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Introduction

This talk is about a 1-D diffusion of moisture in building materials (such as
siliceous brick).
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Introduction
This talk is about a 1-D diffusion of moisture in building materials (such as
siliceous brick).

® By u(x,t) we denote the moisture
concentration at x at time t.

0.30

= We consider the following initial-boundary

conditions:
D.20

u(0,t)=C, u(x,0)=0.

m Self-similarity - a characteristic feature of
diffusion in our experiment. Moisture
concentration u(x, t) can be drawn on a
single curve [1]:

0.10

moisture content (m*m)

U(X’ t) = U(n)v n= X/\/E, 0.00 4 :
0.0 0.5 1.0 1.5 2.0
for U(O) =Ci U(OO) =0. x 12 {mm 5°12)
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Nature is tricky (and thus very interesting)!
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Nature is tricky (and thus very interesting)!

® As it turns out and nobody exactly knows why but the diffusion not
always behaves as we are used to.

® In a number of experiments (ex. [2-4]) the so-called Boltzmann scaling
n = x/t*/2 is not observed.
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Nature is tricky (and thus very interesting)!
® As it turns out and nobody exactly knows why but the diffusion not
always behaves as we are used to.

® In a number of experiments (ex. [2-4]) the so-called Boltzmann scaling
n = x/t*/2 is not observed.

= A more appropriate and accurate is the anomalous diffusion scaling

(Figure from [2])
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How to describe this mathematically?
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® The classical diffusion equation does not work: for our initial-boundary
conditions it possesses the x/v/t scaling.
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® In [2,4] the following modification of the constitutive equation has been

proposed
du at

Result: very complicated equations and average fitting accuracy.
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How to describe this mathematically?

® The classical diffusion equation does not work: for our initial-boundary
conditions it possesses the x/v/t scaling.

® In [2,4] the following modification of the constitutive equation has been

proposed
du at
qg=—D(uv) (&) .

Result: very complicated equations and average fitting accuracy.

® As it turned out, a more appropriate is to model this phenomenon by an
equation with fractional derivative (see [5-7])

0%u 0 ou
Gt~ ox (D(Wa) :

We obtain the sought scaling x/t®/2 with very small fitting errors.

4/1a



Fractional derivative!?

® We will be using the following definition of the fractional derivative (« is
not necessarily a fraction).

® The Riemann-Liouville fractional derivative of order o with respect to
time is defined by the formula

o0“u 1 o [t h—o1
W(X’ t)— mﬁ/{) (t—S) U(X,S)ds,

where n = [a] + 1.

m This derivative has all the properties that can be expected by a
generalization of derivation, for ex.

o TTB-atl)

for 3 > —1. Additionally, it reduces to the ordinary derivative for o — k,
k € Z.
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Our problem: can we say something analytical about
the nonlinear anomalous diffusion?

m All the previous results concerning anomalous diffusion in porous media
consist mainly of numerical solutions of the fractional differential
equations (which is far from triviall).

® We have managed to find some approximations of the solutions of the
nonlinear anomalous diffusion equation. These approximations have a
very simple, analytical form.

[8] t.Ptociniczak, H.Okrasinska-Ptociniczak, Approximate self-similar solutions to a
nonlinear diffusion equation with time-fractional derivative, Physica D 261 (2013),
85-91

[9] t.Ptociniczak, Approximation of the Erdelyi-Kober fractional operator with
application to the time-fractional porous medium equation, SIAM Journal of Applied
Mathematics, under review
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Overview of our method
® Model: anomalous diffusion equation with diffusivity D(u) = Dou™ (in
nondimensional form)
o0%u 0 du
—(x,t) = =— [ u"(x,t)—(x,t 0 1
e (x,t) o (u (x, )aX(X7 )> , <a<l,
with initial-boundary conditions u(0, t) = 1, u(x,0) = 0. Remark: With
these conditions it does not matter whether we use R-L or Caputo
version of the fractional derivative.
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Overview of our method

® Model: anomalous diffusion equation with diffusivity D(u) = Dou™ (in
nondimensional form)
0%u o [ m Ou
a?(X, t) = B (u (x, t)a(x7 t)> , O<ax<l,

with initial-boundary conditions u(0, t) = 1, u(x,0) = 0. Remark: With
these conditions it does not matter whether we use R-L or Caputo
version of the fractional derivative.

= We seek for a self-similar solution u(x, t) = U(7), where n = x/t*/2. We
obtain an ordinary integro-differential equation

2 (vtrgevm) = [a-a)- Fut| Pieue,

with U(0) =1 and U(oco) = 0, where the integral operator is of the
Erdelyi-Kober type

122U(n) = ﬁ/ (1-2)* 2 U(nz} ) dz.
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Overview of our method cont’'d

= Theorem
For analytic U and a > —1, b > 0, ¢ > 0 we have the following
representation
12°U(n Z A UM (1
k  (k k—j T(ati+1)
where \e = 3276 (7) (1) T(atbt131)"

Moreover, we have an asymptotic expansion when k — oo

e ~ Z ( ) )T (c(a + n+1)) (}{)C(Hm).
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Overview of our method cont’'d

= Theorem
For analytic U and a > —1, b > 0, ¢ > 0 we have the following
representation
b (k
12°U(n Z)\kU kl,
kK (k k—j T(a+i+1)
where )\k = Zj:o (j)(_l) m.

Moreover, we have an asymptotic expansion when k — oo
1 c(a+n+1)
A ~ Z( ) I'(c(a+n+1))<k) .

® The series converges very fast, especially for 7 close to 0. Let us use it!
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Overview of our method cont’'d

m If it happens that U is not analytic, we can hope that the first terms in
the expansion of the E — K operator will give us a decent approximation.

® et us use it for our main equation. We obtain

1

(UmUI)/ — m

U-— (%)\0 - Al) s

Now we have an ordinary differential equation, though nonlinear.
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the expansion of the E — K operator will give us a decent approximation.

® et us use it for our main equation. We obtain

1

(UmUI)/ — m

U= (52 -2)nU,
2
Now we have an ordinary differential equation, though nonlinear.

® Being lead by physical intuition and previous results on the classical case
we can expect that there exists such n* for which U(n) = 0 for n > n*.
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Overview of our method cont’'d

m If it happens that U is not analytic, we can hope that the first terms in
the expansion of the E — K operator will give us a decent approximation.

® et us use it for our main equation. We obtain

1

(UmUI)/ — m

U= (52 -2)nU,
2
Now we have an ordinary differential equation, though nonlinear.

® Being lead by physical intuition and previous results on the classical case
we can expect that there exists such n* for which U(n) = 0 for n > n*.

® Now, our conditions transform into U(0) =1 and U(n*) = 0.

= Problem: we do not know n* which gives us a free boundary problem.
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Overview of our method cont’'d

m To proceed we use an idea introduced in [10]. We make a substitution

U(n) = (m(n*)?y(2)", z=1- ni
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Overview of our method cont’'d

m To proceed we use an idea introduced in [10]. We make a substitution

1
* ‘m 77
U(n) = (m(n*)’y(2))", z=1- et
= Now, the equation is

y+ % (%Ao —)\1> (1-2z)y.

1 5, "__ 1
A Ay Gy

with initial conditions y(0) = 0 and y’(0) = S Ao — A1
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= Now, the equation is
Yoo oo 1 1 (a ) /
el ey L yh0 = A ) (1—-2)y"
with initial conditions y(0) = 0 and y’(0) = S Ao — A1

® The condition for the derivative is obtained from the structure of
equation.
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= The condition for the derivative is obtained from the structure of
equation.

= When we know y we can very easily obtain the front position:

nt=1/y/my(1).
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Overview of our method cont’d
m To proceed we use an idea introduced in [10]. We make a substitution

U(n) = (m(n*)?y(2)", z=1- ni

= Now, the equation is

y+ % (%Ao —)\1) (1-2z)y.

1 5, "__ 1
A Ay Gy

with initial conditions y(0) = 0 and y’(0) = S Ao — A1

® The condition for the derivative is obtained from the structure of
equation.

= When we know y we can very easily obtain the front position:
nt=1/y/my(1).

® As it turns out, the Taylor series for y converges very quickly.
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Overview of our method cont’'d

® When we take a few first terms in the Taylor series for y(z) = Y, a;z’
we obtain (in original variables)

Ur(n) = (1 —n/ni)™
Us(n) = (L —n/n3) (1 — mapmsm))™ ,

where a; can be determined, for ex. a; = y’(0) = §Ao — A1. The rest a;
are much complicated.

m Additionally, we can calculate the cumulative moisture intake

[e ] o] X o n"
WO = [ ubeto= [ U () ax=tt [
0 0 t2 0

We have
m
/ =
1(t) m+1771
m 1 1 an o
L(t) = F , 1,24 — tz.
2() m+17722 1( +m al+a2)



Numerical results

0.35
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Figure : On the left: front position n*(t) (zig-zag) and its approximation
n3(t) = n3t*/? (smooth line). On the right: cumulative moisture (solid line) and
approximations /; (dashed line) i /> (dot-dashed line). Here, @ = 0.95 and m = 2.
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Numerical results cont’d
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Figure : Fitting Us with experimental data from [2]. On the left: a self-similar
profile; an the right: time evolution. Here o = 0.855, C = 0.71 m®/m?, m = 6.98,
Do = 5.36 mm /5255,
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