)$, where

$$
\widehat{\omega}_{i, j}(u)= \begin{cases}\omega_{j, j}(u) & \text { if } i=j \\ \omega_{i, j}(u)+\omega_{i, j}(u) & \text { if } i \neq j\end{cases}
$$

are symmetrized Gaussian operators.

Types of blocks

The symmetric blocks are called
(1) balanced if $d_{i}>0$ and $d_{j}>0$
(2) unbalanced if $d_{i}=0 \wedge d_{j}>0$ or $d_{i}>0 \wedge d_{j}=0$
(3) evanescent if $d_{i}=0$ and $d_{j}=0$
where the numbers

$$
\lim _{n \rightarrow \infty} \frac{\left|N_{j}\right|}{n}=d_{j} \geqslant 0
$$

are called asymptotic dimensions .

Special cases

Special cases

In the general formula for mixed moments, we get
(1) $T_{i, j}(u, n) \rightarrow \widehat{\omega}_{i, j}(u)$ if block is balanced
(2) $T_{i, j}(u, n) \rightarrow \omega_{i, j}(u)$ if block is unbalanced, $j=0 \wedge i>0$
(3) $T_{i, j}(u, n) \rightarrow \omega_{j, i}(u)$ if block is unbalanced, $j>0 \wedge i=0$
(9) $T_{i, j}(u, n) \rightarrow 0$ if block is evanescent

Free probability non-Hermitian version

Theorem [Voiculescu]

If $Y(u, n)$ are standard complex non-Hermitian Gaussian independent random matrices, then

$$
\lim _{n \rightarrow \infty} Y(u, n)=\eta(u)
$$

in the sense of moments under $\tau(n)$, where each $\eta(u)$ is circular.

Non-Hermitian case

Theorem

If $Y(u, n)$ are non-Hermitian Gaussian independent random matrices with i.b.i.d. complex entries, then

$$
\lim _{n \rightarrow \infty} T_{i, j}(u, n)=\eta_{i, j}(u)
$$

where

$$
\eta_{i, j}(u)=\widehat{\wp}_{i, j}(2 u-1)+\widehat{\wp}_{i, j}^{*}(2 u)
$$

are called matricial circular operators and $\widehat{\wp}_{i, j}(s)$ are symmetrizations of $\wp_{i, j}(s)$ (two partial isometries for each $\eta_{i, j}(u)$).

Matricial realization of partial isometries

Lemma

We can identify partial isometries $\wp_{i, j}(u)$ with

$$
\wp_{i, j}(u)=\ell(i, j, u) \otimes e(i, j) \in M_{r}(\mathcal{A})
$$

where
(1) the family $\{\ell(i, j, u): i, j \in[r], u \in \mathcal{U}\}$ is a system of *-free creation operators w.r.t. state φ on \mathcal{A}
(2) $\left(e_{i, j}\right)$ is a system of matrix units in $M_{r}(\mathbb{C})$
(3) $\psi_{j}=\varphi \otimes \psi_{j}$, where ψ_{j} is the state associated with $e(j) \in \mathbb{C}^{r}$.

Matricial realization - Hermitian case

Lemma

Consequently,

$$
\begin{aligned}
& \omega_{i, j}(u)=\ell(i, j, u) \otimes e(i, j)+\ell(i, j, u)^{*} \otimes e(j, i) \\
& \hat{\omega}_{i, j}(u)= \begin{cases}g(i, j, u) \otimes e(i, j)+g(i, j, u)^{*} \otimes e(j, i) & \text { if } i<j \\
f(i, u) \otimes e(i, i) & \text { if } i=j\end{cases}
\end{aligned}
$$

where

$$
\{g(i, j, u): i, j \in[r], u \in \mathcal{U}\}, \quad\{f(i, u): i \in[r], u \in \mathcal{U}\}
$$

are *-free generalized circular and semicircular systems, respectively.

Matricial realization - non-Hermitian case

Lemma

We can also identify matricial circular operators with

$$
\eta_{i, j}(u)= \begin{cases}g(i, j, u) \otimes e(i, j)+g(j, i, u) \otimes e(j, i) & \text { if } i<j \\ g(i, i, u) \otimes e(i, i) & \text { if } i=j\end{cases}
$$

Asymptotic realization of blocks

Theorem

If $Y(u, n)$ are complex Gaussian independent random matrices with i.b.i.d. entries, then

$$
\lim _{n \rightarrow \infty} S_{i, j}(u, n)=\zeta_{i, j}(u)
$$

where

$$
\zeta_{i, j}(u)=g(i, j, u) \otimes e(i, j)
$$

are called matricial R-circular operators.

Example

Consider one off-diagonal $\zeta_{i, j}$ of the form

$$
\zeta_{i, j}=\left(\ell_{1}+\ell_{2}^{*}\right) \otimes e(i, j)
$$

where $i \neq j$ and ℓ_{1}, ℓ_{2} are free creation operators with covariances γ_{1} and γ_{2}, respectively. We have

$$
\Psi_{j}\left(\zeta_{i, j}^{*} \zeta_{i, j} \zeta_{i, j}^{*} \zeta_{i, j}\right)=\varphi\left(\ell_{1}^{*} \ell_{1} \ell_{1}^{*} \ell_{1}\right)+\varphi\left(\ell_{1}^{*} \ell_{2}^{*} \ell_{2} \ell_{1}\right)=\gamma_{1}^{2}+\gamma_{1} \gamma_{2}
$$

whereas all remaining ${ }^{*}$-moments of $\zeta_{i, j}$ in the state Ψ_{j} vanish.

Matricial freeness

Theorem

The array of ${ }^{*}$-subalgebras $\left(\mathcal{M}_{i, j}\right)$ of $M_{r}(\mathcal{A})$, each generated by

$$
\{\ell(i, j, u) \otimes e(i, j): u \in \mathcal{U}\}
$$

with the unit

$$
1_{i, j}=t(i, j) \otimes e(i, i)+1 \otimes e(j, j)
$$

where

$$
t(i, j)=\left\{\begin{array}{cl}
\sum_{u \in u} \ell(i, j, u) \ell(i, j, u)^{*} & \text { if } i \neq j \\
0 & \text { if } i=j
\end{array}\right.
$$

is matricially free with respect to $\left(\Psi_{i, j}\right)$, where $\Psi_{j, j}=\varphi \otimes \psi_{j}$.

Symmetric matricial freeness

Theorem

The array $\left(\mathcal{M}_{i, j}\right)$ of ${ }^{*}$-subalgebras of $M_{r}(\mathcal{A})$, each generated by

$$
\{\ell(i, j, u) \otimes e(i, j), \ell(j, i, u) \otimes e(j, i): u \in \mathcal{U}\}
$$

and the symmetrized unit

$$
1_{i, j}=1 \otimes e(i, i)+1 \otimes e(j, j),
$$

is symmetrically matricially free with respect to $\left(\Psi_{i, j}\right)$.

Symmetric matricial freeness

Corollary

The array $\left(\mathcal{M}_{i, j}\right)$ of ${ }^{*}$-subalgebras of $M_{r}(\mathcal{A})$ such that one of the following cases holds:
(1) each $\mathcal{M}_{i, j}$ is generated by $\left\{\hat{\omega}_{i, j}(u): u \in \mathcal{U}\right\}$,
(2) each $\mathcal{M}_{i, j}$ is generated by $\left\{\eta_{i, j}(u): u \in \mathcal{U}\right\}$,
(3) each $\mathcal{M}_{i, j}$ is generated by $\left\{\zeta_{i, j}(u): u \in \mathcal{U}\right\}$,
is symmetrically matricially free with respect to $\left(\Psi_{i, j}\right)$.

Adapted partitions

If $a_{k}=c_{k} \otimes e\left(i_{k}, j_{k}\right) \in M_{r}(\mathcal{A})$ for $k=1, \ldots, m$, where $c_{k} \in \mathcal{A}$, we will denote by

$$
\mathcal{N C} \mathcal{C}_{m}\left(a_{1}, \ldots, a_{m}\right)
$$

the set of non-crossing partitions of [m] which are adapted to $\left(e\left(i_{1}, j_{1}\right), \ldots, e\left(i_{m}, j_{m}\right)\right)$ which means that this tuple is cyclic

$$
j_{1}=i_{2}, j_{2}=i_{3}, \ldots, j_{n}=i_{1}
$$

together with all tuples associated with the blocks of π. Its subset consisting of pair partitions will be denoted $\mathcal{N C} C_{m}^{2}\left(a_{1}, \ldots, a_{m}\right)$.

Example

For $(e(i, j), e(j, i), e(i, j), e(j, i))$, where $i \neq j$, there are three non-crossing partitions adapted to it:

$$
\{\{1,2,3,4\}\}, \quad\{\{1,4\},\{2,3\}\}, \quad\{\{1,2\},\{3,4\}\} .
$$

In turn, the partitions

$$
\{\{1,2,5\},\{3,4\}\},\{\{1,2,3,4,5\}\}\{\{1,2,3\},\{4,5\}\}
$$

are the only non-crossing partitions adapted to the tuple $(e(i, j), e(j, k), e(k, i), e(i, m), e(m, i))$, where $i \neq j \neq k \neq i \neq m$.

Combinatorics of mixed *-moments

Lemma

With the above notations, let $a_{k}=\zeta_{i_{k}, j_{k}}^{\epsilon_{k}}\left(u_{k}\right)$, where $i_{k}, j_{k} \in[r]$, $u_{k} \in \mathcal{U}$, and $\epsilon_{k} \in\{1, *\}$ for $j \in[m]$ and $m \in \mathbb{N}$. Then

$$
\Psi_{j}\left(a_{1} \ldots a_{m}\right)=\sum_{\pi \in \mathcal{N C} C_{m}^{2}\left(a_{1}, \ldots, a_{m}\right)} b_{j}(\pi, f)
$$

where j is equal to the second index of last matrix unit (associated with a_{m}) and f is the unique coloring of π adapted to $\left(a_{1}, \ldots, a_{m}\right)$,

$$
b_{j}(\pi, f)=\prod_{k} b_{j}\left(\pi_{k}, f\right)
$$

with $b_{j}\left(\pi_{k}\right)=b_{c(k), c(o(k))}(u)$, where $c(k), c(o(k)), j$ are colors assigned to π_{k}, its nearest outer block $\pi_{o(k)}$ and to the imaginary block. In the remaining cases, the moment vanishes.

Cyclic cumulants

Definition

A family of multilinear functions $\kappa_{\pi}[. ; j]$, where $j \in[r]$, of matricial variables $a_{k}=c_{k} \otimes e\left(i_{k}, j_{k}\right) \in M_{r}(\mathcal{A})$ is cyclically multiplicative over the blocks π_{1}, \ldots, π_{s} of $\pi \in \mathcal{N C} \mathcal{C}_{m}\left(a_{1}, \ldots, a_{m}\right)$ if

$$
\kappa_{\pi}\left[a_{1}, \ldots, a_{m} ; q\right]=\prod_{k=1}^{s} \kappa\left(\pi_{k}\right)\left[a_{1}, \ldots, a_{m} ; j(k)\right]
$$

for any a_{1}, \ldots, a_{m}, where

$$
\kappa\left(\pi_{k}\right)\left[a_{1}, \ldots, a_{m} ; j(k)\right]=\kappa_{s}\left(a_{q_{1}}, \ldots, a_{q_{s}} ; j_{q_{s}}\right)
$$

for the block $\pi_{k}=\left(q_{1}<\ldots<q_{n}\right)$, where $\left\{\kappa_{s}(. ; j): s \geqslant 1, j \in[r]\right\}$ is a family of multilinear functions. If $\pi \notin \mathcal{N C} \mathcal{C}_{m}\left(a_{1}, \ldots, a_{m}\right)$, we set $\kappa_{\pi}\left[a_{1}, \ldots, a_{m} ; j\right]=0$ for any j.

Cyclic cumulants

Definition

By the cyclic cumulants we shall understand the family of multilinear cyclically multiplicative functionals over the blocks of non-crossing partitions

$$
\pi \rightarrow \kappa_{\pi}[\cdot ; j],
$$

defined by r moment-cumulant formulas

$$
\Psi_{j}\left(a_{1} \ldots a_{m}\right)=\sum_{\pi \in \mathcal{N C}_{m}\left(a_{1}, \ldots, a_{m}\right)} \kappa_{\pi}\left[a_{1}, \ldots, a_{m} ; j\right]
$$

where $j \in[r]$ and $\Psi_{j}=\varphi \otimes \psi_{j}$.

Example

Take

$$
\zeta_{i, j}=\left(\ell_{1}+\ell_{2}^{*}\right) \otimes e(i, j) \text { and } \zeta_{i, j}^{*}=\left(\ell_{1}^{*}+\ell_{2}\right) \otimes e(j, i),
$$

where $i \neq j$. The non-trivial second order cumulants are

$$
\begin{aligned}
& \kappa_{2}\left(\zeta_{i, j}^{*}, \zeta_{i, j} ; j\right)=\Psi_{j}\left(\zeta_{i, j}^{*} \zeta_{i, j}\right)=\varphi\left(\ell_{1}^{*} \ell_{1}\right)=\gamma_{1} \\
& \kappa_{2}\left(\zeta_{i, j}, \zeta_{i, j}^{*} ; i\right)=\Psi_{i}\left(\zeta_{i, j} \zeta_{i, j}^{*}\right)=\varphi\left(\ell_{2}^{*} \ell_{2}\right)=\gamma_{2}
\end{aligned}
$$

whereas all higher order cumulants vanish. For instance,

$$
\begin{aligned}
\kappa_{2}\left(\zeta_{i, j}^{*}, \zeta_{i, j}, \zeta_{i, j}^{*}, \zeta_{i, j} ; j\right)= & \Psi_{j}\left(\zeta_{i, j}^{*} \zeta_{i, j} \zeta_{i, j}^{*} \zeta_{i, j}\right) \\
& \kappa_{2}\left(\zeta_{i, j}^{*}, \zeta_{i, j} ; j\right) \kappa_{2}\left(\zeta_{i, j}^{*}, \zeta_{i, j} ; j\right) \\
& -\kappa_{2}\left(\zeta_{i, j}^{*}, \zeta_{i, j} ; j\right) \kappa_{2}\left(\zeta_{i, j}, \zeta_{i, j}^{*} ; i\right) \\
= & \gamma_{1}^{2}+\gamma_{1} \gamma_{2}-\gamma_{1}^{2}-\gamma_{1} \gamma_{2}=0
\end{aligned}
$$

Cyclic R-transforms

Cyclic R-transforms

Let $\zeta:=\left(\zeta_{i, j}\right)$ and $\zeta^{*}:=\left(\zeta_{i, j}^{*}\right)$. Cyclic R-transforms of this pair of arrays are formal power series in $z:=\left(z_{i, j}\right)$ and $z^{*}:=\left(z_{i, j}^{*}\right)$ of the form

$$
=\sum_{n=1}^{\infty} \sum_{\substack{i_{1}, \ldots, \zeta_{n} \\ j_{1}, \ldots, j_{n}}} \sum_{\epsilon_{1}, \ldots, \epsilon_{n}} \kappa_{n}\left(z, \zeta^{*} ; j\right)
$$

where $i_{1}, \ldots, i_{n}, j, j_{1}, \ldots j_{n} \in[r]$ and $\epsilon_{1}, \ldots, \epsilon_{n} \in\{1, *\}$.

Cyclic R-transforms of R-circular systems

Theorem

If $\zeta:=\left(\zeta_{i, j}\right)$ is the square array of matricial R -circular operators and $\zeta^{*}:=\left(\zeta_{i, j}^{*}\right)$, then its cyclic R-transforms are of the form

$$
R_{\zeta, \zeta^{*}}\left(z, z^{*} ; j\right)=\sum_{i=1}^{r}\left(b_{i, j} z_{i, j}^{*} z_{i, j}+b_{i, j} z_{j, i} z_{j, i}^{*}\right)
$$

where $j \in[r]$, where $b_{i, j}=\kappa_{2}\left(\xi_{i, j}^{*}, \xi_{i, j} ; j\right)=\kappa_{2}\left(\xi_{j, i}, \xi_{j, i}^{*} ; j\right)$.

Cyclic R-transforms of single R-circular operators

Theorem

If $\zeta:=\zeta_{i, j}$, where $i \neq j$, then non-trivial cyclic R-transforms of the pair $\left\{\zeta, \zeta^{*}\right\}$ are of the form

$$
\begin{aligned}
& R_{\zeta, \zeta^{*}}\left(z, z^{*} ; j\right)=b_{i, j} z_{i, j}^{*} z_{i, j} \\
& R_{\zeta, \zeta^{*}}\left(z, z^{*} ; i\right)=b_{j, i, i, j} z_{i, j}^{*}
\end{aligned}
$$

and if $\zeta:=\zeta_{j, j}$, then

$$
R_{\zeta, \zeta^{*}}\left(z, z^{*} ; j\right)=b_{j, j}\left(z_{j, j}^{*} z_{j, j}+z_{j, j} z_{j, j}^{*}\right)
$$

Cyclic R-transforms of single R-circular operators

Corollary

If $b_{i, j}=d_{i}$ for any i, j, then $c:=\sum_{i, j} \zeta_{i, j}$ is circular with respect to $\Psi=\sum_{j=1}^{r} d_{j} \Psi_{j}$ and the corresponding R-transform takes the form

$$
R_{c, c^{*}}\left(z_{1}, z_{2}\right)=\sum_{j=1}^{r} d_{j} R_{\zeta, \zeta^{*}}\left(z, z^{*} ; j\right)=z_{1} z_{2}+z_{2} z_{1}
$$

where $R_{\zeta, \zeta^{*}}\left(z, z^{*} ; j\right)$ are the cyclic R-transforms considered above in which all entries of arrays z and z^{*} are identified with z_{1} and z_{2}, respectively.

