Matricial R-transform

Romuald Lenczewski

Instytut Matematyki i Informatyki
Politechnika Wrocławska

Bialgebras in Free Probability, Wien, February 2011

Contents

(1) Introduction
(2) Strong matricial freeness

- Product state
- Fock spaces
- Convolution
(3) Matricial R-transform
- Toeplitz operators
- Existence
- Uniqueness
(a) Combinatorics and cumulants

Independence and linearization

- Classical probability
- classical independence
- linearization formula for the logarithm of the Fourier transform

$$
\log F_{\mu_{1} * \mu_{2}}=\log F_{\mu_{1}}+\log F_{\mu_{2}}
$$

- Free probability
- free independence
- linearization formula for the R-transform of Voiculescu

$$
R_{\mu_{1} \boxplus \mu_{2}}=R_{\mu_{1}}+R_{\mu_{2}}
$$

Noncommutative independence

There are different notions of noncommutative independence:

- axiomatic theory
- freeness (Voiculescu)
- boolean independence (Bożejko, Speicher, Woroudi)
- monotone independence (Muraki)
- generalizations
- conditional freeness (Bożejko, Speicher, Leinert)
- conditionally monotone independence (Hasebe)
- related to subordination
- freeness with subordination (R.L.)
- orthogonal independence (R.L.)

Convolutions and transforms

Additive convolutions

- with a linearization formula for the associated transform
- free $\mu_{1} \boxplus \mu_{2}$
- boolean $\mu_{1} \uplus \mu_{2}$
- c-free $\left(\mu_{1}, \nu_{1}\right) \boxplus\left(\mu_{2}, \nu_{2}\right)$
- with no linearization formula for the associated transform
- monotone $\mu_{1} \triangleright \mu_{2}$
- s-free $\mu_{1} \boxplus \mu_{2}$
- orthogonal $\mu_{1} \vdash \mu_{2}$

Matricial freeness and strong matricial freeness

We propose two closely related notions of independence

- matricial freeness
- strong matricial freeness

Strong matricial freeness

- leads to unification of noncommutative independence
- is related to subordination in free probability

Matricial freeness

- is related to random matrices

Array of subalgebras

Array of subalgebras

Let (\mathcal{A}, φ) be a ${ }^{*}$-noncommutative probability space and let $\left(\mathcal{A}_{i, j}\right)$ be a two-dimensional array of ${ }^{*}$-subalgebras of \mathcal{A} such that
(1) each $\mathcal{A}_{i, j}$ has an internal unit $1_{i, j}$ which is a projection and for which it holds that

$$
1_{i, j} a_{i, j}=a_{i, j} 1_{i, j}=a_{i, j}
$$

for any $a_{i, j} \in \mathcal{A}_{i, j}$
(2) the unital algebra generated by all internal units, called the algebra of units and denoted \mathcal{I}, is commutative.

Array of states

Array of states

Let φ be a distinguished state on \mathcal{A}. The state φ_{j} is called a conjugate state if it is defined in terms of φ as

$$
\varphi_{j}(a)=\varphi\left(b_{j}^{*} a b_{j}\right)
$$

where $b_{j} \in \mathcal{A}_{j, j} \cap \operatorname{Ker} \varphi$. We assume from now on that we have a two-dimensional array of subalgebras and states of the form

$$
\left(\begin{array}{ll}
\varphi_{1,1} & \varphi_{1,2} \\
\varphi_{2,1} & \varphi_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
\varphi & \varphi_{2} \\
\varphi_{1} & \varphi
\end{array}\right)
$$

i.e. the diagonal states agree with φ and the off-diagonal states are conjugate states.

Sets of indices

Sets of indices

Let us introduce subsets of $(\{1,2\} \times\{1,2\})^{m}$ of the form

$$
\Gamma_{m}=\left\{\left(\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{m}, i_{m+1}\right)\right): i_{1} \neq i_{2} \neq \ldots \neq i_{m}\right\}
$$

where $m \in \mathbb{N}$ and let

$$
\Gamma=\bigcup_{m=1}^{\infty} \Gamma_{m}
$$

be the corresponding union.

Strongly matricially free array of units

Strongly matricially free array of units

We say that $\left(1_{i, j}\right)$ is a strongly matricially free array of units associated with $\left(\mathcal{A}_{i, j}\right)$ and $\left(\varphi_{i, j}\right)$ if for any diagonal state φ it holds that
(1) $\varphi\left(u_{1} a u_{2}\right)=\varphi\left(u_{1}\right) \varphi(a) \varphi\left(u_{2}\right)$ for any $a \in \mathcal{A}$ and $u_{1}, u_{2} \in \mathcal{I}$,
(2) $\varphi\left(1_{i, j}\right)=\delta_{i, j}$ for any i, j,
(3) if $a_{k} \in \mathcal{A}_{i_{k}, j_{k}} \cap \operatorname{Ker} \varphi_{i_{k}, j_{k}}$, where $1<k \leqslant m$, then

$$
\varphi\left(a 1_{i_{1}, j_{1}} a_{2} \ldots a_{m}\right)=\left\{\begin{array}{cc}
\varphi\left(a a_{2} \ldots a_{n}\right) & \left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{m}, j_{m}\right)\right) \in \Gamma \\
0 & \text { otherwise }
\end{array}\right.
$$

where $a \in \mathcal{A}$ is arbitrary and $\left(i_{1}, j_{1}\right) \neq \ldots \neq\left(i_{m}, j_{m}\right)$.

Strong matricial freeness

Strong matricial freeness

We say that ${ }^{*}$-subalgebras $\left(\mathcal{A}_{i, j}\right)$ are strongly matricially free with respect to $\left(\varphi_{i, j}\right)$ if
(1) the array $\left(1_{i, j}\right)$ is a strongly matricially free array of units
(2) it holds that

$$
\begin{aligned}
& \qquad \varphi\left(a_{1} a_{2} \ldots a_{n}\right)=0 \text { whenever } a_{k} \in \mathcal{A}_{i_{k}, j_{k}} \cap \operatorname{Ker} \varphi_{i_{k}, j_{k}}, \\
& \text { where }\left(i_{1}, j_{1}\right) \neq \ldots \neq\left(i_{n}, j_{n}\right) \text {. }
\end{aligned}
$$

Shape of array determines independence

Shape of array determines independence

Under suitable assumptions on considered states, strong matricial freeness gives a correspondence between different shapes of matrices and different types of independence

- square arrays \rightarrow freeness
- lower-triangular arrays \rightarrow monotone independence
- diagonal arrays \rightarrow boolean independence
- anti-upper-triangular arrays \rightarrow freeness with subordination
- one-column arrays \rightarrow orthogonal independence

Strongly matricially free Fock space

Strongly matricially free Fock space

By the strongly matricially free Fock space over the array of Hilbert spaces $\left(\mathcal{H}_{i, j}\right)$ we understand the Hilbert space direct sum

$$
\mathcal{N}=\mathbb{C} \Omega \oplus \bigoplus_{m=1}^{\infty} \bigoplus_{\substack{i_{1} \neq \ldots \neq i_{m} \\ n_{1}, \ldots, n_{m} \in \mathbb{N}}} \mathcal{H}_{i_{1}, i_{2}}^{\otimes n_{1}} \otimes \mathcal{H}_{i_{2}, i_{3}}^{\otimes n_{2}} \otimes \ldots \otimes \mathcal{H}_{i_{m}, i_{m}}^{\otimes n_{m}}
$$

where Ω is a unit vector, with the canonical inner product.
Properties:

- freeness : neighboring indices are different
- matriciality : neighboring pairs are matricially related
- diagonal subordination : last pair is diagonal

Summands

If $\left(\mathcal{H}_{i, j}\right)$ is a two-dimensional square array and consists of one-dimensional Hilbert spaces $\mathcal{H}_{i, j}=\mathbb{C} e_{i, j}$, the first few summands are of the form

$$
\begin{aligned}
\mathcal{N}^{(0)}= & \mathbb{C} \Omega \\
\mathcal{N}^{(1)}= & \mathbb{C} e_{1,1} \oplus \mathbb{C} e_{2,2} \\
\mathcal{N}^{(2)}= & \mathbb{C} e_{1,1}^{\otimes 2} \oplus \mathbb{C} e_{2,2}^{\otimes 2} \oplus \mathbb{C}\left(e_{1,2} \otimes e_{2,2}\right) \oplus \mathbb{C}\left(e_{2,1} \otimes e_{1,1}\right) \\
\mathcal{N}^{(3)}= & \mathbb{C} e_{1,1}^{\otimes 3} \oplus \mathbb{C} e_{2,2}^{\otimes 3} \oplus \mathbb{C}\left(e_{2,1} \otimes e_{1,1}^{\otimes 2}\right) \oplus \mathbb{C}\left(e_{1,2} \otimes e_{2,2}^{\otimes 2}\right) \\
& \oplus \mathbb{C}\left(e_{2,1}^{\otimes 2} \otimes e_{1,1}\right) \oplus \mathbb{C}\left(e_{1,2}^{\otimes 2} \otimes e_{2,2}\right) \\
& \oplus \mathbb{C}\left(e_{1,2} \otimes e_{2,1} \otimes e_{1,1}\right) \oplus \mathbb{C}\left(e_{2,1} \otimes e_{1,2} \otimes e_{2,2}\right),
\end{aligned}
$$

etc.

Creation and annihilation operators

Creation and annihilation operators

Let \mathcal{N} be the strongly matricially free Fock space over the array $\left(\mathcal{H}_{i, j}\right)=\left(\mathbb{C} e_{i, j}\right)$ and let

$$
\tau: \mathcal{N} \rightarrow \mathcal{F}\left(\bigoplus_{i, j} \mathcal{H}_{i, j}\right)
$$

be the associated embedding. By the strongly matricially free creation operators we understand operators of the form

$$
\ell_{i, j}=\alpha_{i, j} \tau^{*} \ell\left(e_{i, j}\right) \tau
$$

where $\alpha_{i, j}>0$, and the strongly matricially free annihilation operators are their adjoints.

Action of creation operators

Non-trivial action of the creation operators

$$
\begin{aligned}
\ell_{1,1} \Omega & =\alpha_{1,1} e_{1,1} \\
\ell_{2,2} \Omega & =\alpha_{2,2} e_{2,2} \\
\ell_{1,1} e_{1,1}^{\otimes n} & =\alpha_{1,1} e_{1,1}^{\otimes(n+1)} \\
\ell_{2,2} e_{2,2}^{\otimes n} & =\alpha_{2,2} e_{2,2}^{\otimes(n+1)} \\
\ell_{1,2} e_{2,2}^{\otimes n} & =\alpha_{1,2}\left(e_{1,2} \otimes e_{2,2}^{\otimes n}\right) \\
\ell_{2,1} e_{1,1}^{\otimes n} & =\alpha_{2,1}\left(e_{2,1} \otimes e_{1,1}^{\otimes n}\right) \\
\ell_{2,1}\left(e_{2,1}^{\otimes k} \otimes e_{1,1}^{\otimes n}\right) & =\alpha_{2,1}\left(e_{2,1}^{\otimes(k+1)} \otimes e_{1,1}^{\otimes n}\right) \\
\ell_{1,2}\left(e_{1,2}^{\otimes k} \otimes e_{2,2}^{\otimes n}\right) & =\alpha_{1,2}\left(e_{1,2}^{\otimes(k+1)} \otimes e_{2,2}^{\otimes n}\right)
\end{aligned}
$$

Canonical example

Strongly matricially free array of *-algebras

If $\mathcal{A}_{i, j}=\operatorname{alg}\left(\ell_{i, j}, \ell_{i, j}^{*}\right)$, where $\ell_{i, j}^{*} \ell_{i, j}=\alpha_{i, j}^{2} 1_{i, j}$, then the array $\left(\mathcal{A}_{i, j}\right)$ is strongly matricially free with respect to $\left(\varphi_{i, j}\right)$, where the diagonal states agree with the vacuum states and the off-diagonal states are conjugate states φ_{j} defined by vectors $e_{j, j}$, where $j \in\{1,2\}$.

Remark

If we denote $\mathcal{F}_{j, j}=\mathcal{F}\left(\mathbb{C} e_{j, j}\right)$, then
(1) the unit $1_{j, j}$ is the projection onto $\mathcal{F}_{j, j}$ for $j \in\{1,2\}$
(2) the unit $1_{1,2}$ is the projection onto $\mathcal{N} \ominus \mathcal{F}_{1,1}$
(3) the unit $1_{2,1}$ is the projection onto $\mathcal{N} \ominus \mathcal{F}_{2,2}$

Strongly matricially free convolution

Strongly matricially free convolution

Let $\left(a_{i, j}\right)$ be a two-dimensional array of strongly matricially free random variables with the corresponding array of distributions ($\mu_{i, j}$) in the states $\left(\varphi_{i, j}\right)$. The φ-distribution of the sum

$$
A=\sum_{i, j} a_{i, j} \text { denoted } \boxplus_{i, j} \mu_{i, j}
$$

will be called the strongly matricially free convolution of $\left(\mu_{i, j}\right)$.

Addition of rows gives binary convolutions

Addition of rows gives binary convolutions

If the variables are row-identically distributed, the strongly matricially free convolution gives the following binary convolutions

- if the array is square, then $\boxplus_{i, j} \mu_{i, j}=\mu_{1} \boxplus \mu_{2}$
- if the array is lower-triangular, then $\boxplus_{i, j} \mu_{i, j}=\mu_{1} \triangleright \mu_{2}$
- if the array is diagonal, then $\boxplus_{i, j} \mu_{i, j}=\mu_{1} \uplus \mu_{2}$
- if the array is upper-anti-triangular, then $\boxplus_{i, j} \mu_{i, j}=\mu_{1} \boxplus \mu_{2}$
- if the array is a column, then $\boxplus_{i, j} \mu_{i, j}=\mu_{1} \vdash \mu_{2}$

Toeplitz operators in free probability

Toeplitz operators in free probability

Voiculescu used Toeplitz operators to prove the linearization formula for the R-transform. A new proof was given by Haagerup who used the adjoints

$$
a=\ell_{1}+f\left(\ell_{1}^{*}\right) \quad \text { and } \quad b=\ell_{2}+g\left(\ell_{2}^{*}\right)
$$

where ℓ_{1}, ℓ_{2} are free creation operators on the full Fock space $\mathcal{F}(\mathcal{H})$ over a two-dimensional Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}\right\}$ and where f, g are polynomials.

Strongly matricially free Toeplitz operators

Strongly matricially free Toeplitz operators

Let $\left(\ell_{i, j}\right)$ be the array of strongly matricially free creation operators on \mathcal{N} and let $f_{i, j}$ be a polynomial for any $(i, j) \in J$. Operators of the form

$$
\begin{equation*}
a_{i, j}=\ell_{i, j}+f_{i, j}\left(\ell_{i, j}^{*}\right) \tag{4.2}
\end{equation*}
$$

where $(i, j) \in J$ and the constant term of $f_{i, j}$ is the internal unit $1_{i, j}$ multiplied by a complex number, will be called strongly matricially free Toeplitz operators.

Vacuum state and conjugate states

Vacuum state and conjugate states

We will need the distributions of Toeplitz operators in the array of states $\left(\varphi_{i, j}\right)$ defined by unit vectors $\left(\Omega_{i, j}\right)$, where

$$
\Omega_{j, j}=\Omega \quad \text { and } \quad \Omega_{i, j}=e_{j, j} \text { for } i \neq j
$$

which replace the single vacuum vector in the free case.

Proposition

The R-transform of the distribution $\mu_{i, j}$ of the operator $a_{i, j}$ in the state $\varphi_{i, j}$ is given by

$$
R_{i, j}(z)=f_{i, j}\left(\alpha_{i, j}^{2} z\right)
$$

where $(i, j) \in J$ and the constant term of $f_{i, j}$ is a complex number.

Lemma 1

Lemma 1

Consider the vector

$$
\rho(z)=(1-z L)^{-1} \Omega, \quad \text { where } \quad L=\sum_{i, j} \ell_{i, j}
$$

where $|z|<\left(\sum_{i, j}\left|\alpha_{i, j}\right|^{2}\right)^{-1}$. The sum $A=\sum_{i, j} a_{i, j}$ of strongly matricially free Toeplitz operators satisfies the equation

$$
A \rho(z)=\frac{1}{z}(\rho(z)-\Omega)+\sum_{i, j} f_{i, j}\left(\alpha_{i, j}^{2} z\right) 1_{i, j} \rho(z)
$$

where $0<|z|<\left(\sum_{i, j}\left|\alpha_{i, j}\right|^{2}\right)^{-1}$.

Lemma 2

Lemma 2

Let φ be the state associated with the vacuum vector Ω. Then there exists ϵ such that

$$
z=\varphi\left(\left(\frac{1}{z}+\sum_{i, j} R_{i, j}(z) 1_{i, j}-A\right)^{-1}\right)
$$

whenever $0<|z|<\epsilon$.

Noncommutative distribution of $a \in \mathcal{A}$

Definition

The collection of mixed moments of the form
$\varphi\left(b_{n_{1}} a b_{n_{2}} \ldots b_{n_{m-1}} a b_{n_{m}}\right)$, where $b_{n_{k}} \in \mathcal{I}$ for $1 \leqslant k \leqslant m$ and $m \in \mathbb{N}$ will be called the distribution of a in the state φ.

Analog of the Cauchy transform

Let \mathcal{A} be a Banach algebra with a subalgebra \mathcal{I} and let $b \in \mathcal{I}$ be invertible with $\left\|b^{-1}\right\|<\|a\|^{-1}$ then the inverse of $b-a$ exists and takes the form

$$
(b-a)^{-1}=\sum_{n=0}^{\infty} b^{-1}\left(a b^{-1}\right)^{n}
$$

which converges in the norm topology. This leads to the operatorial analog of the Cauchy transform of the form

$$
\mathcal{G}_{a}(b)=\sum_{n=0}^{\infty} \varphi\left(b^{-1}\left(a b^{-1}\right)^{n}\right)
$$

due to continuity of φ, which plays the role of the Cauchy transform of the b-distribution of A in the state φ.

Operatorial R-transform

Operatorial R-transform

Let μ denote the distribution of $a \in \mathcal{A}$ in the state φ. If there exists an \mathcal{I}-valued power series of the form

$$
\mathcal{R}_{a}(z)=\sum_{n=1}^{\infty} c_{n} z^{n-1}
$$

where $c_{n} \in \mathcal{I}$ for all $n \in \mathbb{N}$ and $z \in \mathbb{C}$, which is convergent in the norm topology for sufficiently small $|z|$, and for which it holds that

$$
\mathcal{G}_{a}\left(\frac{1}{z}+\mathcal{R}_{a}(z)\right)=z
$$

whenever $|z|$ is sufficiently small and positive, it will be called an operatorial R-transform of the distribution μ.

Necessary and sufficient conditions

Lemma

An \mathcal{I}-valued power series $\mathcal{R}(z)=\sum_{n=1}^{\infty} c_{n} z^{n-1}$ converging in the norm topology in a neighborhood of zero is an operatorial R-transform of the φ-distribution of A if and only if

$$
\sum_{k=1}^{m} \sum_{n_{1}+\ldots+n_{k}=m-k} \varphi\left(b_{n_{1}} A b_{n_{2}} \ldots b_{n_{k-1}} A b_{n_{k}}\right)=0
$$

for all $m \geqslant 2$, where we assume that n_{1}, \ldots, n_{k} are non-negative integers and where the series $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n+1}$ is the multiplicative inverse of $C(z)=1 / z+\mathcal{R}(z)$.

Matricial R-transform

Matricial R-transform

Let $A \in \mathcal{A}$ be the sum of random variables $\left(a_{i, j}\right)$ in a unital complex C^{*}-algebra \mathcal{A} which are strongly matricially free with respect to ($\varphi_{i, j}$) and let \mathcal{I} be its unital C^{*}-subalgebra generated by the internal units. If an \mathcal{I}-valued operatorial R -transform \mathcal{R}_{A} of the φ-distribution of A takes the form

$$
\mathcal{R}_{A}(z)=\sum_{i, j} \mathcal{R}_{i, j}(z)=\sum_{i, j} R_{i, j}(z) 1_{i, j}
$$

where $R_{i, j}$ is the R-transform of $\mu_{i, j}$, the distribution of $a_{i, j}$ in the state $\varphi_{i, j}$, it will be called a matricial R-transform of the noncommutative distribution of A in φ.

Existence theorem

Existence theorem

If $\left(a_{i, j}\right)$ is an array of random variables from a unital complex C^{*}-algebra \mathcal{A} which is strongly matricially free with respect to $\left(\varphi_{i, j}\right)$ and $\left(R_{i, j}\right)$ is the corresponding array of R-transforms, then

$$
\mathcal{R}_{A}(z)=\sum_{i, j} \mathcal{R}_{i, j}(z)
$$

where $A=\sum_{i, j} a_{i, j}$ and $\mathcal{R}_{i, j}(z)=R_{i, j}(z) 1_{i, j}$ for any $(i, j) \in J$, with sufficiently small $|z|$, is an operatorial R -transform of the distribution of A in φ.

Special cases

Free

If the array is square and row-identically distributed, then the matricial R-transform associated with \mathcal{G}_{A} takes the form

$$
\mathcal{R}_{A}(z)=R_{\mu_{1}}(z) 1_{\mathcal{A}}+R_{\mu_{2}}(z) 1_{\mathcal{A}}
$$

and can be identfied with the scalar-valued R-transform of $\mu_{1} \boxplus \mu_{2}$.

Special cases

Boolean

If the array is diagonal, then the matricial R-transform associated with \mathcal{G}_{A} takes the form

$$
\mathcal{R}_{A}(z)=R_{\mu_{1}}(z) 1_{1,1}+R_{\mu_{2}}(z) 1_{2,2}
$$

which linearizes the extended boolean convolution.

Special cases

Monotone

If the array is lower-triangular and row-identically distributed, then the matricial R-transform associated with \mathcal{G}_{A} takes the form

$$
\mathcal{R}_{A}(z)=R_{\mu_{1}}(z) 1_{1,1}+R_{\mu_{2}}(z) 1_{\mathcal{A}}
$$

which linearizes the extended monotone convolution.

Special cases

c-free

In the general case we can write the matricial R-transform associated with \mathcal{G}_{A} as

$$
\mathcal{R}_{A}(z)=\sum_{i, j} \mathcal{Q}_{i, j}(z)
$$

where $\mathcal{Q}_{i, j}(z)=Q_{i, j}(z) q_{i, j}$ for any i, j and $\left(q_{i, j}\right)$ is an array of orthogonal projections defined in terms of $\left(1_{i, j}\right)$, with $\left(Q_{i, j}\right)$ being the array of R-transforms of free convolutions

$$
\left(\begin{array}{cc}
\mu_{1} \boxplus \mu_{2} & \mu_{1} \boxplus \nu_{2} \\
\mu_{2} \boxplus \nu_{1} & \nu_{1} \boxplus \nu_{2}
\end{array}\right)
$$

where $\mu_{1,1}=\mu_{1}, \mu_{2,2}=\mu_{2}, \mu_{1,2}=\nu_{1}$ and $\mu_{2,1}=\nu_{2}$.

Projections P_{j}

Projections P_{j}

Introduce canonical projections

$$
P_{j}: \mathcal{N} \rightarrow \mathcal{N}(j), \quad \text { where } j \in\{1,2\}
$$

where

$$
\mathcal{N}(j)=\bigoplus_{m=1}^{\infty} \bigoplus_{\substack{i_{1} \neq \ldots \neq i_{m-1} \neq j \\ n_{1}, \ldots, n_{m} \in \mathbb{N}}} \mathcal{H}_{i_{1}, i_{2}}^{\otimes n_{1}} \otimes \mathcal{H}_{i_{2}, i_{3}}^{\otimes n_{2}} \otimes \ldots \otimes \mathcal{H}_{j, j}^{\otimes n_{m}}
$$

and $\mathcal{H}_{i, k}=\mathbb{C} e_{i, k}$ for any i, k.

Lemma

Lemma

Let \mathcal{R}_{A} be the matricial R-transform and let $A_{j}=P_{j} A P_{j}$ for $j \in\{1,2\}$. Then

$$
\mathcal{G}_{A_{j}}\left(\frac{1}{z}+\mathcal{R}_{A_{j}}(z)\right)=z
$$

for small $|z|>0$, where $\mathcal{G}_{A_{j}}$ is the Cauchy transform associated with the distribution of A_{j} in the conjugate state φ_{j} and $\mathcal{R}_{A_{j}}=\mathcal{R}_{A} P_{j}$.

Matricial formulation

We can write the results for all states in the array form. For that purpose, we introduce the array of transforms and the associated variables, namely

$$
\left(\mathcal{G}_{i, j}\right)=\left(\begin{array}{ll}
\mathcal{G}_{A} & \mathcal{G}_{A_{2}} \\
\mathcal{G}_{A_{1}} & \mathcal{G}_{A}
\end{array}\right) \quad \text { and } \quad\left(A_{i, j}\right)=\left(\begin{array}{cc}
A & A_{2} \\
A_{1} & A
\end{array}\right)
$$

and we consider their distributions in the array of states $\left(\varphi_{i, j}\right)$.

Matricial formulation

Matricial formulation

With the above notations, it holds that

$$
\mathcal{G}_{i, j}\left(\frac{1}{z}+\mathcal{R}_{A}(z)\right)=z
$$

for small $|z|>0$ and $i, j \in\{1,2\}$.

Uniqueness theorem

Uniqueness theorem

There exists a unique operatorial R-transform associated with the array $\left(\mathcal{G}_{i, j}\right)$ of the form

$$
\mathcal{R}_{A}(z)=\sum_{i, j} \mathcal{T}_{i, j}(z)
$$

where $\mathcal{T}_{i, j}(z)=T_{i, j}(z) 1_{i, j}$ for any $(i, j) \in J$ and each $T_{i, j}(z)$ is a power series converging in some neighborhood of zero

Partitioned colored cumulants

Consider the coloring σ of blocks of $\pi \in \mathcal{N C} \mathcal{C}_{m}$ by numbers from the set $\{1,2\}$ which leads to a colored partition (π, σ) with blocks

$$
B(\pi, \sigma)=\left\{\left(\pi_{1}, \sigma\right),\left(\pi_{2}, \sigma\right), \ldots,\left(\pi_{r}, \sigma\right)\right\}
$$

Then assign to each block (π_{k}, σ)
(1) the free cumulant $r_{i, j}$ if π_{k} is colored by i and its nearest outer block is colored by j
(2) the free cumulant $r_{j, j}$ if π_{k} is a covering block colored by j Writing $r\left(\pi_{k}, \sigma\right)=r_{i, j}\left(n_{k}\right)$, where n_{k} is the cardinality of π_{k}, define

$$
r[\pi, \sigma]=r\left(\pi_{1}, \sigma\right) r\left(\pi_{2}, \sigma\right) \ldots r\left(\pi_{r}, \sigma\right)
$$

called the partitioned colored cumulant associated with (π, σ).

Example of a partitioned cumulant

First, label each block with a number from the set $\{1,2\}$. Then compute the partitioned colored cumulant as follows.

$$
\begin{gathered}
\frac{1}{\frac{k}{i} \frac{j}{\square}} \quad \rightarrow \quad r[\pi, \sigma]=r_{i, k} r_{j, k} r_{k, l} r_{l, l}
\end{gathered}
$$

Lemma

Lemma

Let A be the sum of strongly matricially free random variables ($a_{i, j}$). If μ is the φ-distribution of the sum of A and $\mu_{i, j}$ is the $\varphi_{i, j}$-distribution of $a_{i, j}$, then

$$
M_{\mu}(m)=\sum_{(\pi, \sigma) \in \mathcal{N C}_{m}^{c}} r_{\mu}[\pi, \sigma]
$$

where the summation extends over all admissible colorings, i.e. compatible with the strongly matricially free product.

Partitioned colored cumulants

All addmissible colorings

All adimissible colorings

If we collect all admissible colorings for the considered partitions, we obtain the sums of partitioned colored cumulants over all admissible colorings:

$$
\begin{aligned}
r[\pi]= & r_{1,1}\left(r_{1,1}+r_{2,1}\right)+r_{2,2}\left(r_{2,2}+r_{1,2}\right), \\
r[\chi]= & r_{1,1}\left(r_{1,1}+r_{2,1}\right)^{2}+r_{2,2}\left(r_{2,2}+r_{1,2}\right)^{2} \\
r[\zeta]= & r_{1,1}^{2}\left(r_{1,1}+r_{2,1}\right)^{2}+r_{1,1} r_{2,1} r_{1,2}^{2} \\
& +r_{2,2}^{2}\left(r_{2,2}+r_{1,2}\right)^{2}+r_{2,2} r_{1,2} r_{2,1}^{2}
\end{aligned}
$$

Free case

Free case

If we set $r_{1,2}=r_{1,1}=r_{1}$ and $r_{2,1}=r_{2,2}=r_{2}$ (row-identically distributed square array), we obtain

$$
\begin{aligned}
r[\pi] & =r_{1}^{2}+2 r_{1} r_{2}+r_{2}^{2} \\
r[\chi] & =r_{1}^{3}+3 r_{1}^{2} r_{2}+3 r_{1} r_{2}^{2}+r_{2}^{3} \\
r[\zeta] & =r_{1}^{4}+3 r_{1}^{3} r_{2}+2 r_{1}^{2} r_{2}^{2}+3 r_{1} r_{2}^{3}+r_{2}^{4}
\end{aligned}
$$

which is the contribution from partitions π, χ and ζ to the moments of $\mu_{1} \boxplus \mu_{2}$.

Monotone case

Monotone case

If we set $r_{2,1}=r_{2,2}=r_{2}, r_{1,1}=r_{1}$ and $r_{1,2}=0$ (row-identically distributed lower-triangular array), we obtain

$$
\begin{aligned}
r[\pi] & =r_{1}^{2}+r_{1} r_{2}+r_{2}^{2} \\
r[\chi] & =r_{1}^{3}+r_{1}^{2} r_{2}+r_{1} r_{2}^{2}+r_{2}^{3}, \\
r[\zeta] & =r_{1}^{4}+2 r_{1}^{3} r_{2}+r_{1}^{2} r_{2}^{2}+r_{2}^{4},
\end{aligned}
$$

which gives the contribution from π, χ and ζ to the moments of $\mu_{1} \triangleright \mu_{2}$.

Moments

Moments

The lowest order moments of A are expressed in terms of free cumulants of the measures $\mu_{i, j}$ as follows:

$$
\begin{aligned}
M_{\mu}(1) & =r_{1,1}(1)+r_{2,2}(1) \\
M_{\mu}(2) & =r_{1,1}(2)+r_{2,2}(2)+\left(r_{1,1}(1)+r_{2,2}(1)\right)^{2} \\
M_{\mu}(3) & =r_{1,1}(3)+r_{2,2}(3)+2\left(r_{1,1}(2)+r_{2,2}(2)\right)\left(r_{1,1}(1)+r_{2,2}(1)\right) \\
& +r_{1,1}(2)\left(r_{1,1}(1)+r_{2,1}(1)\right)+r_{2,2}(2)\left(r_{2,2}(1)+r_{1,2}(1)\right) \\
& +\left(r_{1,1}(1)+r_{2,2}(1)\right)^{3} .
\end{aligned}
$$

If the array is square and row-identically distributed, these moments agree with the moments of $\mu_{1} \boxplus \mu_{2}$.
If that array is lower-triangular and row-identically distributed, these moments agree with those of $\mu_{1} \triangleright \mu_{2}$.

