Some new trends in applied mathematics: climate dynamics

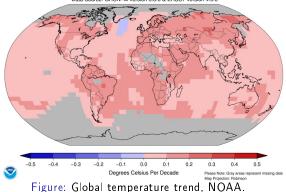
Łukasz Płociniczak¹

Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology

27-29.11.2018 USC

¹Support from Erasmus+

Climate

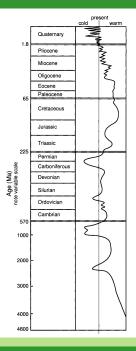

Statistical long-term description of the quantities associated with weather (from months to milions of years)²

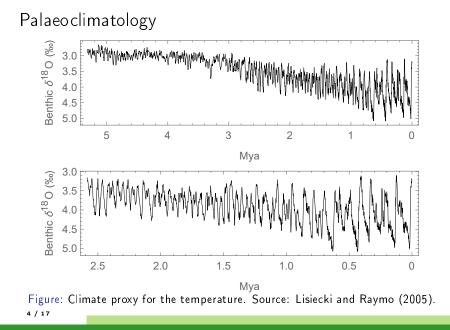
- Why?
 - To know the world.
 - To save the world.

Who?

- Climatologists.
- Physicists.
- Mathematicians?!
- Why?
 - Global measurements.
 - □ Climate proxy.
 - Mathematical models.

Jan-Dec Land & Ocean Temperature Trends Period: 1901-2017 Data Source: GHCN-M version 3.3.0 & EBSST version 4.0.0




 $\frac{2}{2}$ Intergovernmental Panel on Climate Change, Annex III: Glossary [Planton, S. (ed)], 2013

Palaeoclimatology

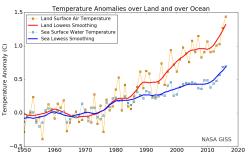
There are several ingenious ways to find what was the temperature millions of years ago!

- Climate proxy indirect inference.
 - Ice cores (isotopes: ¹⁸O and D (and many more)).
 - Sediments.
 - □ Tree rings and leaves.
 - Corals.
 - Foraminifera.
 - □ Pollen.
 - □..
- Figure: changes of global temperature. Source: Saltzman, Dynamical Paleoclimatology (2002).

Ice ages

- Ice ages: huronian (early Proterozoic), cryogenian (late Proterozoic), andyjsko-saharyjskie (late Ordovician - Silurian), Karoo (Carbon) and quaternary (present).
- What is the reason for the climate oscillations-relaxations in the quaternary?
 - □ Astronomical forcing (Milankovitch theory?).
 - Changes in the atmosphere content?
 - Plate tectonics?
 - Internal nonlinear mechanisms?

Snowball Earth


- □ Hypothetical state of the climate in which almost the whole planet is under the ice (Neoproterozoic)
- □ What is the mechanism responsible for initialization?
- $\hfill\square$ Positive feedback: colder \rightarrow more ice \rightarrow higher albedo \rightarrow colder.
- □ What is the mechanism responsible for termination? (volcanism?)

Human influence

It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.³

- Humans emit enormous amounts of CO₂ - a greenhouse gas.
- The predicted increase in temperatin XXI century: 0.3 1.7°C (lowe emission); 2.6 4.8°C (highest emission).
- Consequences:
 - □ increase of global temperature,
 - raising sea level,
 - changes in the precipitation distribution,
 - extreme weather phenomena,
 - extinction of species.

³IPCC, 2013: The Physical Science Basis - Summary for Policymakers

Climate models

Complexity of hierarchy.

- Global Climate Models (GCMs)
 - Geophysical Navier-Stokes on a sphere + equation of state + conservation of energy + conservation of salinity + other parametrisations

$$\rho\left(\frac{D\mathbf{u}}{Dt} + 2\Omega \times \mathbf{u}\right) = -\nabla \rho + \nu \nabla^2 \mathbf{u} + \mathbf{f}, \quad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0},$$
$$\rho = \rho(\rho, T, s), \quad \frac{DT}{Dt} = q_T, \quad \frac{Ds}{Dt} = q_e.$$

Earth System Models of Intermediate Complexity (EMICs)⁴

□ GCM with more parametrisations/simplifications.

- Conceptual models
 - □ Box models.
 - Dynamical systems.

⁴Claussen, Martin, et al. "Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models." Climate dynamics 18.7 (2002): 579-586.

The simplest model

The simplest zero-dimensional model (Energy Balance Model) • Let T = T(t) be the globally averaged temperature. Then

$$c\frac{dT}{dt} = \underbrace{\frac{1}{4}\left(1 - \alpha(T)\right)Q}_{\text{incoming shortwave radiation}} - \underbrace{\gamma\sigma T^4}_{\text{outgoing longwave radiation}} =: f(T),$$

where c - specific heat, Q - solar constant, γ - greenhouse coefficient, σ - Stefan-Boltzmann constant and α - temperature dependent albedo.

 \blacksquare Albedo-temperature feedback: colder \rightarrow more ice \rightarrow larger albedo \rightarrow colder

$$\lim_{T\to 0^+} \alpha(T) = \alpha_-, \quad \lim_{T\to\infty} \alpha(T) = \alpha_+ \quad \text{oraz} \quad \alpha'(T) \leq 0,$$

where $\alpha_- > \alpha_+$.

8/17

Critical points

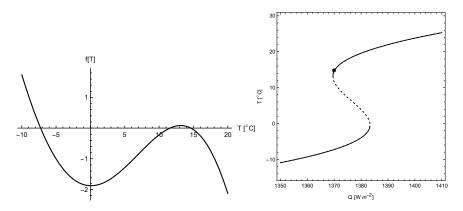


Figure: Exemplary simulation (data taken from A.C.Fowler, Mathematical Geoscience, 2011). On the left: zeros of f are the stationary points of the climate. On the right: bifurcation diagram with hysteresis.

Another dimension: Budyko-Sellers

- The previous model is based on the seminal papers of Budyko and Sellers^{5,6}.
- This time T = T(y, t), where y is the sine of the latitude.

Conservation of energy with the meridional transport

$$c\frac{\partial T}{\partial t} = \underbrace{Qs(y)(1 - \alpha(T)))}_{\text{promieniowanie krótkofalowe}} - \underbrace{A + BT}_{\text{promieniowanie długofalowe}} - \underbrace{C(T - \overline{T})}_{\text{transport poziomy}},$$

where s = s(y) is the meridional distribution of solar radiation, and \overline{T} is the mean temperature on Earth

$$\int_0^1 s(y) dy = 1, \quad \overline{T}(t) := \int_0^1 T(t, y) dy$$

North⁷ proposed diffusive transport.

Modern and mathematical approach: McGehee and collaborators ⁸.
⁵Budyko, M. I. (1969), Tellus 21(5), 611-619.
⁶Sellers, W. D. (1969), Journal of Applied Meteorology 8(3), 392-400.
⁷North, G. R. et al. (1981), Reviews of Geophysics 19(1), 91-121.
⁸McGehee, R. et al. (2012), SIADS 11(2), 684-707.

Further degrees of freedom

- Essential addition: ice sheet extent
 - □ At present: Greenland and Antarctica.
 - Last maximal glaciation: Laurentide, Patagonian and Vistulian.
- Model Källén, Crafoord, Ghil⁹ based on Weertman¹⁰

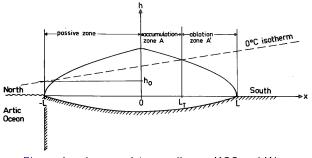
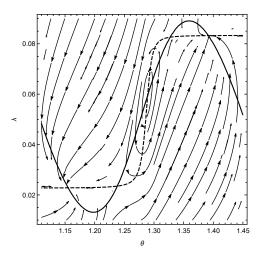


Figure: Ice sheet model according to KCG and Weertman.


⁹KCG (1979), Journal of the Atmospheric Sciences 36(12), 2292-2303.
¹⁰Weertman, J. (1976), Nature 261, 17-20.
¹¹/17

General KCG model

- KCG model implies internal climate oscillations (Hopf bifurcation).
- General KCG model exhibits them also! Is the climate an internal oscillator?

$$\frac{dV_I}{dT} = aL_T - m\left(L - L_T\right).$$

 Precipitation-temperature feedback: colder → lower evaporation → lower precipitation → less ice → lower albedo → warmer.

What else?

• CO₂: the most important (but not the strongest) greenhouse gas.

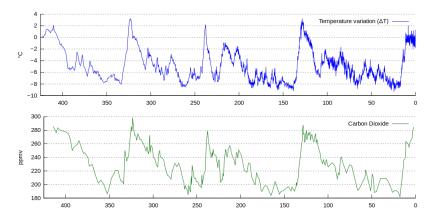


Figure: Historical CO₂ and the temperature at Vostok station.

Carbon cycle

Fowler's ,,simple model''¹¹

$$\frac{dm_{CO_2}}{dt} = -A_L W(T, m_{CO_2}) + v,$$

where A_L - area of continents, W - weathering rate and v - volcanism.

- Similarly to water, carbon has also its cycle:
 - $\Box \quad \mathsf{Earth's mantle} \rightarrow \mathsf{volcanoes} (v) \rightarrow \mathsf{atmosphere} \rightarrow \mathsf{weathering} (W) \rightarrow \mathsf{rivers} \rightarrow \mathsf{oceans} \rightarrow \mathsf{subduction}.$
- We need to couple that model with other equations¹²

$$W(T, m_{CO_2}) = W_0 m_{CO^2}^{\mu} \exp\left(\frac{T-T_0}{\Delta T}\right),$$

where $\mu \approx 0.3$.

¹¹Fowler, A. C., et al. (2013), International Journal on Geomathematics 4(2), 227-297.
¹²Walker, J. C. et al. (1981), Journal of Geophysical Research: Oceans, 86(C10), 9776-9782.
¹⁴/₁₇782.

The number of equations grows!

- What else?
 - $\hfill\square$ The meaning of the oceans: CO2.
 - $\hfill\square$ We need to describe the chemistry of all oxidation reactions.
 - □ Mechanism for immediate entering into the interglacial period.

□ ...

- Model by Maasch and Saltzman¹³: ice mass, concentration of CO₂, temperature at the bottom od Atlantic Ocean.
 - □ Leading order of conservation laws.
 - Milankovitch + tectonic "trend".
 - □ A change in the period of oscillations bifurcation.
 - Mathematically: Bogdanov-Takens bifurcation¹⁴.
- Many more approaches...¹⁵

…and a lot of interesting mathematics!

 $^{13}\,M\text{-S}$ (1990), Journal of Geophysical Research: Atmospheres, 95(D2), 1955-1963. $^{14}\,Engler,\,H.\,et\,al.\,$ (2017), arXiv preprint arXiv:1705.07387. $^{15}\,Crucifix,\,M.\,$ (2012), Phil. Trans. R. Soc. A, 370(1962), 1140-1165. $^{5}\,/^{17}$

Summary of the lecture

- 1. Introduction (now it ends!).
- 2. Budyko-Sellers energy balance model.
- 3. KCG precipitation-temperature feedback model.

THANK YOU!

Literature

- This lecture is based on
 - Płociniczak, Ł. (2018). Hopf bifurcation in a conceptual climate model with ice-albedo and precipitation-temperature feedbacks. arXiv preprint arXiv:1801.09087.
 - 2. Walsh, J., McGehee, R. (2013). Modeling climate dynamically. The College Mathematics Journal, 44(5), 350-363.
 - 3. Fowler, A. (2011). Mathematical geoscience (Vol. 36). Springer Science & Business Media.
- Models
 - 1. Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the earth. tellus, 21(5), 611-619.
 - 2. Sellers, W. D. (1969). A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology, 8(3)
 - Källén, E., Crafoord, C., & Ghil, M. (1979). Free oscillations in a climate model with ice-sheet dynamics. Journal of the Atmospheric Sciences, 36(12), 2292-2303.
- Textbooks on climate
 - 1. Ruddiman, W. F. (2001). Earth's Climate: past and future. Macmillan.
- 2. Pierrehumbert, R. T. (2010). Principles of planetary climate. Cambridge