Matricial freeness and random pseudomatrices

Romuald Lenczewski

Instytut Matematyki i Informatyki
Politechnika Wroctawska

July 2010

Romuald Lenczewski Matricial freeness and random pseudomatrices



@ Introduction
@ Matricial notions of independence
- Fock spaces
- Weak and strong matricial freeness
- Random pseudomatrices
© Asymptotic properties
- Fock space realizations
- Comparison with random matrices
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Main motivations

Main motivations:

@ connect freeness (Voiculescu) with other notions of
noncommutative independence

monotone independence (Muraki, Lu)

boolean independence (Bozejko, Speicher, Woroudi)
conditional freeness (Bozejko, Speicher)
conditionally monotone independence (Hasebe)
freeness with subordination (R.L.)

orthogonal independence (R.L.)

@ introduce a notion of independence that would be related to
random matrices
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We propose two closely related notions of independence
e weak matricial freeness
@ strong matricial freeness

Weak matricial freeness will also be called matricial freeness .

These notions of independence

@ lead to unification of noncommutative independence
(other than reduction to tensor independence)

@ are related to subordination in free probability

@ are related to random matrices
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Main objects

Arrays of subalgebras and states

Let (A, ¢) be a noncommutative probability space. Instead of
considering a family of subalgebras of A, we take

Q an array (A; ) of subalgebras of A
@ an array of states (p; ;) on A

Similar changes of the category can be made on the level of
*_algebras and C*-algebras.
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Main results

Shape of array determines independence

Under suitable assumptions on considered states, strong matricial
freeness gives a correspondence between different shapes of
matrices and different types of independence

@ square arrays — freeness

@ lower-triangular arrays — monotone independence

@ upper-triangular arrays — anti-monotone independence

@ diagonal arrays — boolean independence

@ arrays with zeros above (below) the anti-diagonal — freeness
with subordination

one-column arrays — orthogonal independence
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Main results

Generalization to conditional independence

Under slightly more general assumptions on considered states,
strong matricial freeness gives a correpondence between different
shapes of arrays and different types of conditional independence

@ square arrays — conditional freeness
@ lower-triangular arrays — conditional monotone independence

@ upper-triangular arrays — conditional anti-monotone
independence
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Main results

Shape of array determines asymptotic independence

Under suitable assumptions on the considered states, matricial
freeness gives a similar correspondence between different shapes of
arrays and different types of asymptotic independence.
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Magical properties

Freeness

a a )
Ll €12 ) {a11 + a12,a21 + a0} is free
ap1 a2

v
Monotone independence

a a : :
( 31,1 31’2 ) =— (a1,1,a2,1 + a22) is monotone independent
21 a22 ’

Boolean independence

a1 a . .
( L1 92 ) = {a1,1, a2} is boolean independent

a1l a2
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Magical properties

Anti-monotone independence

a1l dai?2 . . o
( ; 2 a 2 ) = (a1,1 + a1,2, a22) is anti-monotone independent
21 a22 ’

Subordination

a a . . o
( 31,1 3172 ) = (a1,1 + a2,1, a2,1) is free with subordination
21 a2

Orthogonal independence

a1l a . .
( L1 9l2 ) = (a1,1, a21) is orthogonally independent

a1 a2
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Main results

Asymptotics of blocks

Joint distributions of

@ blocks of matricially free random variables with symmetric
variances

@ blocks of symmetric random matrices

agree asymptotically.
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Matricially free Fock space

Matricially free Fock space

By the matricially free Fock space over the array of Hilbert spaces
H = (Hij) we understand the Hilbert space direct sum

o0
MH)=Coo P @ HENQHERR..@HEw

i1,i2 i2,i3 imsim
m=1 (iy,iz)#...#(im,im)

where Q is a unit vector, with the canonical inner product.

Properties:
@ freeness: neighboring pairs of indices are different
@ matriciality: neighboring pairs are matricially related

e diagonal subordination: last pair is diagonal
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Strongly matricially free Fock space

Strongly matricially free Fock space

By the strongly matricially free Fock space over the array of Hilbert
spaces H = () we understand the Hilbert space direct sum

a0
RH) =Co0 D @ HIPOHIZ®...@HPT

1,2 i2,i3 imyim
m=1 ij#...#im

ny,..., nmeN

where Q is a unit vector, with the canonical inner product.

Properties:
o freeness: neighboring indices are different
@ matriciality: neighboring pairs are matricially related

e diagonal subordination: last pair is diagonal
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Free Fock space

In the case of square arrays, strongly matricially free Fock space is
a natural generalization of the free Fock space.

Free Fock space (Voiculescu)
If the array H is square and H;; = H; for any i, j, then
o
RH) =CQOD P HP"QHE?®...@HD™,

m=1 iy #...#im
(il gooos) nmeN

i.e. the strongly matricially free Fock space is isomorphic to the
free Fock space F(®; H;)-
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Monotone Fock space

In the case of lower-triangular arrays, strongly matricially free Fock
space is also a natural generalization of the monotone Fock space.

Monotone Fock space (Lu, Muraki)

If the array # is lower-triangular and Hij = H; for any i > j, then

a0
RH)=CQo P P HI"QHE™®...@HE™,
m=1 i;>...>im
(h] gooon nmeN
i.e. the strongly matricially free Fock space is isomorphic to the
monotone Fock space.
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Freeness

Freeness (Voiculescu)

Let A be an algebra and let ¢ be a distinguished state. The family
(Aj)iesr of unital subalgebras is free w.r.t. ¢ if

p(ajay...ap) =0

whenever a, € A;, nKerp and iy # ... # i,
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Monotone independence

Monotone independence (Muraki)

Let A be an algebra and let ¢ be a distinguished state. The family
(Aj)ier of (not assumed to be unital) subalgebras is monotone
independent w.r.t. ¢ if

p(a1...ak-13kak+1---an) = pak)p(ar ... ak-13k+1- - - an)

whenever ax € A;, and ix_1 < ik > ixyq forany 1 < k < n.
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Assumptions for matricial freeness

We make the following assumptions:
@ A is a unital algebra with unit 1 4
@ (A; ) is a diagonal-containing array of subalgebras of A:

© each A, is equipped with an internal unit 1;;, in general
different from the unit 14

O (i) is an array of states (normalized linear functionals) on A
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Units

Matricially free array of units
The array (1) is a matricially free arrays of units if
@ it has the matricial property

©pqlalijai i ai ) = Pp,q(adiy i - - - aipj,) if j =10
PN Rk, el 0 otherwise

for any a;, j, € Ai, j, N Ker(p; j.), a€ A,
(Iv./) 7 (ila.jl) .. F (im.jn) and any p,q
@ it is normalized according to
@i j(Lk1) = 0j

for any i,/, k, I
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Matricial freeness and strong matricial freeness

Matricial freeness

The array (A; )i jer is matricially free w.r.t. (¢;;) if

Q ¢(a1a...an) = 0 whenever ay € A;,_j, N Keryp;, j and
(ilajl) FooF (imjn)
@ the array (1; ;) is a matricially free array of units.

Strong matricial freeness

The array (A; )i jer is strongly matricially free w.r.t. (¢;;) if

Q p(aiaz...ap) = 0 whenever a, € A;,_j, n Kery; j and
(ilajl) F.F (inajn)
@ the array (1;) is a strongly matricially free array of units.

Romuald Lenczewski Matricial freeness and random pseudomatrices



Theorem on independence

Assumptions for the theorem on independence

Suppose that we have arrays

3171 8172 coo 817,, 2] @2 ... ©n

a1 4a22 ... axn Y1 @ ... ©n
) and

dnl dn2 ... dnn Y1 P2 ... @

and assume that
@ (ajj) is strongly matricially free under (y; ;)

@ (ajj) is row-identically distributed under (¢; ;)
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Theorem on independence

Shape of array determines independence

Under the above assumptions, the shape of an array determines
independence, namely

o the family {aj := >, ajx : 1 <j < n} is free
o the family {b; := >}, aj« : 1 <j < n} is monotone
o the family {c; := >, ;ajx : 1 <j < n} is anti-monotone

o the family {d; := a;; : 1 < j < n} is boolean

under the state ¢.
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Two-dimensional matrices

Shape of array determines independence

In the case of two dimensions, the variables

@ ay:=ay1 +ai2and ap = ax1 + ap o are free
by := a1 and by = a»1 + ap > are monotone
€1 := a1 + aip, ¢ = axp are anti-monotone

o
o
@ di :=ay1 and db := ax are boolean
o

e; := a1,1 and e := ap 1 are orthogonal
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Theorem on convolutions

Shape of array determines convolution

Under the above assumptions, if the variables (a; ;) have
distributions (1 ;) under (¢; ), then
D(ary +a12,9) = D(a11,¢) == m

a1+ a2, ) = D(azp, ) == p2

a1+ a2, ) = 1 w po (boolean additive)

a1+ ax1,¢) = p1 = po (orthogonal additive)

D(
D(
D(a11 + ax1 + a22,¢) = p1 = po (monotone additive)
D(
D(

X jaijsp) = pa B o (free additive)
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Theorem on conditional independence

Shape of array determines conditional independence

More generally, if only the off-diagonal variables are row-identically
distributed, then

o the family {aj := >, ajx : 1 <j < n} is c-free
o the family {b; := >, .;aj« : 1 <j < n} is c-monotone
o the family {c; := >, ;ajx : 1 <j < n} is c-anti-monotone

under (p, 1), where 9 is any state which agrees with ¢; on the
off-diagonal A;; = alg(a;, 1;;).
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Analytic subordination in free probability

Free convolutions have the so-called analytic subordination property
In the case of the free additive convolution it takes the following
form.

Analytic subordination property (Voiculescu, Biane)

The free additive convolution of probability measures on the real
line w1, 2 € Mp has the subordination property

Fﬂ1#2(z) = F/—LI(FZ(Z))

in terms of the reciprocal Cauchy transforms.
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Theorem on operatorial subordination

Operatorial subordination property

© The sum of free random variables Xj, Xo with distributions g1
and pp has the decomposition

X1+ X =x+Y,

where the pair (x, Y) is monotone independent under .

@ The corresponding distributions satisfy the equation

prEp2 = p1 > (2 B pr),

where D(x, ¢) = u1 and D(Y, @) = pa [H 1 is the s-free
additive convolution of w1 and pp associated with s-freeness .
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Operatorial subordination versus strong matricial freeness

Subordination property in terms of strong matricial freeness

In the case of two dimensions, the variables
@ up:=ay1+aipand up := ax are s-free
® t;:=axo+ax; and tr := a; > are s-free
® D(uy + up, ) = p1 [Hpo (s-free additive convolution)
@ D(t1 + to, ) = po [Hp (s-free additive convolution)

v

Decomposition of the free additive convolution

The following decomposition holds:

p1 B p2 = (p1 [Buz) w (o [Bpr)
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Matricially free analog of homogenous tree Hy

e son
o daughter

B

e
e
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Random pseudomatrices

Random pseudomatrix

Let (Xij(n))i<ij<n be arrays of self-adjoint random variables in
unital *-algebras A(n) which are matricially free with respect to the
array (¢jj(n)) of states. Then the sum of the form

will be called a random pseudomatrix .
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We shall consider two types of arrays depending on n. Let ¢(n) be
a distinguished state on A and let (¢;(n));e; be a family of
additional states on A(n) called conditions .

We say that the array (¢;;(n)) is defined by the state ¢(n) and the
farmily (ij(n))jer if

¢jj(n) =¢(n) and ¢;j(n) =pj(n) for i#j

We say that the array (¢;j(n)) is defined by the family (¢;(n))jes if

@i j(n) = pj(n) for any (i,J)
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Assumptions for central limit theorem:
© Each set [n] :={1,2,...,n} is partitioned into disjoint
non-empty intervals,

[N=NouNu...UN,

where r € N, such that |N;|/n — d; as n — o,
@ (Xij(n)) is matricially free with respect to (¢;j(n)),
© the variables have zero expectations:

@i j(n)(Xij(n)) =0,
@ their variances are block-identical:

pig (M (XZi(n) = 22 for (i.j) € Np x N,

@ their moments are uniformly bounded.
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Continued (multi)fractions

Limit laws can be expressed in terms of continued (multi)fractions

Lemma

For given matrix B € M,(R) with nonnegative entries, continued
(multi)fractions of the form

where 1 </, < r, converge uniformly on the compact subsets of
C* to the K-transforms of some 1 j € Mg with compact supports.
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Central Limit Theorem

Central Limit Theorem

Under the assumptions stated above, the ¢(n)-distributions of S(n)
converge weakly to the distribution

Mo = 11 W U222 W ... WY [y r

where (i ; is the distribution defined by Kj ; for each j with B = DU
(block variance matrix times the diagonal dimension matrix).

<
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Tracial Central Limit Theorem

Tracial Central Limit Theorem

Under the above assumptions, the distributions of random
pseudomatrices S(n) under the states

1 n
Y(n) = = wi(n)

n -

j=1
converge weakly to the convex linear combination
r
p= di
j=1

where p; = p1j w pojw ... w p,jforeach j=1,... rand p;;is
the distribution defined by K;; for any i, ;.
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Boolean compressions

Boolean compressions

@ boolean compression of y is T defined by
K1,u(z) = tK,(z), where

@ boolean compression of the semicircle law is 0 3 = T:04,
where t = 3?/a?, with the Cauchy transform

(202 — B?)z — 82422 — 42
(202 — 252)22 + 26°

GUa,,B (Z) =
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Two-dimensional semi-circle laws

Two-dimensional limit laws

If the variances in a 2 by 2 matrix a?, 52,2, 6° do not vanish, then
the diagonal measures have the form

p1 = Tiy(oapBosy)
H2,2 T1/s(05 [Hoa,p)

and the off-diagonal measures are given by

H12 = 0qp[HTsA
pe1 = 05y[Hoap

where t = (8/a)? and s = (v/6)2.
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Weighted binary tree

In the 2-dimensional case, the moments of pg are given by counting
weighted root-to-root paths in the binary tree.
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Weighted Catalan path

Another realization can be given in terms of weighted Catalan
paths.
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Asymptotic freeness and monotone independence

Asymptotic freeness

If the array of variances is r-dimensional, square and has identical
non-zero variances in each row, then

1 ZUalo'az---o'ar

for each 1 < j < r, and they all coincide with p and pp.

Asymptotic monotone independence

If the array of variances is r-dimensional, lower-triangular and has
identical non-zero variances in each row, then

Hj = Oa; > Oqjpy B ... B> 0Oq,

for each 1 < j < r. Moreover, pig = p1 and p = 3 djpu;.
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Boolean and free Fock spaces

We want to find a Hilbert space realization of the limit laws. For
that purpose let us recall the definition of free and boolean Fock
spaces.

Boolean and free Fock spaces

Recall that by the boolean and free Fock spaces over the Hilbert
space H, respectively, we understand the direct sums

‘FO(H) = Cﬁ@% and f(?—[) = (Cé‘@ é fH®m7

m=1

where £ is a unit vector, endowed with the canonical inner products.

We shall take a suitable product of an array of such Fock spaces.
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Matricially free product of Hilbert spaces

The product of Hilbert spaces in our theory is called the matricially
free product of (#;j,&;j) and is related the matricially free Fock
space.

Matricially free product of Hilbert spaces

Let (H;j,&ij) be an array of Hilbert spaces with distinguished unit
vectors. By the matricially free product of (H;;,&; ;) we understand
the pair (H,£), where

Q0
H=Ctd D P HLOHY,®.. M),
m=1 (iy,i>)#...#(imyim)

with ”H?J- =H;; ©C¢&j and £ being a unit vector, with the
canonical inner product. We denote it (#, &) = #1(Hij, &ij)-

Romuald Lenczewski Matricial freeness and random pseudomatrices



Matricially free-boolean Fock space

Matricially free-boolean Fock space

By the matricially free-boolean Fock space over the array
H = (H;j) we shall understand the matricially free product

F(Hj) if i=

M s S
(]:,6) _*I,J(]:I,_j)é-l,j)7 where ]:l,j {]_—O(,Hu) “ I;ﬁ_j

and §; ; denotes the distinguished unit vector in F; ;.
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Matricially free Gaussian operators

Matricially free Gaussian operators

Let A = () be a diagonal-containing array of positive real
numbers and let (#;;) = (Ce;j ) be the associated array of Hilbert
spaces. By the matricially free creation operators associated with A
we understand operators of the form

Sij = T (e )T,

where 7 : ' — F(@, ; Hi;) is the canonical embedding and the
{(ejj)'s denote the canonical free creation operators.
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Further operators on F

e matricially free Gaussian operators: (;; = < + g,-”‘J

e truncated matricially free creation operators: p;; = ¢ ;P,
where P is the projection onto F ©Q

o truncated matricially free Gaussian operators: wj; = p;; + ¢} ;,
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Blocks

Blocks of matricially free random variables

Suppose that the array (X;;(n)) is decomposed into blocks
according to the partition [n] = Ny U Np U ... U N, into disjoint
non-empty subsets. The sums of the form

Spaln) = D, Xij(n)

(i./)ENp x Ng

will be called blocks of the pseudomatrix S(n).
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Asymptotics of blocks

Fock space realization of central limit joint distributions

Joint limit distributions in the Central Limit Theorem can be
realized on the matricially free Fock space as

lim ©(n)(Spy,q1 (M) - - Spm.gem (M) = ©(Cpr.a1 - - - Comuam)

n—aoo

where ¢ is the vacuum state on B(F.
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Asymptotics of blocks

Fock space realization of tracial central limit joint distributions

Joint limit distributions in the Tracial Central Limit Theorem can
be realized on the matricially free Fock space as

lim (1) (Spy,:(n) - - - Spmgm (M) = V(Wpy,q1 - - - Wpm,gm)

n—o0

where 1) = 3. dj3); and 1); is the state on B(F) associated with
the vector ¢ ;.

Romuald Lenczewski Matricial freeness and random pseudomatrices



Asymptotics of symmetric blocks

Agreement with symmetric random matrices

Symmetric blocks of random pseudomatrices given by symmetric
blocks

Zp,q(n) = Spq(n) + Sq,p(n)

have the same asymptotics under v (n) as symmetric blocks of
random matrices under classical expectation composed with
normalized trace in the approach of Voiculescu (Gaussian case) and
Dykema (non-Gaussian case).
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