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Introduction

= Almost everyone has probably wondered why n in
dr
dx”

has to be a positive integer.
® |t can easily be grasped that n can also be 0, because

dO

— = 1.
dx®

® Then, we can argue that

dI'I
dx - / / because dxn/.../_ld.
——

n

But the last relation does not commute (why? - they "almost"
commute). Hence we have written " ~ " instead of " ="
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Can we take n to be any real number?

® |t turns out that this question dates back as far as to one of the fathers
of the Calculus - Leibniz! Moreover, a number of the greatest
mathematicians have taken up this topic.

® In 1695 de L'Hospital asked what would happen if we take n =1/2.
Leibniz replied [1] :
"(...) an apparent paradox, from which one day useful
consequences will be drawn."

m Euler introduced the famous Gamma function (which domain is equal to
C —{0,—1,-2,...}) and proposed |2]

d- rp+1) _
a% s f-a
dxo ™ I_(B—oz—i—l)x ’

which is a formal generalization of the elementary fact, that

d” m—n
X" = e n),x for m > n.
[1] G.W.Leibniz, Letter from Hannover, Germany. Leibni: M. ische Schriften 2 (1695), 301-302.
[2] L. Eu|er Depv5 ionib Jentibus seu q ini g /! Igebraice dari
iarum Petropoli 5 (1738), 36-57.
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® In 1822 Fourier derives his integral representation

Wf x) = E/—oo f(s)ds/_oop cos (px—ps-i——) dp,
but underlines that ¢ can be "any quantity whatever, positive or
negative." [3]

® Abel considered the tautochrone problem and posed his solution in terms
of integral equation [4] . As it turns out, this equation is precisely what
we call today the fractional integral. We will follow Abel's thoughts later
on.

® Liouville considered functions that can be written as a series
f(x) ~ Y, ane* and proposed the following form of fractional

differentiation [5]
«@ A,,X
dXO‘ Z anAne

as imposed from the fact that %eax = a"e™.

[3] J.B.J. Fourier, Théorie Analitiue de la Chaleur, Oeuvres de Fourier 1 (1822), 508, Didot, Paris.

[4] N.H.Abel, Solution de I problé 4 l'aide d'intégrales définii le 1 (1881,1823),
16-18

Ouvres C

[5] J. Liouville, Mémoire sur I ions de ie et de i et sur un genre de calcul
pour m"loutlre ces questions, Journal de I'Ecole Polytechnique XIII:11 (1832).
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® Liouville also derived the following integral representation as the
candidate for the fractional integral

1 * a—1
—(—I)O‘F(a)/o f(x+y)y* “dy.

® Riemann in [6] proposes a different formula for fractional integration of
order «

1 Xn—a

@/E (X — t)a_lf(t)dt + "Z:; Cnm,

where a and C, are some constants. Then, he proposed to define a
fractional derivative as the integer-order differentiation of the fractional
integral. This is the basis of the modern definition.

Are all of these types of fractional operators consistent with each

other?
[6]B. Riemann, Versuch einer all; i Auff. der Integration und Diffe ion, (Januar 1847), In H.
Weber, editor, Bernhard Ri 's | h ische Werke und wi haftlicher Nachl page 353,

Dover, 1953, Dover Publications
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® Liouville also derived the following integral representation as the
candidate for the fractional integral

1 * a—1
—(—I)O‘F(a)/o f(x+y)y* “dy.

® Riemann in [6] proposes a different formula for fractional integration of
order «

1 Xn—a

@/E (X — t)a_lf(t)dt + "Z:; Cnm,

where a and C, are some constants. Then, he proposed to define a
fractional derivative as the integer-order differentiation of the fractional
integral. This is the basis of the modern definition.

Are all of these types of fractional operators consistent with each

other?
No, they are not...  But do not worry.
[6]B. Riemann, Versuch einer all; i Auff. der Integration und Diffe ion, (Januar 1847), In H.
Weber, editor, Bernhard Ri 's | h ische Werke und wi haftlicher Nachl page 353,

Dover, 1953, Dover Publications
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Modern definitions

® The modern notion of the fractional differentiation originates from the
formula for n-th integral (excerise)

/ / /X"_ (x0) st ..y = ﬁ/X(X_ (1)t

® Why we do not replace n by a and (n — 1)! by I'(«)?
® We thus define the fractional integral of order a > 0 by

19F(x) = ﬁ / C(x — Do (t)dt.

= Notice that this definition depends on the lower terminal a, which
accounts for various definitions of previous Authors (ex. Liouville:
a = —00). Usually we choose a = 0.
m After Riemann we define the Riemann-Liouville fractional derivative of
ordern—1<a<n(neN)as
dn

n—a n a—1
d”l Flx) = r(n—a dx"/(X f(e)dt
7/ 41

D& f(x) :=




Some basic identities

® For 0 < o <1 the R-L derivative has the form
«@ _ 1 d x —«

Da f(X) = ma/‘? (X t) f(t)dt

® |t can be shown (exercise) that /&*f — f pointwise for & — 0 (the same
for the R-L derivative).

m The fractional integrals have the semigroup property
1415 F(x) = 12FPF(x) = I212F(X).

m The above does not hold in general for R-L fractional derivative (contrary
to the classical casel). Indeed, we have the following

n _ _ﬂ_k
B o — poatB _ a—k (X a)
D03 ) = O5*7#() = 3_ D)5y
forn—1<a<nm-1<pB<m.
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Some basic identities
= |t can be shown that for a # 3 and f*(a) = 0 for
k=1,2,..,max{n—1,m—1}
DD f(x) = DI1PF(x) = DI DIF(x).
® The commutation is also valid for the ordinary, integer order derivatives
d" d"
dxn by dx”
® The composition with fractional integrals looks like the following
D17 f(x) = f(x),
but of course the opposite identity does not hold exactly

apaf . a—k (X_a)ﬂ_k
D) = 1) = 308 M)y

DS f(x) = DITf(x) = f(x).

where n—1 < a < n.
= We do not have the same formulas for the derivative of a product or

composite functions!
9/ 41




An important application - the tautochrone problem
The problem

Find a curve with a property that a point, sliding on it only due to gravity

(without friction), will reach the lowest point irrespective of the initial height
chosen.

10 / 41



An important application - the tautochrone problem

Abel’s solution

® From the conservation of energy we have

1 <ds>2 1 ds
- :mg(yo—y)—>dt=———dy,
dt V2g(yo — y) dy

where s is arclength and y denotes height.
= The total time of the fall is (for f(y) = (2g)~*/2ds/dy)

Em

T= /Oyo(yo —y)"Ef(y)dy,

which is nothing else but a fractional integral of order 1/2 (modulo the
multiplicative constant I'(1/2) = /7).

11 / 41



An important application - the tautochrone problem

m Let us apply the fractional integral on the both sides of our equation

IZT \/_/2/2 f(vo) = Vly f(vo0),
and differentiate to obtain
1 d

Yo 1
f:——/ — ) :Tdy=D2T
T )y (vo—vy) ly = Dg

= Now we only need to calculate the fractional derivative of a constant

(ves, a derivative of a constant)
1 1 d [ 1 2T d T
DT =T——=—— —y) 2d V= e
5 T dvo Jo (Yo —y) 2dy = N =

= Remember that f(y) = (2g)~'/%ds/dy. Now, we easily arrive at

ds \/ Vg 1
dy 7r \/_
which is a equation for a cycloid (and we renamed y, by y).
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Some remarks

®m As we have seen, the R-L fractional derivative of a constant is not zero.
More generally, we have the following (exercise)

2 (x—a)’ = re+1) rp+1)
2 S T(B+a+1) rB—a+1)

for 8 > —1 (integrability). This is a rigorous result of what Euler and
others thought about derivative of the power function.
m Abel integral equation is the one of the following form

1 x a1 _ iy
| G 07 = 1),

what is [§'y = f, which can be solved by applying the R-L fractional
derivative on the both sides

(x—a)’*t*  D¥(x—a)’ = (x—a)P=

y = Dg'f.

This type of equation has many applications in astrophysics, computer

tomography, geological surveying, ...
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Another application - viscoelasticity

This field is one of the most broadly investigated in fractional calculus
due to extensive design of new materials (for ex. polymers).

Some materials are mostly elastic (for ex. steel) while others show mainly
viscous features (like honey).

There are, though, many new materials that exhibit both of these
characteristics.

The modeling is done mainly by assuming constitutive dependence
between the stress o and strain €
, , de

Hooke's Law: ¢ = E¢, Newton's Law: o = M
But what should we do, when a particular material is viscoelastic? There
are models based on combining elastic and viscous elements in serial
(Maxwell) or parallel (Voigt) combinations but are not satisfactory. Their
refinements done by Kelvin (serial Hooke + Voigt) and Zener (parallel
Hooke + Maxwell) work better but still leave some questions unanswered.
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Another application - viscoelasticity

m Stress is proportional to the zeroth derivative of strain for elastic
materials and to the first derivative for viscous.

m Maybe viscoelasticity can be modeled by an intermediate model? [7]

oc=EDge, 0<a<l,

with a material constant E.

m We can see that the continuous parameter « characterizes how much the
material is viscous. It looks like a very natural application of the
fractional derivative.

m There is also a possibility of taking into account the whole history of the
process [8]
c=rD%_e, 0<a<l,

where x can be called as generalized viscosity.

[7]1 G. W. Scott Blair, The role of psychophysics in rheology, J. Colloid Science 2 (1947), 21-32.

I Ll

[8] AN i Ag lization of linear laws of deformation and its to inner friction pi

8] A.N. G ,
Prikl. Mat. Mekh. 12 (1948), 251-2509.
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Fractional differential equations

m Viscoelasticity gave us constitutive equations containing fractional
derivatives. If we wanted to obtain the dynamic behavior of those
materials we would arrive at fractional differential equations.

® Two of the most important classes of ODEs are relaxation equation
y' =y +f,

and oscillation equation
y" =Xy +f.
m \We are naturally led to consider the following fractional
relaxation-oscillation equation

Dfy=Xy+f, 0<a<2

where for simplicity we took 0 as the lower terminal.
® We know that the exponential function (of real or complex argument) is

a fundamental solution of the classical equations. What about the

fractional case?
16 / 41



Fractional differential equations

m To start, let us consider the following, homogeneous equation
Diy=y, 0<a<l

= Let us look for a series solution y(t) = t? >~ a,(t*)", 8 > —1. Note that
we anticipated the fact that the solution will be a function of t* (which
is consistent with oz = 1).

® Plugging the series into our equation we obtain (remember that
Dgtr = [ +1)/T (1 +1 - a)t#—2)

oo

r(na +58+ 1) (n—1)a+p - an+f
n = nt .
anoa F((n—Da+s+1) ;a

® Then, after equating terms we have
r(1+5) f((n—1a+pB+1)
aor(l-i—ﬂ-ot) ’ an aI7 1 r(nOé+,8+1) 9 n_

® The first condition is fulfilled for all a9 for 8 = a — 1.
17 / 41




Fractional differential equations
® Progressing recursively we have
M(n—1a) T(na) M«)

MTE2T  a) T((ntDa) T PT(na+a)
= Problem: The unknown ag has to be determined from the initial
conditions, but we cannot use y(0) since lim¢_,q y(t) = oo!
® Because y(t) = apt® 1 + ... we can see that in order to extract ag we
have to take the derivative of order of a — 1 (which is actually the
fractional integral). We thus impose

Dy y(0) = C.
which is a rather strange initial condition.
= We finally have Dy (t) = agl'()/T(1) + O(t®), and the initial
condition forces ag = C/I'(a).
® The solution has the form

& tom
_ a—1
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Mittag-Leffler function

® The resulting function is an example of a special function known by the
name of (generalized) Mittag-Leffler function

o0 Zn
£ = 2 oy

which is an entire function on the complex plane.

® The solution of our fractional problem can thus be written as
y(t) = Ct*LE, o(t%).
m The special cases of the ML function include

e?—1 sinh \/z
El’l(Z) = EZ, E2’1(Z) = cosh \/E, El’g(z) = 2 s E2’2(Z) = \/E\/_
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Fractional differential equations

= Consider the general fractional differential Cauchy problem
DSy —Ay=f, n—1<a<n, D *y(0)=C, k=1,..,n.

Then the solution can be expressed in terms of the ML function

y(t) = Z Cix® Ep o i1 (M) + /Ot(t —5)2LE, o (A(t — 5)*)f(s)ds.

20 / 41




The Caputo fractional derivative

m \We have seen that solving the fractional differential problem required
imposing some "‘strange"’ initial conditions (setting D*~1y(0)). In
physical applications we measure mainly the value y(0) or the velocity
y’(0). How to accommodate to that?

® The problem was solved by M.Caputo in [9] during his work on
viscoelasticity.

® The idea is to exchange the order of the derivative and fractional integral
operator

CDa .— [n—a d" _ 1 X n—a+1, (n) d
20) = 0 Sy = s [ =y g

where n — 1 < a < n (recall that the RL derivative had
D¢y :=d"/dt" I"%y).

® This of course requires much more regularity on y than the RL derivative
(since first we differentiate and then integrate).

[9] M.Caputo, Linear model of dissipation whose Q is almost frequency independent - Il, Geophys. J. R. Astr.
Soc. 13 (1967), 529-539.
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The Caputo fractional derivative
® |t can be shown (exercise) that a similar formula for the derivative of a
polynomial holds
re+1)
Cpo B _
DY (x — -\
s g
for 3 > n, where n — 1 < « < n (for the RL derivative we required only
8> -1).
m We also have the anticipated result that the derivative of a constant is
zero. More generally,

‘D¥(x—a)k=0, k=0,...,n—1.

(x—a)" e,

® There is a relation between the RL and Caputo derivatives

SEBAC)

Dgy(x) = “Dgy(x)+ Z T o

(x—a

)

thus the two types of derivative coincide for zero initial conditions.
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The Caputo fractional derivative
® |t can be shown that the solution of the following fractional problem
Dy —Ay=f, n—-1<a<n y»0)=C, k=0,.,n—1

has the form

n—1

y(6) = 3 G Eapa (M%) + /0 (£ = 5)* LEn a(M(E — 5)°)F(s)ds.

i=0
m In particular (exercise), for 0 < a<1land f =0

y(t) = GEL(At?),

(where E, := Ey1).

m The Mittag-Leffler function is an eigenfunction of the Caputo derivative
operator.
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How to compute the fractional derivatives numerically?

® Due to physical applications, we will focus only on the Caputo derivative
(but the reasoning is similar for RL).

® The first numerical discretization of the fractional derivative used the
so-called Griinwald-Letnikov form. But in order keep the new material
sufficiently compact, we will describe the finite difference methods.

m Recall that the Caputo derivative is defined by the formula
CDg‘ = ["=%d"/dt", so we only need learn how to discretize the
fractional integral.

m Notice that the fractional integral is a nonlocal operator (in contrast
with ordinary derivatives, which require knowledge of y only in a
arbitrarly small neighbourhood). We expect that this will make the
computation more expensive.

24 /a1



Simplest finite-difference scheme

The simplest way of deriving a finite-difference scheme is to discretize the
integral by a rectangular quadrature rule.

Introduce the lattice: 0 =ty < t; < ... <t,= T, where t; =ih, h=T/n
with n-number of grid-points and T is a fixed time. Denote y(t;) := y;.
We can write

ey (t) = ﬁ/o"(t,,—s)a—ly(s)ds: ﬁ;/ﬁ;(tn—s)o‘_ly(s)ds.

Now, approximate the value y(t) on (tj_1, t;) by y; (rectangular rule) and
obtain the finite difference scheme

a—1
By(t) = 7y Zy/ (t, — 5)* Lds.

Calculating the integral y|eIds

I§'y () = Zy, ((tn — tic1)® = (ta — 1))

25 / 41




Simplest finite-difference scheme

= Now, we can use the fact that t; = ih, hence

I§'y (ta) ~ Zyl — i+ 1) = (n—0)").
-I-a)

Notice the factor h*, which is a verification that the integral is of order
of a.

= Finally, our finite-difference for approximating the fractional integral has
the form

/0 }/(tn) r(1+a)z n/.yH

where we denoted

ay; = (n—i+1)%—(n—10)"~

26 / 41




Simplest finite-difference scheme

® The scheme for Caputo derivative can be obtained by using the backward
approximation y’(t;) ~ h=(y; — y;_1) (for simplicity we chose 0 < o < 1)

C o l—a / .
DO y(tn) / (tn I—(2 — a) Zanl Yi y,—1) .

m This formula, after changing the summation index can be transformed
into the finite-difference for Caputo derivative

« h_a — - = —Qx
“Dgy(ta) ~ T2=a) (yn — (0 = (= 1))y + D by Yi> :
i=1

where
by ;= (n—i+1)*=2(n—i)*+(n—i—-1)"
® Much more on finite difference schemes for fractional operators can be
found in [10] .

[10] K. Diethelm, N. .l Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of
fragtl/omﬂ differential Dy ics 29 (2002), 3-22.




Numerical methods for fractional differential equations

® Previously derived finite differences can be used to solve fractional
differential equations.

® Suppose we want to solve our simple example

“Dgy =f(y,t), 0<a<l,
with y(0) = yo

m For illustration, let us take the Euler explicit method (although all other
can be used exactly in the same fashion) and discretize

h*Dé

n—1
11—« 11—« 11—« _
f2=a) (Yn (T =(=1)" ")+ ; by ; Yi> = f(¥n-1,tn-1).

® Transforming this yields

Yo =(nt"% — (n—1)17%) Zbl Yy + hT(2 = &) (Ya—1, ta—1)-
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Laplace transform

m A large number of theoretical and practical results from fractional
calculus come from utilizing the Laplace transform

F(s) = L{F(£)} (s) = /00o e (t)dt.

= Note the formula for a transform of a Laplace convolution
= LA{f(t) xg(t)} (s) = F(s)G(s), where f(t)*xg(t) = fot f(s)g(t—s)ds.
= The fractional integral [§*y(t) is a Laplace convolution of y and t*1,

thus
LUEY(O) () = 5V (s).
® \We have o
£105v(e) (5) = £{ S v} 0
29 / a1



Laplace transform

® Recall also the formula for the Laplace transform of a derivative
c{F(}(s) = s"F(s)—nZ_fs"ﬂ"—f—l)(O) - s"F(s)—nz_fs"—"—lf@(O)
i=0 i=0
® Using this formula we obtain
n—1
L{D5y(0}(s) = s"L{I" ¥ (1)} (s) = D' D5™ "y (0)
= Finally, the Laplace transform of a RL derivative have the form
£{D§y(1)} (s) ZsD“ "y(0).

m Similarly, the Laplace transform of a Caputo derivative yields

L{EDgy(t)} (s) =Y (s) - i 521,00 (0)
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Laplace transform

m Laplace transform method is particularly useful in dealing with fractional
differential equations.

® Most of times, all we have to know are the formulas for the transform of
a (fractional) derivative and the transform of a ML function

sa—B

L{T B p (M)} (5) = =

® Then, it is easy to obtain the formulas for the solutions to the fractional
differential equations of arbitrary order (exercise).
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Anomalous diffusion

Of of the most prominent applications of the fractional calculus is the
anomalous diffusion.

Informally speaking, "anomalous" means that the diffusion front
propagates slower or faster than the classical diffusion equation predicts.

It has been observed in many fields such as: molecular dynamics,
hydrology, financial systems, porous media analysis, charge transport,
NMR and many more (for a concise review see [11] ).

The usual approach for modeling anomalous diffusion in by the stochastic
Continuous Time Random Walk framework (see [11]). When we consider
the Mean Squared Displacement (MSD) of a randomly walking particle
we have

a <1, subdiffusion;
MSD o t%, where a =1, classical diffusion;
a>1, superdiffusion.

[11] R. Metzler and J. Klafter, The randomwalk’s guide to anomalous diffusion: a fractional dynamics approach,

Pgil./ %gportl 339 (200), 1-77



Anomalous diffusion

For a more concrete example consider a one-dimensional porous medium
(a brick which one dimension is much bigger than others).

Imagine a setting when a one side of the brick is held in constant
concentration of water. During the time evolution the moisture will
percolate into the medium. We ask at what pace.

Mathematically, we impose the following initial-boundary conditions:
u(0,t) =C, u(x,0)=0,

where u(x, t) is a concentration at x and t.

Self-similarity - a characteristic feature of diffusion in our experiment.
Moisture concentration u(x, t) can be drawn on a single curve

U(Xv t) = U(n)a an/\/?v
for U(0) = C i U(o0) =0.

33 /41



Anomalous diffusion

In a number of experiments (ex. [12] ) the so-called Boltzmann scaling
n = x/t'/? is not observed.

= A more appropriate and accurate is the anomalous diffusion scaling
(Figure from [12])

u(x,t)=U(n), n=x/t*? 0<a<2.

1.2 : ]
red-clay brick 1.2 .
| clay #1 fired-clay brick
1 clay #1
=
g 08 £ 08~
g b5
: w, o o
@ time - -* o T time
% u algs e % 8 o 2219s
& 04 a 22195 - % 2 0.4 — e 3350s
. 4
¢ 2350 - a * o5 > 14879s
| oomm AL % Il e
o aasses . + Q ’ e
L] ’ o
07‘,—]—'—]—,—'-—,—*&,—ﬂ 0 : I ; ‘ z |Em¥ﬁ —
0 0.1 0.2 0.3 0.4 0.5 0 0.04 0.08 0.12 0.16
9 [mm s7172] ¢ [mm s062]

[12] Abd El- Gh.ny, El Abd and J.J. Milczarek, Neutron radiography study of water absorption in porous building
aeriale diffusion lysis, J. Phys. D.: Appl. Phys. 37 (2004) 2305-2313.




Anomalous diffusion

® What is a correct mathematical model of anomalous diffusion? Nobody
knows for sure. But fractional derivatives provide a very elegant approach.

® It is mostly speculated that subdiffusive phenomena are caused by the
fact that particles can be "trapped" in some regions of the medium.
These waiting times cause that front propagates more slowly.

® Superdiffusion is in turn caused by nonlocal effects which shape the flux
at some arbitrary point. For example we can think of a portion of fluid
particles situated very far from considered point, which can move through
this distance very quickly by jumps (ex. thin canals in porous medium).

m Both of these types of diffusion are modeled by assuming the power-law
distribution for waiting times and/or jumps.

m We will provide a deterministic derivation of the resulting equation for
subdiffusion.
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Derivation of a subdiffusion equation

m Consider a porous medium with water percolating it. The mass is
conserved, hence the continuity equation is fulfilled

uy ==V -q(x,t),

where g is the flux.

® Suppose now that only a portion wy of the flux passes through our point,
the rest wy stays trapped in some region for a time s. Then

up=—(wmV - q(x, t) + w1V - g(x,t —s)).

® This can be generalized for any number of waiting times s;

n
Uy = —ZW;V~q(X,t—S;).
i=1

® Introducing a weight density w; = w(s;)As; this can be generalized to a
continuous distribution of waiting times

up = —/Ot w(s) V- q(x,t — s)ds.

36 / 41




Derivation of a subdiffusion equation

® By a change of the variable, we have

ut:—/otw(t—s)v-q(x,s)ds

= Now, we have to choose the weight in a way that it should reduce to the
classical case in an appropriate limit. That is w — §, where ¢ is a Dirac
delta distribution.
® |t is convenient to write
8 t
up = ——— [ ko(t —s) V- q(x,s)ds,
ot Jq
where k,, is a function which encapsulates the limit passage (with «).
= The simplest choice is to take power function k,(s) oc s*~1.
m Choosing appropriate constant (essentially immaterial) we get

1 9 ‘ a—1 a—1
Uy = — I'(a)at/(t_s) V- q(x,s)ds = -0V -q,

where 9271 is a RL partial derivative.
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Derivation of a subdiffusion equation

® |t can be shown that for zero initial conditions, the time-fractional
diffusion equation can be transformed into

Cotu=—-V-q.

® For the simplest, Fickian case we have ¢ = —DVu. We thus obtain the

linear equation
Co¢u = DV?u,

which fundamental solution can be obtained (with a help of a Laplace
transform) and stated in terms of the Wright's function [13]

1, |x]
G(x,t) = 5t /2W_a/2,1_a/z <—W> )

where W, ,(z) :=>"7", W,I"FHI) (only one-dimension for simplicity).

| solution of the sp time fractional diffusion

[13] F.Mainardi, Y.Luchko, G.Pagnini, The fund.
arXiv preprint cond-mat/0702419 (2007).
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Space-time fractional diffusion equation
® The problem with a brick u(x,0) =0, u(0,t) =1 can be solved by

x|
u(x,t) = W_a/2,1 <— JDtalz )’

notice that this reduces to the classical solution of the Error function for
a =1 (exercise).

® |n a similar way as before we can derive the space-fractional equation
which accounts for superdiffusion

up = —D(—Ay)

(=3
2

u,

where (—A,)? is the fractional Laplacian (or Riesz fractional
derivative) defined by the Fourier transform

FLU)7 w0} (©) = 61" F {u(:)} ),

m_Solution of the space-fractional diffusion equation can be found in [13]

[13] F.Mainardi, Y.Luchko, G.Pagnini, The fund. | solution of the sp time fractional diffusion
arXiv preprint cond-mat/0702419 (2007).
39" /a1




What | have not covered

m Stochastic processes (Levy walks etc.). This is a very broad field with
numerous applications and interesting results.

® We have talked only about a small part of the world of anomalous
diffusion. This is a rapidly evolving topic, where only linear equations are
well-known. More on nonlinear anomalous diffusion can be found for ex.
in my papers (on the webpage).

® Signal and Image processing.

® Fractional Models and Control.

LI
® | hope that | gave you a glimpse of what the fractional calculus is.
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Now, on to the exercises :)
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One more thing - some very useful monographs

I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of
fractional differential equations, Elsevier Science, Amsterdam, 2006.
K.S.Miller, B.Ross, An introduction to the fractional calculus and
fractional differential equations, Wiley, 1993.

And many, many more...
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