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Instability in Linear Cooperative
Systems of Ordinary Differential
Equations∗
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Abstract. It is well known that, contrary to the autonomous case, the stability/instability of solutions
of nonautonomous linear ordinary differential equations x′ = A(t)x bears no relation to the
sign of the real parts of the eigenvalues of A(t). In particular, the real parts of all eigen-
values can be negative and bounded away from zero, but nonetheless there is a solution
of magnitude growing to infinity. In this paper we present a method of constructing ex-
amples of such systems when the matrices A(t) have positive off-diagonal entries (strongly
cooperative systems). We illustrate those examples both with interactive animations and
analytically. The paper is written in such a way that it can be accessible to students with
diverse mathematical backgrounds/skills.
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1. Introduction. It is a well-known fact that for an autonomous system of linear
ordinary differential equations (ODEs)

x′ = Ax,

where A is a constant n by n matrix with real entries, the zero solution is asymptot-
ically stable if and only if the real parts of the eigenvalues of A are negative.

Unfortunately, for nonautonomous systems of linear ODEs

(1.1) x′ = A(t)x,

there is no hope for a similar result. Indeed, one can find examples of systems (1.1)
such that for all t all the eigenvalues of A(t) are negative but there is a solution of (1.1)
whose norm tends to infinity as t→∞. Some of those examples, although not part of
the standard curriculum, have made their way to textbooks; see, e.g., Example III.7.1
in [9]. For a nice paper on that subject, see [14].

The purpose of the present paper is to give a method for finding such examples
when the linear system is strongly cooperative: for each t ∈ R the matrix A(t) has
positive off-diagonal entries.
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Linear (and not only linear) strongly cooperative systems are of interest in them-
selves; see, e.g., [18] or [11]. However, let us now concentrate on their biological
relevance. For instance, in some bacterial populations there is switching between two
states (dormant vs. active). It should be remarked here that, to be sure, “real life”
models are usually nonlinear, but a linear two-dimensional system, x′ = A(t)x, can
serve as a first approximation. If we let x1 stand for the density of bacteria in the
dormant stage and x2 for the density of bacteria in the active stage, a12(t) (resp.,
a21(t)) describes the transition rate from the active to the dormant state (resp., from
the dormant to the active state) at time t. It is straightforward to see that a12(t) and
a21(t) must be nonnegative for each t. See, for example, [15].

It is the survival of the population that is frequently of interest to us. A mathe-
matical expression of that survival is the notion of permanence. Not delving into the
details, this means that however small the initial population, after sufficiently long
time it becomes and stays bounded away from zero, with the bound independent of
the initial value. In linear models this means simply that the magnitude of a solution
tends to infinity as time goes to infinity. One should bear in mind that the divergence
to infinity is, in itself, a spurious artifact, as the (linear) model loses any relevance for
large population densities.

In the main part of this article, section 3, we give a construction of a linear time-
periodic strongly cooperative two-dimensional system x′ = A(t)x of ODEs such that
the largest of the (necessarily real) eigenvalues of A(t) (the principal eigenvalue) is
equal to −1/2 at all t, yet there exists an unstable solution.

The idea of our construction is as follows: during the first half of the period,
the evolution of the system is governed by a (far from symmetric) constant matrix
with an eigenvector with both coordinates positive (the principal eigenvector) close
to one coordinate axis, whereas during the second half of the period, the evolution
of the system is governed by another (again far from symmetric) constant matrix
with principal eigenvector close to the other coordinate axis; around the half-period
there occurs a very fast (in section 3, instantaneous) change in matrices. It should
be emphasized here that periodicity is not a necessary feature of the construction:
Its role is rather to streamline the argument. Analogous examples can be obtained
for other linear systems that are, in an appropriate sense, recurrent in time, whether
nonautonomous or random (an example is given in section 6).

This article is written in a reasonably self-contained manner. It is assumed that
the reader knows the standard facts from linear ODEs (transition matrices, etc.).
However, knowledge of time-dependent (or even time-periodic) linear ODEs is not
indispensable (except in section 4): As the systems considered are piecewise constant,
knowledge of the basic properties of the matrix exponentials should suffice.

In subsection 2.1 we give a review of standard results on the properties of solutions
of systems of linear ODEs, not necessarily autonomous, while in subsection 2.2 we
present results on the exponents of matrices.

Subsection 2.3 is devoted to an analytical study of the action of the matrix expo-
nential on the lengths and directions of vectors.

As the material related to matrices with positive off-diagonal entries does not usu-
ally form a part of the curriculum, in subsection 2.4 we give necessary proofs. While
this usually requires using rather advanced methods (see, e.g., [4]), in our case the
needed proofs are given using only knowledge from calculus and elementary algebra.

Subsection 2.5 deals with a proof of (the linear specialization of) a celebrated
result due to Müller and Kamke on the order preserving property of quasi-monotone
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systems (see [11]). Indeed, two alternative proofs of that property are given. The first
(the proof of Theorem 2.4) uses tools from calculus and is decidedly nonlinear in its
spirit. However, its full strength is used only in section 4. An alternative is the proof
of Theorem 2.5, which uses only basic properties of the exponential of a matrix.

In subsection 2.6 we continue our analysis of the action of the matrix exponential
on the vector directions from subsection 2.3, this time under the assumption that the
matrix has positive off-diagonal entries. The material is illustrated by pictures and
animations.

After all those preliminaries we proceed in section 3 to give the construction of
our example. We first give the general idea and then explain, assisted by pictures, why
the construction should be okay. Then, in subsection 3.2.3 we give two alternative
“hard” analytical proofs of the existence of an unstable solution. The first proof rests
on direct computation of the largest eigenvalue of a transition matrix and requires
only the knowledge of the fundamental properties of the matrix exponential. The
second proof uses the Peano–Baker series.

Section 4 requires more advanced knowledge (though not reaching beyond the
Gronwall inequality or matrix norms). It could serve as a basis for some undergraduate
homework.

In section 5 we give a couple of extensions and generalizations (which could again
be the subject of some undergraduate work). Section 6 provides an extension to the
case of nonperiodic systems. Its reading requires the knowledge of standard calculus.

Finally, section 7 (“Discussion”) views the material presented from the perspective
of what is already known.

2. Preliminaries.

2.1. Systems of Linear ODEs. Consider a system of two linear ODEs

(2.1) x′ = A(t)x,

where we assume that A : J → R2×2 is a continuous matrix function (J ⊂ R is an
interval not reducing to a singleton, and R2×2 denotes the set of real 2× 2 matrices).

It is a standard result in a course in ODEs that for each s ∈ J and each x0 ∈ R2

there exists a unique solution, x(·; s, x0), of the initial value problem{
x′ = A(t)x

x(s) = x0,

and that solution is defined on the whole of J .
Usually stress is placed on fundamental matrices (cf. [6] or [9]): X(·) is a fun-

damental matrix solution of (2.1) if its columns form a basis of the vector space of
solutions of (2.1). For our purposes, however, it is better to use the transition matrix
(see [6]), that is, a matrix function of two variables, X = X(t; s), s, t ∈ J , such that
for any s ∈ J and any x0 ∈ R2,

x(t; s, x0) = X(t; s)x0, t ∈ J.

If X(·) is a fundamental matrix solution, the transition matrix is given by the formula

(2.2) X(t; s) = X(t)X−1(s), s, t ∈ J.

The transition matrix is unique.
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The following proposition gives important properties of the transition matrix:

Proposition 2.1.
(1) X(s; s) = I for any s ∈ J , where I is the identity matrix;
(2) X(u; s) = X(u; t)X(t; s) for any s, t, u ∈ J ;
(3) X−1(t; s) = X(s; t) for any s, t ∈ J ;
(4) ∂

∂tX(t; s) = A(t)X(t; s) for any s, t ∈ J .

2.2. Systems of Autonomous Linear ODEs. The Matrix etA. In modern courses
in ODEs, when considering systems of autonomous linear ODEs

(2.3) x′ = Ax,

usually a matrix function t 7→ etA is introduced, where

etA :=

∞∑
k=0

tkAk

k!
.

Occasionally, for typographical reasons we write exp(tA) instead of etA. It is proved
that the above series has convergence radius infinity, the function t 7→ etA is differen-
tiable, and the relations

• e0·A = I,
• e(s+t)A = esAetA, s, t ∈ R,
• (etA)−1 = e−tA, t ∈ R,
• d

dte
tA = AetA = etAA, t ∈ R,

hold. Consequently, the solution of the initial value problem for a system of ODEs
with time-independent matrix A,

(2.4)

{
x′ = Ax,

x(0) = x0,

equals

etAx0.

We would like to put the above into the context of transition matrices. Since the
matrix function etA is (a special case of) a fundamental matrix solution of (2.3), by
using the formula (2.2) we obtain

(2.5) X(t; s) = X(t)X−1(s) = etA(esA)−1 = etAe−sA = e(t−s)A, s, t ∈ R.

We will use in what follows the following fact:

(2.6) If AB = BA, then et(A+B) = etAetB = etBetA for all t ∈ R.

However, for general A,B the above equalities need not hold.

2.3. The Action of etA on the Unit Circle. In this subsection we analyze how
the radii and directions of solutions of the system x′ = Ax change in time. In other
words, we investigate the action of etA on vectors in R2.

We start by introducing some notation.
Recall that we can represent x ∈ R2 in polar coordinates, x = r [cos (θ) sin (θ)]>,

where r = ‖x‖ =
√
x · x is the length (magnitude, norm) and θ is the polar angle of

x.
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We denote by S the set of all vectors y ∈ R2 with unit length. In other words, S
is the unit circle.

Let x(t) be a nontrivial (that is, not equal constantly to zero) solution of x′ = Ax.
That is, x(t) = etAx0 for some nonzero x0.

2.3.1. How Does etA Act on the Lengths of Vectors? As a warm-up we try to
find an ODE satisfied by ‖x(t)‖. After some calculus we obtain

(2.7)

d

dt
‖x(t)‖ =

d

dt
(x(t) · x(t))1/2

=
1

2

x′(t) · x(t) + x(t) · x′(t)
(x(t) · x(t))1/2

=
Ax(t) · x(t)

‖x(t)‖
.

2.3.2. How Does etA Act on the Directions of Vectors? The present subsec-
tion can be skipped, since it will be needed later only for heuristic considerations in
subsection 3.2.1.

Let us find an ODE that is satisfied by the direction of x(t). We differentiate

d

dt

x(t)

‖x(t)‖
=

d

dt

((
x(t) · x(t)

)−1/2
x(t)

)
=
( d
dt

(
x(t) · x(t)

)−1/2)
x(t) +

(
x(t) · x(t)

)−1/2 d
dt
x(t)

= − 1

2

(
x(t) · x(t)

)−3/2
2
(
Ax(t) · x(t)

)
x(t) +

(
x(t) · x(t)

)−1/2
Ax(t)

=
1

‖x(t)‖

(
A− Ax(t) · x(t)

‖x(t)‖2
I

)
x(t) =

(
A−

(
A

x(t)

‖x(t)‖
· x(t)

‖x(t)‖

)
I

)
x(t)

‖x(t)‖
,

or, after putting y(t) := x(t)/‖x(t)‖,

d

dt
y(t) =

(
A− (Ay(t) · y(t))I

)
y(t).

We can say that y(t) is a solution of a system of two (nonlinear) ODEs, written in
matrix form as

(2.8) y′ =
(
A− (Ay · y)I

)
y.

Observe that for any y ∈ S the vector
(
A− (Ay · y)I

)
y is perpendicular to y. Indeed,(

A− (Ay · y)I
)
y · y = Ay · y − (Ay · y)y · y = (Ay · y)(1− ‖y‖2) = 0.

It follows that for a solution y(t) of (2.8) we have

d

dt
‖y(t)‖2 = 2(y′(t) · y(t)) =

(
A− (Ay(t) · y(t))I

)
y(t) · y(t) = 0,

from which we can conclude that if at an initial moment s the value ‖y(s)‖ is equal
to 1 then it is equal to 1 at any time. So, although system (2.8) is well defined for all
y ∈ R2, we will consider it for y belonging to S only.

Let us find the equilibria of (2.8), that is, those η ∈ S for which
(
A−(Aη ·η)I

)
η =

[0 0]>. We then have Aη = (Aη · η)η, which translates into η being an eigenvector of
the matrix A, corresponding to an eigenvalue Aη · η.

If y ∈ S is not an eigenvector of A, then the nonzero vector
(
A − (Ay · y)I

)
y,

perpendicular to y, points either clockwise or counterclockwise.
We will return later, in subsection 2.6, to analyzing the action of etA.
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2.4. Matrices with Positive Off-Diagonal Entries—Their Spectral Properties.
Since, as mentioned in the introduction, linear differential equations with matrices
with positive off-diagonal entries are our main object of study, in this section we give
some useful information on spectral properties of such 2× 2 matrices.

We write R2
+ for the set of all x = [x1 x2]> such that x1 ≥ 0 and x2 ≥ 0, and

R2
++ for the set of all x = [x1 x2]> such that x1 > 0 and x2 > 0.

LetM stand for the family of real 2×2 matrices with off-diagonal entries positive,
and let P stand for the family of real 2× 2 matrices with all entries positive.

Our first result is usually known as the Frobenius–Perron theorem. As we are in
dimension 2, we will give an elementary proof of it here.

Proposition 2.2. Let A = [aij ]
2
i,j=1 ∈M. Then the following hold:

(i) A has two real eigenvalues (denoted λ2 < λ1).
(ii) An eigenvector u corresponding to λ1 can be taken to have its coordinates

positive.
(iii) λ1 > max{a11, a22} and λ2 < min{a11, a22}.
(iv) An eigenvector v corresponding to λ2 has coordinates (nonzero and) of oppo-

site signs.

Proof. (i) The characteristic polynomial of A has the form

pA(λ) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21),

with discriminant

∆ = (a11 + a22)2 − 4(a11a22 − a12a21) = (a11 − a22)2 + 4a12a21 > 0.

Consequently, A has two real eigenvalues, λ2 < λ1.
(ii) Since λ1 + λ2 = a11 + a22, we have λ1 >

1
2 (a11 + a22).

Now, if a11 ≥ a22, notice that [1 a21
λ1−a22 ]>, where a21

λ1−a22 > 0, is an eigenvector

of A corresponding to λ1. If a11 < a22, then [ a12
λ1−a11 1]>, where a12

λ1−a11 > 0, is an
eigenvector of A corresponding to λ1.

(iii) For u = [u1 u2]> we have (a11 − λ1)u1 + a12u2 = a21u1 + (a22 − λ1)u2 = 0,
so, since u1 and u2 have the same sign, we must have λ1 > a11 and λ1 > a22.

The other inequality follows from the first using the fact that λ1 +λ2 = a11 +a22.
(iv) For v = [v1 v2]>, observe that (a11−λ2)v1 +a12v2 = 0 and apply the second

inequality in (iii).

The larger eigenvalue, λ1, of A ∈ M will be called the principal eigenvalue of
A (sometimes the terms dominant , leading , or Perron eigenvalue are used). An
eigenvector u of A pertaining to the principal eigenvalue will be called a principal
eigenvector of A. When speaking of a principal eigenvector we always assume that
both its coordinates are positive.

A principal eigenvector of length 1 is called normalized. A normalized principal
eigenvector of a matrix in M is unique.

The following will be needed in subsection 3.2.3.

Lemma 2.3. The principal eigenvalue of a matrix in M is a strongly increasing
function of any of its entries.

Proof. Recall that the principal eigenvalue of A = [aij ]
n
i,j=1 ∈M is given by

λ1 =
a11 + a22 +

√
(a11 − a22)2 + 4a12a21

2
.
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The strongly monotone dependence of λ1 on a12 or on a21 is straightforward. To
prove the dependence on a11, observe that

∂

∂(a11)
λ1 =

1

2

(
1 +

a11 − a22√
(a11 − a22)2 + 4a12a21

)
.

But, as a12a21 > 0, one has

a11 − a22√
(a11 − a22)2 + 4a12a21

> −1,

which gives that the partial derivative above is bigger than zero.

2.5. Strongly Cooperative Systems of Linear ODEs. Recall that a system of
linear ODEs

(2.9) x′ = A(t)x

is called strongly cooperative if for each t ∈ J the matrix A(t) belongs to M. In this
subsection we assume that the matrix function A(·) is continuous.

We now give the two-dimensional version of the Müller–Kamke theorem. It is
formulated in the linear setting, but a closer inspection shows that its proof is rather
nonlinear in spirit.

Theorem 2.4. Assume that system (2.9) is strongly cooperative. Then X(t; s) ∈
P for any s < t, s, t ∈ J .

Proof. Fix an initial moment s ∈ J . We start by noting that the first column of
the matrix X(t; s) is the value at time t of the solution [x1(t) x2(t)]> of system x′ =
A(t)x satisfying the initial condition x(s) = [1 0]>. It follows from the uniqueness
of the initial value problem for linear systems of ODEs that for any t ∈ J both x1(t)
and x2(t) cannot be simultaneously equal to zero.

Since [x1(t) x2(t)]> satisfies the system (2.9), we have x′2(s) = a21(s)x1(s) +
a22(s)x2(s) > 0, and consequently x2(t) > 0 for t sufficiently close to s, t > s, t ∈ J .
By continuity, since x1(s) > 0, x1(t) > 0 for t sufficiently close to s, t ∈ J . At any
rate, there exists τ > s such that x1(t) > 0 and x2(t) > 0 for all t ∈ (s, τ). We claim
that τ = sup J , that is, x1(t) > 0 and x2(t) > 0 for all t ∈ J , t > s. Indeed, suppose
to the contrary that this is not so, that is, there exists ϑ > s such that x1(ϑ) ≤ 0
or x2(ϑ) ≤ 0. As the product of the functions x1(t) and x2(t) is continuous, it
follows from the intermediate value theorem that the set { t > s : x1(t)x2(t) = 0 } is
nonempty. Specialize τ to be the greatest lower bound of this set, and assume, for
definiteness, that x1(τ) = 0 (therefore, x2(τ) > 0). τ cannot be equal to s, because
we have already shown that x1(t) > 0 directly to the right of s. Consequently, τ > s,
so x1(t) > 0 for t < τ , t sufficiently close to τ , from which it follows that x′1(τ) ≤ 0.
But x′1(τ) = a11(τ)x1(τ) + a12(s)x2(τ) > 0, a contradiction.

We have thus shown that the first column of the matrix X(t; s) has, for all t > s,
positive entries. By applying a similar reasoning to the solution of system x′ = A(t)x
satisfying the initial condition x(s) = [0 1]> we show that the second column of the
matrix X(t; s) has, for all t > s, positive entries, too.

The full strength of Theorem 2.4 will be needed only in section 4. In the main
part, section 3, we have matrices independent of time. In such a case we can give an
alternative proof, using the theory of matrix exponentials only.
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Theorem 2.5. Let A ∈M. Then etA ∈ P for all t > 0.

Proof. Assume first that A ∈ P. Then tkAk ∈ P for all t > 0 and k ∈ N;
consequently, etA ∈ P.

If A belongs only to M but not to P, we put Ã := aI + A, where a := 1 −
min{a11, a22}. Then Ã ∈ P and, by the previous paragraph, etÃ ∈ P. As (aI)A =

A(aI), there holds etÃ = eatetA (see (2.6)), from which it follows immediately that
etA ∈ P.

Remark. One might be tempted to use the approach applied in the proof of
Theorem 2.5 in proving Theorem 2.4. But this is not possible: the obstacle is that
X(t; s) for system x′ = A(t)x need not be equal to exp(

∫ t
s
A(τ) dτ).

2.6. The Action of etA on the Unit Circle, Continued. In this subsection we
continue the analysis initiated in subsection 2.3.

Again, the present subsection can be skipped, because it will be helpful only in
heuristic considerations as to why we have chosen such an example.

We assume that A ∈ M. As e(t−s)A is the transition matrix of the system
x′ = Ax, Theorem 2.5 gives that etA ∈ P for all t > 0.

Recall that a nonzero x = [x1 x2]> ∈ R2
+ can be written as x = r [cos (θ) sin (θ)]>,

where r = ‖x‖ =
√
x · x and θ ∈ [0, π/2] is given by

θ =

{
tan−1 (x2

x1
) if x1 > 0,

π/2 if x1 = 0.

We introduce the following notation: S+ := S∩R2
+ and S++ := S∩R2

++. Members
of S+ can be uniquely written as y = [cos (θ) sin (θ)]>, where θ ∈ [0, π/2].

For y ∈ S+ we denote

G(y) :=
(
A− (Ay · y)I

)
y.

Recall that y′ = G(y) is a system of ODEs satisfied by the directions of the solutions of
x′ = Ax (see (2.8)). We already know (see subsection 2.3.2) that G(y) is perpendicular
to y and that G(y) equals the zero vector if and only if y is the normalized principal
eigenvector u of A. Otherwise, G(y) is a nonzero vector, pointing either clockwise or
counterclockwise.

We check that

G([1 0]>) = [0 a21]>,

so it points counterclockwise, and that

G([0 1]>) = [a12 0]>,

so it points clockwise.
Notice that for any [y1 y2]> ∈ S+, the vector [y2 −y1]> is perpendicular to

[y1 y2]> and points clockwise. We thus have a simple criterion:
• G(y) points clockwise if and only if G(y) · [y2 −y1]> > 0;
• G(y) points counterclockwise if and only if G(y) · [y2 −y1]> < 0.

We want to show that for any y ∈ S+ situated between [1 0]> and u, the vector
G(y) points counterclockwise toward u, and for any y ∈ S+ situated between [0 1]>

and u, the vector G(y) points clockwise toward u.
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In order to prove this, notice first that [y2 −y1]> = D[y1 y2]>, where

D =

[
0 1
−1 0

]
.

Now, the composite function

[0, π/2] 3 θ 7→ y = [cos (θ) sin (θ)]> 7→ G(y) ·Dy ∈ R

is continuous, and it takes the value zero only at one θ0 ∈ (0, π/2) such that u =
[cos (θ0) sin (θ0)]>, and is positive for θ = 0 and negative for θ = π/2. Consequently,
it must take positive values for θ ∈ [0, θ0) and negative values for θ ∈ (θ0, π/2].

x1

x2

Fig. 1 For the matrix A =
[ −1 0.8

1
3.2
−1

]
, the gray vector is its normalized principal eigenvector,

the magenta dots denote the terminal points of some normalized nonnegative vectors
y, and the green arrows represent the corresponding vectors G(y).

The associated interactive picture (pointing.html) supplied in the supplementary
material shows that the directions of (d/dt)(etAy/‖etAy‖) at t = 0, for y ∈ S++,
always point toward the normalized principal eigenvector of A; see Figure 1.

Consequently, if A ∈ M, then for any nontrivial solution x(t) of x′ = Ax such
that x(s) ∈ R2

+ we have the following alternatives:
• The directions x(t)/‖x(t)‖ are constantly equal to u; then x(t) = αeλ1tu for

some α > 0. This occurs when x(s)/‖x(s)‖ = u.
• For t > s the directions x(t)/‖x(t)‖ tend clockwise to u as t → ∞. This

occurs when x(s)/‖x(s)‖ lies between [0 1]> and u.
• For t > s the directions x(t)/‖x(t)‖ tend counterclockwise to u as t → ∞.

This occurs when x(s)/‖x(s)‖ lies between [1 0]> and u.
The bottom line is that at each point in time the directions of the solution tend

toward the principal eigenvector.

3. Construction. In this section we give a construction of a nonautonomous
(piecewise constant) planar linear system x′ = A(t)x of ODEs such that for each t ∈ R
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the larger eigenvalue of A(t) equals −1/2 but there exists a solution not converging
to zero as t→∞.

3.1. Idea of the Construction. We consider a system of linear ODEs

(3.1) x′ = A(t)x,

with A(t) defined as

A(t) :=

{
A(1), t ∈ [2k, 2k + 1),

A(2), t ∈ [2k + 1, 2k + 2),
k ∈ Z,

where A(1), A(2) are 2× 2 matrices.
Notice that A(t) has discontinuity points at integers.
A solution of the system (3.1) is defined in the following way: It is a continuous

function ξ : R→ R2 such that
• ξ′(t) = A(1)ξ(t), t ∈ (2k, 2k + 1), k ∈ Z;
• ξ′(t) = A(2)ξ(t), t ∈ (2k + 1, 2k + 2), k ∈ Z;
• ξ′−(2k) = A(2)ξ(2k), ξ′+(2k) = A(1)ξ(2k) for any k ∈ Z;

• ξ′−(2k + 1) = A(1)ξ(2k + 1), ξ′+(2k) = A(1)ξ(2k + 1) for any k ∈ Z.
It is straightforward to see that for any s ∈ R and any x0 ∈ R2 there exists a unique
solution x(t; s, x0) of (3.1) satisfying the initial condition x(s) = x0. Furthermore, we
can define the transition matrix X(t; s) as

X(t; s)x0 = x(t; s, x0).

The transition matrix has all the properties mentioned in subsection 2.1:
1. X(s; s) = I for any s ∈ J ;
2. X(r; s) = X(r; t)X(t; s) for any s, t, r ∈ R;
3. X−1(t; s) = X(s; t) for any s, t ∈ R.
4. ∂

∂tX(t; s) = A(t)X(t; s) for any s, t ∈ J ,
except that when t or s are integers its one-sided derivatives satisfy the suitable
equalities.

Observe that on a time interval J not containing an integer in its interior a
solution of (3.1) satisfies either the system

x′ = A(1)x

(when J ⊂ [2k, 2k + 1]) or the system

x′ = A(2)x

(when J ⊂ [2k + 1, 2k + 2]). Now, an application of (2.5) gives that

X(t; s) =

{
exp
(
(t− s)A(1)

)
for s, t ∈ [2k, 2k + 1],

exp
(
(t− s)A(2)

)
for s, t ∈ [2k + 1, 2k + 2].

When we restrict ourselves to the interval [0, 2], we have

X(t; 0) =

{
exp
(
tA(1)

)
for t ∈ [0, 1],

exp
(
(t− 1)A(2)

)
expA(1) for t ∈ (1, 2].
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As the matrix function A(t) is periodic with period 2 we have

(3.2) X(2k + 2; 2k) = X(2; 0)

for any k ∈ Z.
We denote

P = X(2; 0) = eA
(2)

eA
(1)

.

(The letter P stands for Poincaré: indeed, P is the Poincaré (period) map of the
time-periodic system (3.1).) As a consequence of (3.2) we obtain

(3.3) X(2k; 0) = X(2; 0)k = P k

for any k = 1, 2, 3, . . . .

Remark 3.1. It can be proved that

X(t; s) = X(t+ 2k; s+ 2k), s, t ∈ R, k ∈ Z.

We will not, however, need the above equality in its full generality.

From now on, we assume that A(1) and A(2) belong to M (recall that M stands
for the set of 2× 2 matrices with positive off-diagonal entries).

Our goal is to find two matrices, A(1), A(2) ∈M, such that their principal eigenval-
ues are negative, yet the set of those y ∈ S++ for which A(1)y · y > 0 and A(2)y · y > 0
is large. Indeed, it is then quite likely that for some solution x(t) the directions
x(t)/‖x(t)‖ will be in that set for quite a large fraction of time (or, which would be
the best, always), so the magnitude of that solution grows from time t = 0 to time
t = 2 (and, by periodicity, it must grow to infinity as time goes to infinity).

Where to look for such matrices? Certainly not among symmetric (Hermitian)
matrices, since for such matrices one can prove quite easily that, if the principal
eigenvalue of A is negative, then Ay · y < 0 for all nonzero y. So, a matrix should be
far from symmetric.

3.2. Definition of A(1) and A(2). We define

A(1) :=

 −1 c
1

4c
−1

 and A(2) :=

 −1
1

4c
c −1

 ,

parameterized by a parameter c > 0 (c will be taken to be large). Observe that the
larger c is the further from symmetric the matrices A(1) and A(2) are.

It is easy to see that the eigenvalues of the matrices A(1) and A(2) are −1/2 and
−3/2.

[1 1
2c ]
> is an eigenvector of A(1) corresponding to the principal eigenvalue −1/2,

and [1 − 1
2c ]
> is an eigenvector of A(1) corresponding to the other eigenvalue −3/2.

Similarly, [ 1
2c 1]> is an eigenvector of A(2) corresponding to the principal eigen-

value −1/2, and [− 1
2c 1]> is an eigenvector of A(2) corresponding to the other eigen-

value −3/2.
Denote by u(1) the normalized principal eigenvector of A(1),

u(1) =

[
2c√

1 + 4c2
1√

1 + 4c2

]>
,
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and by u(2) the normalized principal eigenvector of A(2),

u(2) =

[
1√

1 + 4c2
2c√

1 + 4c2

]>
.

3.2.1. Why Could the Example Be Okay? We want to show that, under the
choice of the matrices A(1) and A(2) in the previous subsection, it is very likely that
there are plenty of solutions x(t) such that their length tends exponentially fast to
infinity.

In order to do so, let us look at the set of those y ∈ S++ such that A(1)y · y > 0.
As the matrix A(2) is the transpose of A(1), that set will be equal to the set of those
y ∈ S++ such that A(2)y · y > 0.

We have

A(1)y · y = (A(1)[y1 y2]>)>[y1 y2]>

= [y1 y2](A(1))>[y1 y2]> = −(y1)2 − (y2)2 +
(
c+ 1

4c

)
y1y2.

By writing y ∈ S++ in polar coordinates as [cos(θ) sin(θ)]>, θ ∈ (0, π/2), we obtain
that

A(1)[cos(θ) sin(θ)]> · [cos(θ) sin(θ)]> = −1 + 1
2

(
c+ 1

4c

)
sin (2θ).

After simple calculation we find A(1)y · y > 0 if and only if

y = [cos(θ) sin(θ)]>, where θ ∈
(

1
2 sin−1 ( 8c

4c2+1 ), π2 −
1
2 sin−1 ( 8c

4c2+1 )
)
,

provided that c > 1 +
√
3
2 .

In Figure 2, for c = 10, the region in which the norm of a solution is increasing is
marked in red. For an interactive picture showing the dependence of the red region
on c, see increasing norm.html, available in the supplementary material.

Now let us apply the knowledge of how the directions of a solution change, as
formulated in subsection 2.6. Assume that the initial value x(0) is situated somewhere
between the principal eigenvectors for A(1) and A(2). Recall that at each moment the
direction tends toward the normalized principal eigenvector at that moment, so from
time t = 0 to time t = 1 the directions tend clockwise toward the normalized principal
eigenvector u(1) of A(1). They can leave the “red” set, but again from time t = 1 to
time t = 2 they tend counterclockwise toward the normalized principal eigenvector
u(2) of A(2). By periodicity, the directions oscillate. Figure 3 shows that, for c = 40,
the norm of a solution starting between u(1) and u(2) tends, at an exponential rate,
to infinity.

3.2.2. Some Pictures and Interactive Animations.
• Opening the supplementary file directions animation.html reveals an anima-

tion showing that, for the parameter value c = 10 and the initial values
x1(0) = x2(0) =

√
2/2, the direction of the solution stays for the most part

in the region where A(t)x · x > 0.
• The animation in solution animation.html shows in a logarithmic scale how

the solution behaves, depending on the parameter c and the initial polar angle
θ0.

• The animation in solution-norm animation.html shows how the natural log-
arithm of the solution norm increases, depending on the parameter c and the
initial polar angle θ0.
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x1

x2

Fig. 2 This figure depicts, for c = 10, the normalized principal eigenvector, u(1), for A(1) (blue),
the normalized principal eigenvector, u(2), for A(2) (green), the other principal eigenvectors
(cyan), as well as the set of those directions for which the norm of the solution is increasing
(red).

0 5 10 15
t0

10

20

30

40

ln ||x (t)||

Fig. 3 This figure depicts, for c = 40, the graph of the natural logarithm of the length of the solution
of system (3.1) corresponding to the initial values x1(0) = x2(0) =

√
2/2.

3.2.3. Analysis. The reasoning given in the previous subsection cannot be con-
sidered to be a formal proof. Now we give an analytical solution.

Observe that for the instability it is enough to find one solution such that for
some sequence of time moments its lengths tend to infinity.

How do we look for such a solution?
By Theorem 2.4, both matrices eA

(2)

and eA
(1)

belong to P, and their product,
that is, P , belongs to P, too. Proposition 2.2 states that there exists precisely one
normalized principal eigenvector w of P pertaining to the principal eigenvalue µ of P .
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Denote by w(t) the solution of system (3.1) taking value w at time t = 0. Since w is
an eigenvector of P corresponding to µ and since, by (3.3), w(2n) = X(2n; 0)w = Pnw
for all n = 1, 2, . . . , we have

w(2n) = µnw, n = 1, 2, . . . .

Thus, it is sufficient to check that the principal eigenvalue µ of P is larger than 1.

Remark 3.2. The Floquet theory [6] states that there is a decomposition

X(t; 0) = Q(t)etR, t ∈ R,

where Q(t) is a time-periodic matrix function (with period 2) and R is a constant
(in general, complex) matrix. The eigenvalues of e2R are called characteristic mul-
tipliers of x′ = A(t)x, and a ν ∈ C such that e2ν is a characteristic multiplier is
called a Floquet exponent of x′ = A(t)x. Generally, Floquet exponents are not defined
uniquely, but in our case µ is the (positive real) characteristic multiplier, larger than
the other one, and its natural logarithm can be called the principal Floquet exponent
of x′ = A(t)x.

We proceed now to compute (or, rather, estimate from below) µ. We give two
alternative proofs: first, by explicitly computing the matrix P , and second, by giving
an approximation of P via a partial sum of the Peano–Baker series and showing that
ignoring higher-order terms suffices for the relevant conclusion.

1. Direct computing. The exponential of A(1) is given by the formula

exp(tA(1)) = e−t
[

cosh( t2 ) 2c sinh( t2 )
1
2c sinh( t2 ) cosh( t2 )

]
.

One can find this formula using some computer algebra system. However, we prefer
to give a more analytical explanation.

We write A(1) = −I +B, where

B =

[
0 c
1
4c 0

]
.

Since (−I)B = B(−I), we can write etA
(1)

= et(−I)etB (see (2.6)). We easily obtain
et(−I) = e−tI, so the problem boils down to finding etB .

We observe that B2 = 1
4I. Consequently,

B3 =
1

4
B, B5 =

1

16
B,

and generally

B2k =
1

22k
I, B2k+1 =

1

22k
B.

We can write

etB = I +
tB

1!
+
t2B2

2!
+
t3B3

3!
+
t4B4

4!
+
t5B5

5!
+ · · ·

=

(
1 +

1

2!

( t
2

)2
+

1

4!

( t
2

)4
+ · · ·

)
I

+ 2

(
1

1!

t

2
+

1

3!

( t
2

)3
+

1

5!

( t
2

)5
+ · · ·

)
B,
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which is easily seen, by comparing the Maclaurin series expansions, to be equal to
(cosh( t2 ))I + (2 sinh( t2 ))B.

Similarly, we have

exp(tA(2)) = e−t
[

cosh( t2 ) 1
2c sinh( t2 )

2c sinh( t2 ) cosh( t2 )

]
,

and

P = eA
(2)

eA
(1)

= e−1

[
cosh( 1

2 ) 1
2c sinh( 1

2 )

2c sinh( 1
2 ) cosh( 1

2 )

]
e−1

[
cosh( 1

2 ) 2c sinh( 1
2 )

1
2c sinh( 1

2 ) cosh( 1
2 )

]

= e−2

[
cosh2 1

2 + 1
4c2 sinh2( 1

2 ) (2c+ 1
2c ) cosh( 1

2 ) sinh( 1
2 )

(2c+ 1
2c ) cosh( 1

2 ) sinh( 1
2 ) cosh2( 1

2 ) + 4c2 sinh2( 1
2 )

]
.

The principal eigenvalue of the last matrix is, by Proposition 2.2(iii), bigger than
cosh2( 1

2 ) + 4c2 sinh2( 1
2 ). As sinh2( 1

2 ) > 0, we need only to take c > 0 large enough
such that the last expression is bigger than e2.

Numerical calculation gives that cosh2( 1
2 ) + 4c2 sinh2( 1

2 ) > e2 when c > 2.37323,
whereas the principal eigenvalue of P is > 1 when c > 2.13834.

2. Peano–Baker series. Another way of estimating µ is by means of the Peano–
Baker series. For an easily readable background on the Peano–Baker series, see [1].

To be more specific, we shall consider the system

(3.4) x̃′ = B(t)x̃,

where, for any t ∈ R, B(t) = A(t) + I. In other words,

B(t) =

{
B(1), t ∈ [2k, 2k + 1),

B(2), t ∈ [2k + 1, 2k + 2),
k ∈ Z,

with

B(1) =

[
0 c
1
4c 0

]
, B(2) =

[
0 1

4c
c 0

]
.

Let X̃(t; s) stand for the transition matrix for (3.4): for t ∈ R, X̃(t; s)x0 denotes the
value at time t of the solution of (3.4) taking the value x0 at s.

Since
X̃(t; s) = et−sX(t; s),

and we are interested in the principal eigenvalue µ of P = X(2; 0) being larger than
1, we will be finished if we can show that the principal eigenvalue of X̃(2; 0) = e2P is
larger than e2.

The Peano–Baker series is given by the formula

(3.5) X̃(t; 0) =

∞∑
k=0

Jk(t; 0), t ≥ 0,

where

J0(t; 0) = I, Jk+1(t; 0) =

∫ t

0

B(τ)Jk(τ ; 0) dτ.
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(The reader knowing the Picard iteration will observe that the above is just the
Picard iteration formula for the matrix ODE X̃ ′ = B(t)X̃ with the initial condition
X̃(0) = I.)

Under our assumptions on B(t), the above series converges, at t = 2, to X̃(2; 0)
(see [1, Thm. 1]).

Let us write the first several terms of the Peano–Baker series (3.5) at t = 2,

X̃(2; 0) = I +

∫ 2

0

B(t1) dt1 +

∫ 2

0

B(t1)

(∫ t1

0

B(t2) dt2

)
dt1

+

∫ 2

0

B(t1)

(∫ t1

0

B(t2)

(∫ t2

0

B(t3) dt3

)
dt2

)
dt1 + · · · .

We have

J0(2; 0) + J1(2; 0) = I +

∫ 2

0

B(τ) dτ = I +

∫ 1

0

B(τ) dτ +

∫ 2

1

B(τ) dτ

= I +B(1) +B(2) =

[
1 c+ 1

4c

c+ 1
4c 1

]
.

The largest (that is, the principal) eigenvalue of the matrix above is easily seen to
be 1 + c + 1

4c , and just as easily we can see that for c > 0 sufficiently large (for

c > 1
2 (e2 − 1) + 1

2

√
e4 − 2e2) that largest eigenvalue is bigger than e2. (Numerical

calculation gives that it suffices to have c > 6.34968.)
But what about the remaining terms in the Peano–Baker series? Indeed, adding

them cannot make our estimates worse: since the entries of the matrices B(1) and
B(2) are nonnegative, the integrals occurring in the definitions of higher-order terms
are also matrices with nonnegative entries, so by Lemma 2.3 the principal eigenvalue
of the matrix X̃(2; 0) is not less than 1 + c+ 1

4c .

We remark here in passing that our choice of X̃(2; 0) rather than X(2; 0) is due
to the fact that the diagonal terms of the matrices A(t) are negative, which would
make the reasoning in the above paragraph barely possible.

3. Comparison of both methods. The direct computation gives an explicit form
of the matrix P , so its principal eigenvalue can be calculated.

One of the advantages of the Peano–Baker series is that it is very versatile: due
to the monotone dependence of the principal eigenvalue on the entries of the matrices,
one needs only to find the second term in the series, and this reduces to integration.
This is of importance when one wants to construct other, more complicated, examples.

4. Magnus expansion. There is still another method of solving a nonautonomous
linear system of ODEs, namely, the Magnus expansion, which rests on representing the
transition matrix as the exponential of some series composed of integrals of nested
matrix commutators. For more on the classical Magnus expansion, as well as its
extensions like the Floquet–Magnus expansion, see the review paper [5]; see also [13].

It seems that it is a challenging task to apply the Magnus expansion to obtain
results as in the present arcticle. See the supplementary material.

4. Continuous Matrix Function. In contrast to the previous material, this sec-
tion requires that the reader have more exposure to “harder” mathematical thinking.

One might perhaps think that the phenomenon described above has something
to do with the discontinuity at integer times. Results contained in the present section
show that this is not so.
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We start by recalling that if for a matrix C = [cij ]
2
i,j=1 ∈ R2×2 we denote its

Euclidean norm as

‖C‖ =

( 2∑
i,j=1

(cij)
2

)1/2

,

then for any C,D ∈ R2×2

(4.1) ‖CD‖ ≤ ‖C‖ ‖D‖

(see, e.g., [12, sect. 5.6]).
Another fact is the Gronwall inequality (see [10, sect. 17.3]):

Lemma 4.1. Assume that α, β ≥ 0 and f(t) is a continuous nonnegative function
defined on [a, b] such that

f(t) ≤ α+ β

∫ t

a

f(τ) dτ, t ∈ [a, b].

Then

f(t) ≤ αeβ(t−a), t ∈ [a, b].

We proceed now to the construction.
For s ∈ [0, 1] put

Ã(s) :=

[
−1 (1− s)c+ s

4c
sc+ 1−s

4c −1

]
,

where c > 0.
Denote by λ̃(s) the principal eigenvalue of Ã(s), and put Ā(s) := Ã(s)− (λ̃(s) +

1
2 )I. It is easily seen that the normalized principal eigenvector us of Ā(s) is an

eigenvector of Ā(s) pertaining to the eigenvalue λ̃(s) − (λ̃(s) + 1
2 ) = − 1

2 . As Ā(s)
belongs to M, − 1

2 must therefore be its principal eigenvalue.
Observe that

Ā(0) = A(1), Ā(1) = A(2),

where A(1) and A(2) are as in section 3.
For ε ∈ (0, 1/4) we define a matrix function Aε : [0, 2]→M by the formula

Aε(t) =



Ā
(
1
2 −

t
2ε

)
for t ∈ [0, ε],

A(1) for t ∈ [ε, 1− ε],
Ā
(
t−1
2ε + 1

2

)
for t ∈ [1− ε, 1 + ε],

A(2) for t ∈ [1 + ε, 2− ε],
Ā
(
2−t
2ε + 1

2

)
for t ∈ [2− ε, 2].

The function Aε is continuous, and the principal eigenvalue of Aε(t) is constantly
equal to −1/2. We extend the matrix function Aε to the whole of R by periodicity
(with period 2).

Let M := sup{ ‖Ā(s)‖ : s ∈ [0, 2] }.
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Denote by Xε(t; s) the transition matrix for the system x′ = Aε(t)x: Xε(t; s)x0 is
the solution of the initial value problem{

x′ = Aε(t)x,

x(s) = x0.

We want to show that the matrices Xε(2; 0) converge (entrywise), as ε → 0+, to
the matrix X(2; 0) as in section 3. In fact, this is a special case of the continuous
dependence of solutions of the initial value problem on parameters, as presented,
for example, in [10, Chap. 17], but we prefer to give its (simple) proof here.

By integrating the relevant equations for the transition matrix we see that

(4.2) Xε(t; s) = I +

∫ t

s

Aε(τ)Xε(τ ; s) dτ, X(t; s) = I +

∫ t

s

A(τ)X(τ ; s) dτ,

for any s, t ∈ R.
Consequently, with the help of standard estimates of integrals, together with (4.1),

we obtain

‖Xε(t; s)‖ ≤ 1 +

∫ t

s

‖Aε(τ)‖ ‖Xε(τ ; s)‖ dτ ≤ 1 +M

∫ t

s

‖Xε(τ ; s)‖ dτ, s ≤ t,

‖X(t; s)‖ ≤ 1 +

∫ t

s

‖A(τ)‖ ‖X(τ ; s)‖ dτ ≤ 1 +M

∫ t

s

‖X(τ ; s)‖ dτ, s ≤ t.

An application of the Gronwall inequality gives that

(4.3) ‖Xε(t; 0)‖ ≤ eMt and ‖X(t; 0)‖ ≤ eMt for t ∈ [0, 2].

Rearranging (4.2) we obtain

Xε(t; 0)−X(t; 0) =

∫ t

0

Aε(τ)
(
Xε(τ ; 0)−X(τ ; 0)

)
dτ +

∫ t

0

(
Aε(τ)−A(τ)

)
X(τ ; 0) dτ,

and consequently,

‖Xε(t; 0)−X(t; 0)‖ ≤
∫ t

0

‖Aε(τ)‖ ‖Xε(τ ; 0)−X(τ ; 0)‖ dτ+

∫ t

0

‖Aε(τ)−A(τ)‖ ‖X(τ ; 0)‖ dτ.

Taking into account that ‖Aε(τ)‖ ≤M and ‖X(τ ; 0)‖ ≤ eMτ we obtain that

‖Xε(t; 0)−X(t; 0)‖ ≤M
∫ t

0

‖Xε(τ ; 0)−X(τ ; 0)‖ dτ + e2M
∫ t

0

‖Aε(τ)−A(τ)‖ dτ

for t ∈ [0, 2].
Applying the Gronwall inequality once more gives that

‖Xε(t; 0)−X(t; 0)‖ ≤ e2MeMt

∫ 2

0

‖Aε(τ)−A(τ)‖ dτ, t ∈ [0, 2];

in particular,

‖Xε(2; 0)−X(2; 0)‖ ≤ e4M
∫ 2

0

‖Aε(τ)−A(τ)‖ dτ.
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By construction, ∫ 2

0

‖Aε(τ)−A(τ)‖ dτ ≤ 8Mε,

and consequently,

‖Xε(2; 0)−X(2; 0)‖ ≤ 8Me4M ε.

Observe that it follows from the above inequality that as ε→ 0, all the entries of
Xε(2; 0) converge to the corresponding entries of X(2; 0) = P . Since, by Theorem 2.4,
Xε(2; 0) belong to P, Proposition 2.2 implies that the principal eigenvalues µε of
Xε(2; 0) converge to the principal eigenvalue µ of P , which is > 1. Consequently, for
ε > 0 sufficiently close to zero the principal eigenvalue of Xε(2; 0) is > 1. It suffices
now to take the solution of x′ = Aε(t)x taking the value wε at t = 0, where wε is the
normalized principal eigenvector of Xε(2; 0).

4.1. Smoother Time Dependence. Repeating an argument from section 4 we
can further approximate continuous matrix functions A(t) by matrix functions that
are smooth, for example, C1 or even C∞.

5. Extensions of Results. Our construction, whether in section 3 or in section 4,
apparently gives only one unstable solution. In reality, however, one can prove, with-
out much effort, more results:

• Not only does w(k) = µk for all k ∈ N, but also

lim
t→∞

ln‖w(t)‖
t

= µ.

• w(t) is absolutely not the only solution possessing the above property. Indeed,
if x(t) denotes a nontrivial solution such that its initial value, x(0), is in
R2

+, then the directions x(t)/‖x(t)‖ converge, as t → ∞, to the directions
w(t)/‖w(t)‖, that is,

lim
t→∞

∥∥∥∥∥ x(t)

‖x(t)‖
− w(t)

‖w(t)‖

∥∥∥∥∥= 0

(and the exponential rate of convergence is equal to half the natural logarithm
of the second eigenvalue of the transition matrix X(2; 0)), from which it
follows that

lim
t→∞

ln‖x(t)‖
t

= µ

holds for such x(t), too.
The results above could be material for undergraduate work.

6. Nonperiodic Systems. This section is independent of section 4. Its reading
requires knowledge of basic calculus only.

A natural question arises: Can one construct a nonautonomous strongly cooper-
ative system that is not periodic in time, but which exhibits the phenomenon as in
section 3?

Recall that, in the time-periodic situation, the analysis of the Poincaré map is a
powerful (and simultaneously simple) tool to use to draw conclusions regarding the
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(in)stability of a strongly cooperative system of ODEs. Indeed, in section 3 it suffices
to check that the principal eigenvalue of a (linear) Poincaré map (the principal Floquet
exponent) is larger than 1. The outlook changes dramatically when we take a next
step in generalization, that is, when we consider systems that are not periodic in time:
there is a theory of the principal spectrum/principal Lyapunov exponent (for a survey
see Part IV of [16], as well as the references contained therein), but it is quite involved
(even for almost periodic systems) and beyond the scope of the present article.

The reasoning above is one of the reasons why we have chosen to give a construc-
tion of such a nonperiodic system as a perturbation of a system that is already known:
The starting point is the time-periodic system

x′ = A(t)x,

where A(t) is either A(t) as in section 3 or Aε(t) as in section 4. In either case
the principal eigenvalue of A(t) is, at any time t, equal to − 1

2 . Recall that we have
found a solution w(t) = [w1(t) w2(t)]> such that its magnitude ‖w(t)‖, at times
t = 2, 4, 6, . . . , diverges to infinity.

The idea is to perturb the matrix function A(t) in a nonperiodic way so that the
principal eigenvalues of the perturbed matrices Â(t) are, for each t ≥ 0, less than − 1

4 ,
and yet there exists a solution of the system

y′ = Â(t)y

which does not converge to zero as t→∞.
We apply the simplest possible perturbation: write

Â(t) = A(t) + a(t)I,

where a(t) is a continuous nonperiodic function such that 0 < a(t) < 1
4 for all t ≥ 0.

(For instance, if we are looking for an almost periodic perturbation we can take
a(t) = 1

16 (2 + sin (t) + sin (
√

2t)).)
It is a standard exercise in linear algebra that for any t ≥ 0 the principal eigenvalue

of Â(t) equals − 1
2 + a(t), and consequently is less than − 1

4 .

Denote by v(t) = [v1(t) v2(t)]> the solution of y′ = Â(t)y taking the same value
at t = 0 as w(t). We have

v′1(0) = (−1 + a(0))v1(0) + a12(0)v2(0) > −v1(0) + a12(0)v2(0)

= −w1(0) + a12(0)w2(0) = w′1(0)

and

v′2(0) = a21(t)v1(0) + (−1 + a(0))v2(0)

> a21(0)v1(0)− v2(0) = a21(0)w1(0)− w2(0) = w′2(0).

As a consequence, v1(t) > w1(t) and v2(t) > w2(t) for t > 0 sufficiently close to 0, say,
for t ∈ (0, δ), where δ > 0. We claim that those inequalities hold for all t > 0. Suppose
the opposite holds. Let τ then stand for the greatest lower bound of those t > 0 for
which the inequalities do not hold. We have τ ≥ δ > 0. Assume for the sake of
definiteness that w1(t) < v1(t) and w2(t) < v2(t) for all t ∈ (0, τ), but w1(τ) = v1(τ).
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We thus have

v′1(τ) = (−1 + a(τ))v1(τ) + a12(τ)v2(τ)

> −v1(τ) + a12(t)v2(τ) ≥ −w1(τ) + a12(t)w2(τ) = w′1(τ),

from which we deduce that v1(t) < w1(t) for t < τ , sufficiently close to τ . But this
contradicts the definition of τ .

In particular, it follows that ‖v(2k)‖ > ‖w(2k)‖ for k = 1, 2, . . . . As the latter
sequence has, as k → ∞, the limit infinity, the former sequence must also have the
limit infinity.

7. Discussion. In this section we place our results in the context of known re-
sults and discuss the relevance of various assumptions we have made during their
construction.

We start by comparing our construction with that put forward by Josić and
Rosenbaum in [14]. There, the authors start by taking a 2×2 matrix B with negative
(real) eigenvalues with eigendirections close to one another. In such a case, there is a
good supply of x ∈ R2 such that Bx · x > 0. They then construct a nonautonomous
system x′ = A(t)x by rotating the system x′ = Bx around the origin at such an
angular velocity that some solution is kept, for a sufficient amount of time, in the set
where A(t)x · x > 0, which guarantees that this solution is unstable.

A quick look at the properties listed in subsection 2.5 shows that the above
construction is impossible in the case of strongly cooperative systems. Indeed, it is
a direct consequence of the Perron–Frobenius theorem (Proposition 2.2) that at each
t one eigenvector of A(t) must lie in the first quadrant. Thus, the mechanism in
our construction must be different from that in [14]: it is an instantaneous (or near
instantaneous) change of the eigenvectors which causes the system to be unstable.

One could ask: Why have we chosen to start by considering (time-)periodic sys-
tems? The reason is at least threefold. First, periodic systems can be considered as
the simplest form of nonautonomous systems (and remember that for autonomous
systems the (in)stability is determined by the eigenvalues of the matrix of the sys-
tem). Second, for periodic systems a strong tool is known, namely, the Poincaré map,
which allows us to give a relatively simple proof of instability just by calculating the
eigenvalues of some easy-to-obtain matrix.

Last but not least, when one bears in mind that biological applications are the
main incentive, the fact that a lot of parameters of the systems are periodic in time
is due to seasonal changes in the availability of food, and so on.

Having said that, it should be emphasized that analogous constructions could
be made for quasi-periodic, almost periodic, and, more generally, any dependence on
time. An example of such construction is given in section 6.

In our example in section 3 the switching between the matrices A(1) and A(2)

occurs at constant intervals. If the switching times are allowed to be random vari-
ables, it is possible to construct analogous examples. This can be a topic for both
undergraduate work as well as general research; for some recent results, see [2], [3], in
particular Example 4.7 there, and, for deterministic switching, [8].

It should be stressed that a very quick change of the coefficients lies at the core of
the phenomenon described. Indeed, there are results showing that when the matrices
A(t) change slowly enough, the stability of the system is determined by the signs of
the real parts of their eigenvalues (see [19] and, for extensions to linear systems on
time scales, [7] and [17]).
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