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Most of the material of this lecture is based on [15, 4, 6].

1 Budyko-Sellers model
We begin with a derivation of the governing equation which is the statement of the energy conser-
vation. The initial step in the model formulation is a Budyko-Sellers type of energy conservation.
At first, we assume the so-called zero-dimensional approximation meaning that we are concerned
with globally averaged energy balance over sufficiently long time periods. Later, we will add
latitudinal (zonal) dependence. Schematically, the energy equation has the form

c
dT

dt
= qi − qo, (1)

where T is the globally averaged temperature, c is the atmosphere heat capacity while qi and qo
are, respectively, incoming shortwave and outgoing longwave radiative thermal fluxes. One can
directly calculate that c defined in the above formula is approximately equal tomaca/AE, withma

being the mass of the atmosphere, ca specific heat of air and AE Earth’s area (see [3]).
Our Earth receives the energy in a high quality (mostly) shortwave solar radiation. LetQdenote

the solar constant, i.e. the mean amount of Sun’s irradiance per unit area of a plane perpendicular
to the solar rays. Assuming the parallel ray approximation, Earth receives the amount of energy
per unit time equal to πR2EQ. Since 4πR2E is the total Earth’s surface area we have

qi =
1

4
(1− α)Q, (2)

where α is the mean terrestrial albedo (the fraction of reflected to absorbed radiation). It has to be
noted that by no means should Q and α be regarded as spatially independent. For example, the
time-average solar irradiance (so-called insolation) has a profound meridional distribution: more
light rays strike the equatorial strip than the high latitude polar region. This distribution can be
calculated directly from the spherical geometry and has been done for example in [10]. One should
point, however, that the horizontal distribution of heat by turbulent motion of the atmosphere
takes it place at a much quicker time-scale than the one that interests us in our conceptual model
(see [4]). Hence, it is not unreasonable to assume that the whole planet has a well-defined average
uniform temperature.

The outgoing longwave radiation (OLR) is Earth’s main mean of energy loss. Because the
atmosphere contains many absorbers sensitive to the long electromagnetic waves (hence the
Greenhouse effect), the precise quantitative description of the OLR is a complex task (see for ex.
[14]). Staying at the conceptual level we will adopt a semi-empirical approach in determining
qo. Since the magnitude of OLR closely agrees with incoming solar radiation, the planet is in a
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energetic equilibrium. We could thus use the Stefan-Boltzmann’s law at state that the outgoing
flux is equal to σe−ΓT 4. Here, σ is the Stefan-Boltzmann constant while Γ is an empirical parameter
modelling the radiation absorption in the atmosphere - the so-called greenhouse parameter. This
approach had been taken in a number of works, for example in [4, 3]. We will, however, model
the outgoing flux in a supposedly simpler way which dates back to Budyko’s original work [1].
Mostly due to the short interval of relevant temperatures, say 250− 320K, the sensible choice is to
propose the following linear dependence

qo = A+ BT, (3)

where A and B are constants determined from the data (to be given below in Tab. ??). It has also
been previously argued that A can be related to the concentration of CO2 in the atmosphere (see
[17]). Finally, putting (2) and (3) in (1) we obtain the equation of energy conservation

c
dT

dt
=
Q

4
(1− α(T)) −A− BT, (4)

wherewenoted thatα candependon the temperature. A careful examinationof the corresponding
bifurcation diagram shows hysteretic behaviour thanks to which the so-called tipping points of
abrupt climate change are present [8, 4].

The simple equation (4) exhibits a remarkable behaviour that haspossibleprofound significance
for the climate. To see this we have to impose some parametrisation of the albedo. It cannot be
measured exactly but we know that it decreaseswith temperature since lower temperatures favour
more ice sheets and hence larger albedo (we will improve this argument later). Of course, the
function α = α(T) should be bounded and hence it is sensible to assume it has a sigmoidal shape.

Definicja 1. A function σ : R→ R is called sigmoid if it is bounded and differentiable with a non-negative
derivative. As a normalization one can take lim

x→±∞σ(x) = ±1.
Therefore, we introduce

α(T) =
1

2

(
α+ + α− + (α+ − α−) σα

(
T − Tα
∆α

))
, α− ≥ α+, (5)

and a typical plot of the above is presented on Fig. 1. This model describes what is called the
ice-albedo feedback.

The equation (4) is separable and thus easy to integrate (but maybe not exactly). However, it is
much more informative to look for its critical points, that is those temperatures Tc that satisfy

Q

4
(1− α(Tc)) = A+ BTc. (6)

Choosing appropriate parametrisation σmay allow the above to be solved exactly but for our
needs it is only needed to proceed geometrically. The relevant plot of f(T) := Q

4
(1− α(Tc)) − (A+

BTc) is depicted on Fig. 2.
We can see that there are three possible critical points. The left and right ones are stable

(f decreasing) while the middle is unstable (f increasing). Our present climate is, presumably,
represented by the warm right critical point. It is known from the astrophysics that the Sun’s
energy output increases with time. Therefore, it is meaningful to consider the change of the
solar constant Q. For our function f changing Q is merely responsible for translating the graph
vertically. The position of the critical points can then be depicted on the bifurcation diagram
presented on Fig. 3.

We can see a standard hysteretic behaviour when a critical points undergo saddle-node bifur-
cation. That is to say, when Q increases a pair of stable-unstable critical points is born. On the
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Figure 1: A typical profile for albedo. Present state of the climate is marked with a point.
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Figure 2: Critical points of (4).
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Figure 3: Bifurcation diagram of (4). The present state of the climate is marked with a point.

other hand, suppose that the solar constant slowly starts to decrease. Then, the point representing
our climate marked on Fig. 3 decreases its temperature and suddenly drops to a lower stable
branch of the diagram. This is accompanied by a abrupt change of the temperature to frosty range.
This is called a catastrophe and the last climate state before the drop is known as the tipping point.
We can thus see that, at least according to that simple model, the climate can suddenly change its
state.

There is an active and important meridional transport of energy caused by the temperature
gradient between the equator and poles. This causes the air to rise near the equator, then cool
down when travelling northward, finally sink near the tropics. This is called the Hadley cell and
similar flow happens further forth in mid-latitude and polar cells. Therefore, a more realistic
model of the climate could include this transport in which the temperature would be averaged
longitudinally (zonally)

T = T(x, y), where y = sinϕ, (7)
whereϕ is the latitude. Then, the previously considered globally averaged temperature would be

T(t) :=

∫ 1
0

T(t, y)dy. (8)

The ice sheets are modelled by introducing the ice line η, that is the Earth is frozen for y ∈ (η, 1)
and no ice resides below η. The incoming solar energy is now distributed according to the law
s = s(y), i.e. the flux now becomes

Qs(y)(1− α(T, η)), (9)

where we have added the fact that albedo for the ice sheets is different than for the rest of Earth.
Moreover, the heat distribution has to be normalized∫ 1

0

s(y)dy = 1. (10)
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Although the functional form for s can be computed explicitly (see [9]), its very good approxima-
tion is s(y) = 1.241− 0.723y2.

The last ingredient to the model is the horizontal heat transport which, following Budyko,
can be included by a term responsible for relaxation to the average. Hence, the equation (4) now
becomes

c
∂T

∂t
= Qs(y)(1− α(y, η)) − (A+ BT) − C(T − T). (11)

We see that the greatest the difference between T and its average, the biggest the horizontal flux.
The transport term can be also modelled by a turbulent eddy diffusivity [11]. Notice also that
we have taken the albedo to be dependent on the latitude and the ice line which encodes the
temperature changes.

Let us see what are the equilibrium states of (11). Setting the derivative to zero we have
Qs(y)(1− α(y, η)) − (A+ BTc) − C(Tc − T c) = 0, (12)

which, after integrating y from 0 to 1, reduces to

T c(η) =
1

B
(Q (1− α(η)) −A) , (13)

where we have the averaged albedo

α(η) =

∫ 1
0

s(y)α(y, η)dy. (14)

Hence, the critical point of (11) is

Tc(y, η) =
Q

B+ C

(
s(y) (1− α(y, η)) +

C

B
(1− α(η))

)
−
A

B
. (15)

As it can be seen, this equilibrium solution is a function of two variables: the latitude y and the
ice line η. However, the latter can be thought as a parameter. To interpret this result we have to
impose the appropriate form of the albedo and, following Budyko, we can take the simplest step
function

α(y, η) =

{
αw, 0 ≤ y ≤ η,
αs, η < y ≤ 1, (16)

where the numerical values can be taken as αw = 0.32 and αs = 0.62. This form of albedo is not
of the sigmoid type but easily can be approximated by a function from such family.

There is one more free parameter that have to be fixed - the ice line η. Data shows that ice
sheets start to form where the mean temperature drops below −10◦C. Thus, we add additional
requirement that

Tc(η) = −10◦C. (17)
We can solve the above equation graphically, by defining

h(η) =
1

2

(
lim
y→η− Tc(y, η) + lim

y→η+ Tc(y, η)
)
, (18)

begin the average temperature on the ice line. The albedo is not continuous and hence the above
is neither. The plot of h = h(η) is presented on Fig. 4.

Notice that we have two meaningful steady states: one predicting a very large ice sheet with a
global mean temperature T c(η1) = −21.4◦C and the other T c(η2) = 14.9◦C. The latter resembles
the present state of the climate very closely! Another pleasant feature of such a simple model!

So far we have not considered any dynamical features of the model such as bifurcation and
stability of found critical points. This is not so difficult but we will refrain from that pointing the
Reader to [17] and other works of McGehee et al.

Now, we will see how the simple energy balance model can be coupled with a dynamics of ice
sheets to represent the climate more fully.
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Figure 4: The plot of function h defined in (18) and equilibrium temperature profiles for two
solutions for which h(η) = −10◦C. Plot taken from [17].
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Figure 5: Schematic view of an ice sheet. Adapted from [18].

2 KCG (Källén, Crafoord, Ghil) generalized model
At the beginning we will use yet another version of the albedo function much more realistic than
just a step function

α(T, l) = γαc(l) + (1− γ)αo(T), (19)

where l is the ice sheet extent (how far an ice sheet went to the south), αc is the albedo due to the
continents, αo is the oceanic albedo and γ is the continents to oceans area ratio.

By the mass balance we understand the growth and retreat of ice sheets under the influence
of the climate variation. We will derive an equation describing the average behaviour of those
great masses of ice. Our reasoning is based on the ice sheet model proposed in [18] (but see also
[12, 6]). This is a simplified model based on the plastic flow and isostasy. The more accurate and
elaborated models based on Glen’s law are surveyed in [16, 13, 2].

The overall picture of the ice sheet is presented on Fig. 5. The ice sheet is assumed to be zonally
symmetric, i.e. have an essentially two-dimensional latitudinal profile. Moreover, we orient the
x-axis pointing southward with origin at the ice sheet’s half-width l. The northward rim x = −l is
located at the Artic Ocean where the ice shelves form. Assume that the mass of ice of height h(x)
above the sea level rests on the isostatically depressed bedrock. Following [18] we can assume
that the rock density is three times the density of ice. Then, the buoyancy law states that the total
ice thickness is equal to 3

2
h(x).

The ice sheet moves according to the plastic flow law, i.e. the whole mass behaves as a plastic
fluid experiencing the yield stress τ0. Since the normal stresses are hydrostatic, in the equilibrium
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we must have
τ0 =

3

2
ρigh

∣∣∣∣dhdx
∣∣∣∣ , (20)

where ρi is the density of ice. This equation can be immediately integrated giving the parabolic
profile

h(x) =

√
4τ0l

3ρig

(
1−

|x|

l

)
= H
√
l

√
1−

|x|

l
, H :=

√
4τ0

3ρig
. (21)

The typical value of the yield stress and the corresponding height scale is given.
The dynamics of the ice sheet is governed by an interplay of snow accumulation and melting.

We assume that the northern part of the ice sheet is in equilibrium with its southern counterpart.
Therefore, themass balance of thewhole sheet is governed by the ablation and accumulation in the
region [0, l]. The amount of snowfall is closely associated with the temperature via the so-called
snow line. The temperature falls with the height and thus there is a well-defined 0◦C isotherm
under which the snow, if fallen, will melt. In the cited works this isotherm has been taken to be
linear, i.e.

hiso(x) = h0 + s(x+ l), (22)

where h0 is the height at the Arctic ocean while s is the slope parameter. The northern height of
the isotherm depends generally on the temperature or astronomical forcing. This has been taken
into account in the literature. For example in [18, 3] Authors correlated the variation in h0 with
the Milankovitch oscillations while in [6] a linear dependence on the global temperature has been
prescribed.

The snowline position x = l0 defining the part of the sheet which is nourished by the snowfall
is defined as a solution of h(x) = hiso(x). The mass balance can then be written as

d

dt

∫ l
0

3

2
h(x)dx = al0 −m(l− l0), (23)

where a and m are respectively accumulation and melting rates. Now, if we assume that the ice
sheet can grow or retreat, that is l = l(t), we can obtain

d

dt

∫ l
0

3

2
h(x)dx =

3

2
H
d

dt

∫ l
0

√
l

√
1−

x

l
dx =

3

2
H
√
l
dl

dt
. (24)

Furthermore, the value of l0 can be found by equating (21) and (22)

h0 + s(l0 + l) = H
√
l

√
1−

l0

l
, (25)

which is a quadratic equation with the meaningful solution

l0 =
H2

s2

[
−

(
h0s

H2
+
s2

H2
l+

1

2

)
+

√
h0s

H2
+ 2

s2

H2
l+

1

4

]
, (26)

which together with (23) gives the second dynamic equation

3

2
H
√
l
dl

dt
= (a+m)

H2

s2

[
−

(
h0s

H2
+
s2

H2
l+

1

2

)
+

√
h0s

H2
+ 2

s2

H2
l+

1

4

]
−ml for l0 ≥ 0. (27)

This is a rather complicated nonlinear equation but we will shortly see that an appropriate scaling
and approximation will yield its accurate simplification. Also notice that nowhere in the above
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discussion we have mentioned the response of the bedrock to the evolution of the ice sheet. The
moving mass will produce a delayed feedback from the lithosphere and hence, might provide an
essential ingredient of the dynamics. This requires adding an additional equation to our system
and a simplified version of it have been introduced in [5, 7]. In this paper, however, we will
consider only the instantaneous adjustment of the bedrock leaving the more general problem for
the future work.

Two adjustments are necessary for the well-posedness of the model. First, it may happen that
the whole southern side of the ice sheet is in the ablation zone. This can happen for sufficiently
large sheets or by raising the 0◦C isotherm. In this case the whole mass of ice becomes stagnant
and our derivation is not valid (equation (25) does not have a positive solution). Authors of [18]
and [3] propose to assume that we can take l0 = 0 and then, the mass balance can be written as

3

2
H
√
l
dl

dt
= −ml for l0 < 0. (28)

Another situation of (25) failing to have a solution is when the negative snowline elevation h0
becomes smaller than −sL. Then, the snow will accumulate on the ground and if l = 0 the
ice sheet will nucleate. For a sufficiently high snowfall rates a (or sufficiently small −h0

s
) the

reasonable approximation is to assume (see [18]) that l = −h0
2s

and

3

2
H
√
l
dl

dt
= −

ah0

2s
for l < −

h0

2s
, (29)

while for l > −h0
s
the main equation (27) still holds.

The above equations are much more complicated than the simple Budyko-Sellers energy bal-
ancemodel, but they describe the climate inmuchmore detail. Without any further details (which
can be found in [15]) we can nondimensionalize the energy and mass balance to obtain

dθ

dτ
= µ [1+ β− γ (α1 + α2λ) − (1− γ)αo(θ) − θ] =: F(θ, λ),

dλ

dτ
=
√
λ ((1+ ξ(θ)) (1− 4λ) − 1) =: G(θ, λ),

for θ > 0, 0 < λ ≤ 1
4
, (30)

where ξ = ξ(θ) is the accumulation to ablation ratio which can depend on the temperature. Apart
from the alreadymentioned ice-albedo feedback encoded in the temperature dependence ofα, the
function ξ depicts the second fundamental feedback mechanics, i.e. the precipitation-temperature
feedback. Very cold climates affect the evaporation of the oceans reducing the amount of vapour
in the atmosphere. Hence, the meridional transport of air moves only a little water to the higher
latitudes. The drier conditions in the Pole regions inhibit snowfall and, therefore, nourishment of
the ice sheets. Thanks to that, the functional form of ξ = ξ(θ) should be a monotone increasing.

There is a lot to be done with our model (30) but the most important fact is that is possesses
a supercritical Hopf bifurcation. In this case, when µ increases through a critical value µc, a
stable limit cycle is born and the climate oscillates. This has a profound meaning for the planet
- the ice sheets can advance and retreat without any external astronomical forcing! Hence, the
Milankovich theory may not be the decisive in predicting the ice ages. The climate acts as a giant
internal nonlinear oscillator!
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