
Numerical methods for differential equations
Lecture notes

Łukasz Płociniczak∗

April 2, 2020

Contents
1 Introduction 2

1.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Finite differences and Euler methods 3
2.1 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Euler methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Runge-Kutta methods 9
3.1 The overall idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 General RK methods and Butcher’s tableaux . . . . . . . . . . . . . . . . 11
3.3 Embedded methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Multistep methods and stability 14
4.1 Linear multistep methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Boundary value problems 20
5.1 Shooting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Finite difference methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Finite element methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Methods for conservation laws and hyperbolic equations 27
6.1 Finite difference methods and stability . . . . . . . . . . . . . . . . . . . . 27
6.2 Finite volume methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Methods for parabolic equations 36

8 Methods for elliptic equations 40
8.1 Finite difference methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 Finite element methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

∗Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyb.
Wyspiańskiego 27, 50-370 Wrocław, Poland

1



1 Introduction
The aim of this course is to develop a methodology of devising, analysing, choosing,
and implementing numerical schemes used in approximation of a general class of
differential equations. These include either ordinary (ODEs),

y(n)(t) = f(t, y, y ′, ..., y(n−1)), (1.1)

or partial differential equations (PDEs)

F(xi, u, uxi , uxi,xj , ...) = 0, (1.2)

linear or nonlinear, scalar or vector. Differential equations are the one of the most
robust tools of modelling various natural, medical, and industrial phenomena. Many
of them cannot be solved in an closed analytical form and thus one has to use some
approximation technique such as asymptotic theory (analytical) or numericalmethods.
Both of these are complementary and help each other in a tremendous way helping
humanity to understand reality around us.

In this lecture we will develop mostly finite difference methods since they can be
applied to virtually any type of equation. However, we will discuss their applicability
and note the fact that in some areas they fail do provide a useful discretization. We
will use this opportunity to introduce some powerful methods such as Finite Volumes
or Finite Elements.

Using numerical methods has a lot of art in it. Different problems require different
methods, discretizations, and implementations. Usually it is not wise to perform
blindly without any understanding of the underlying nature of the analysis. Some
methods are better than other but only in some specific situations. Comprehending
these subtle relationships between the nature of differential equation and a numerical
method is a crucial skill for numerical analysts and applied mathematicians.

1.1 Literature
There is a vast amount of goodnumerical analysis books. We canmention the following
very good items on which this lecture borrowed some material.

1. Hairer, Nørsett, and Wanner, Solving Ordinary Differential Equations

2. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-
tions

3. LeVeque, Numerical Methods for Conservation Laws

4. Larson, Thomee, Partial Differential Equations with Numerical Methods
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2 Finite differences and Euler methods

2.1 Finite differences
Differential equations are constructed with derivatives and in numerical analysis we
would like to find a way of approximating them numerically. Since derivatives are
limits of difference quotients we have to find a way of representing these limits with a
finite precision.

Let y = y(t) be a function of variable. In what follows we will always assume
sufficient smoothness of y unless otherwise stated. Then, of course

y ′(x) = lim
h→0+

u(x+ h) − u(x)

h
, (2.1)

is the definition of the derivative. Since the above requires a limit passage we can
truncate it to obtain a finite precision approximation in the form of forward difference

δ+y(x) :=
y(x+ h) − y(x)

h
, (2.2)

or backward difference

δ−y(x) :=
y(x) − y(x− h)

h
, (2.3)

where h > 0. We can also take the average of the two preceding operators and form
the centred difference

δ0y(x) :=
1

2
(δ−y(t) + δ+y(t)) =

y(x+ h) − y(x− h)

2h
, h > 0. (2.4)

It should be clear that the centred approximation is usually better that either backward
or forward difference.

Example. Let y(x) = sin x. We would like to approximate y ′(x) = cos x. We have

δ+y(x) =
sin(x+ h) − sin x

h
= cos

(
x+

h

2

) sin h
2

h
2

= cos x+ 1

2
sin x h+O(h2), (2.5)

where we used the Taylor expansion when h → 0+. We can thus see that D+y(x) −
cos x = (sin x)h

2
+O(h2). Similarly, for the centred difference we have

δ0y(x) =
sin(x+ h) − sin(x− h)

2h
= cos x− 1

6
cos x h2 +O(h4) as h→ 0+. (2.6)

We can now see that if h < 1 then h2 � h and the error that we make when approxi-
mating the derivative with δ0 should be much smaller than with the δ+ (apart maybe
from points of the form x = nπ).

We see that various approximations of the derivatives are not equivalent and some
of them are more accurate than the other. In many places below the error of some
method will be proportional to some power of the step h, i.e.

E(h) ≈ Chp, p > 0, (2.7)
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where C > 0 is a constant independent on h. A useful way of visualizing this error
during simulations will be to present it in a log-log scale because of the fact that

lnE(h) ≈ p lnh+ lnC. (2.8)

Therefore, lnE(h) is a linear function of lnhwhich slope is precisely equal to the order
of the method p. We will use this tool many times.

The above example has indicated a useful method of obtaining estimates for the
error of approximation - the Taylor expansion.

Defition 1. The truncation error of a finite difference operator δ is

δy(x) − y ′(x). (2.9)

When
|δy(x) − y ′(x)| ≤ Chp, h > 0, p > 0, (2.10)

where C > 0 is independent of h, the number p is the order of approximation.

Of course, in a similar manner we can construct approximations of higher deriva-
tives. Calculating explicitly

δ+y(x)−y
′(x) =

y(x+ h) − y(x)

h
−y ′(x) =

1

2
hy ′′(x)+

1

6
h2y ′′′(x)+O(h3) as h→ 0+,

(2.11)
and

δ0y(x) − y(x) =
1

6
h2y ′′′(x) +O(h4) as h→ 0+. (2.12)

Therefore, we see that δ+ is of the first, while δ0 of second order. We will see that
centred approximations have larger order than the one-sided due to cancellations, that
is the terms in the expansions of y(x+ h) − y(x− h) cancel out.

One may ask whether we have been lucky in finding formulas for finite difference
approximations. There are some systematic ways of deriving some useful operators.
The simplest of them is the method of undetermined coefficients which utilises Taylor
expansion. Suppose we want to find an approximation of y(k)(x∗) based on knowledge
of y at points {xi}n1 where n ≥ k + 1. This set of points is called the stencil. For every
i = 1, ..., nwe have

y(xi) = y(x
∗)+y ′(x∗)(xi−x

∗)+
1

2
y ′′(x∗)(xi−x

∗)2+ ...+
1

k!
y(k)(x∗)(xi−x

∗)k+ ... (2.13)

We thus want a linear combination of the above to approximate a given derivative
n∑
i=1

ciy(xi) = y
(k)(x∗) +O(hp), (2.14)

where p > 0 has to be as large as possible. Now, plugging (2.13) we arrive at

y(k)(x∗) =

n∑
i=1

ci

n−1∑
j=0

y(j)(x∗)

j!
(xi − x

∗)j =

n−1∑
j=0

y(j)(x∗)

j!

n∑
i=1

ci(xi − x
∗)j (2.15)
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Of course, the j−sum is terminated at j = n since we would like to obtain a well-posed
linear system. Now, the both sides of the above equation are equal if and only if

1

j!

n∑
i=1

ci(xi − x
∗)j =

{
1, j = k
0, j 6= k j = 0, ..., n− 1. (2.16)

If all xi are distinct, the above is just the Vandermonde’s system. Unfortunately, for
large n the resulting linear system is badly conditioned and hence, difficult to accu-
rately solve numerically. There are however some useful bypasses over this problem.

Example. We will find a finite difference approximation to y ′(x) build on a stencil x,
x− h, and x− 2h. We write

δ2y(x) = ay(x) + by(x− h) + cy(x− 2h). (2.17)

If we expand two right terms in the above and collect similar expressions we arrive at

δ2y(x) = (a+b+c)y(x)−(b+2c)hy ′(x)+
1

2
(b+4c)h2y ′′(x)−

1

6
(b+8c)h3y ′′′(x)+O(h4) as h→ 0+.

(2.18)
Now, since our approximation concerns y ′ we take

a+ b+ c = 0, b+ 2c = −
1

h
, b+ 4c = 0, (2.19)

which has a solution
a =

3

2h
, b = −

2

h
, c =

1

2h
. (2.20)

Therefore, our finite difference has the form

δ2y(x) =
1

2h
(3y(x) − 4y(x− h) + y(x− 2h)) . (2.21)

The error of the approximation can be readily calculated from the expansion yielding

δ2y(x) − y
′(x) =

1

12
h2y ′′′(ξ), (2.22)

where ξ is some point. The approximation is thus second order accurate.

2.2 Euler methods
Now, we are able to proceed to design of some numerical methods for ODEs. We start
from the simplest ones - Euler schemes. Suppose we would like to solve

y ′(x) = f(x, y), y(0) = y0. (2.23)

Let us introduce the grid xn = nh where h > 0 is the grid spacing. We can use any
finite difference to approximate the derivative on the left-hand side. When we use δ±
we obtain

y ′(xn) = δ±y(xn) + R± = f(xn, y(xn)). (2.24)
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All numerical methods are based on truncating the remainder R±. If yn denotes the
numerical approximation to y(xn) (notice that these are usually different quantities!),
we obtain the Euler forward method

yn = yn−1 + hf(xn−1, yn−1), (2.25)

and Euler backward method

yn = yn−1 + hf(xn, yn). (2.26)

The difference is basically in the point at which the function f is evaluated. Note
also that the forward method is explicit, i.e. the next step is calculated directly from
the previous ones, while backward method is implicit, i.e. the next step additionally
requires solving a nonlinear equation z = yn−1+f(xn, z). This increased computational
cost has its merits and advantages as we will see in the sequel.

Immediately, we ask a question how accurate are the methods (2.25) and (2.25)? Do
they approximate the exact solution of (2.23) arbitrarily good when h → 0+? Naively
thinking, we can expect that since δ± is a first order operator, the Euler methods should
also be first order accurate. This appears to be true however, is not that simple. When
integrating a differential equation the error in each step is accumulated. We have to
ascertain whether it not accumulates too much. This is the problem of convergence.

On the other hand, a numericalmethod can be convergent but to a different solution
than the original ODE’s. This is the problem of consistency. We can rigorously define
the relevant terms.

Defition 2. A local truncation error (LTE) is the remainder of the numerical scheme when
yn is replaced with the exact solution of the corresponding ODE, that is y(xn). If LTE vanishes
as h→ 0+ the method is said to be consistent.

A consistent numerical method approximates the relevant differential equation.
For forward Euler method we have

LTE =
y(xn) − y(xn−1)

h
− f(xn−1, y(xn−1)) = y

′(xn) +
1

2
hy ′′(xn) +O(h

3) − f(xn−1, y(xn−1))

=
1

2
hy ′′(xn) +O(h

3) as h→ 0+,

(2.27)

since y ′(xn) = f(xn, y(xn)). Therefore, Euler method is a consistent method. A consis-
tent method however, may not be convergent to the exact solution since the error can
accumulate to fast.

Example. Consider a numerical method

yn+1 = yn−1 − 2hyn, y0 = 1, y1 = 1. (2.28)

Computing the local truncation error we have

LTE =
y(xn+1) − y(xn−1)

2h
+ y(xn) =

1

6
h2y ′′′(ξn), (2.29)
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therefore the method is consistent with the following ODE

y ′ = −y, y(0) = 1, (2.30)

which has a solution y(x) = e−x. Now, we recall that a linear recurrence can be solved
by looking for power function solutions yn = Crn for some C and r. Plugging this
ansatz we obtain from (2.28)

Crn+1 + 2Chrn − rn−1 = 0. (2.31)

Cancelling yields
r2 + 2hr− 1 = 0, (2.32)

and hence
r± = −h±

√
1+ h2. (2.33)

Hence |r−| > 1 and the recurrence is divergence for a general initial condition.

The above method is called the leap-frog since it jumps two steps ahead. Notice that
although the truncation error is of second order, the method is useless due to its lack
of convergence. Now, we state what we will mean by a convergent numerical method.

Defition 3. Fix x ∈ R. A numerical method is convergent with order p > 0 if

|y(x) − yn| ≤ Chp as nh→ x and h→ 0+, (2.34)

for some constant C > 0 independent of n and h.

Therefore, a convergent method yields an arbitrarily accurate approximation of
y(x) when the grid is refined with nh converging to x (for example take h = x/n and
n→∞). The convergence proofs are usually difficult to obtain especially for PDEs. In
due course we will indicate the various issues appearing in them.

Theorem 1. Let y = y(x), x ∈ [0, X] be a solution of (2.23) with f(x, y) being continuosly
twice differentiable with respect to y variable. Then, both of Euler methods (2.25)-(2.26) are
first order convergent.

Proof. We will proceed by induction and without any loss of generality we consider
only the forward case. Assume that y0 = y(0) (this is a slight simplification since
computing y0 always contains a round-off error). Define the convergence error

en := y(xn) − yn. (2.35)

Then, from (2.25) and Taylor expansion the first term can be bounded as follows

|e1| = |y(x1)−y1| = |y(x0)+y
′(x0)h+

1

2
y ′′(ξ0)h

2−y0−hf(x0, y0)| ≤
1

2
max
x∈[0,X]

|y ′′(x)|h2 =: τ,

(2.36)
since the initial conditions are the same and y ′(x0) = f(x0, y(x0)). Then, the inductive
step can be carried over similarly

|en| = |y(xn−1) + hy
′(xn−1) +

1

2
h2y ′′(ξn−1) − yn−1 − hf(xn−1, yn−1)|

≤ |en−1|+ |f(xn−1, y(xn−1)) − f(xn−1, yn−1)|h+ τ,
(2.37)
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where we used the fact that y ′(xn−1) = f(xn−1, yn−1). Since f is Lipschitz with respect to
the second variable we have |f(xn−1, y(xn−1)) − f(xn−1, yn−1)| ≤ L|en−1| for some L > 0.
Therefore,

|en| ≤ (1+ Lh)|en−1|+ τ. (2.38)

Proceeding inductively, we obtain

|en| ≤ (1+Lh)2|en−2|+(1+Lh)τ ≤ ... ≤ (1+Lh)n−1|e1|+τ

n−2∑
i=0

(1+Lh)i ≤ τ
n−1∑
i=0

(1+Lh)i.

(2.39)
The last sum is geometric and hence

|en| ≤ τ
n−1∑
i=0

(1+ Lh)i =
τ

Lh
((1− Lh)n − 1) =

1

2L
max
x∈[0,X]

|y ′′(x)|

((
1−

Lnh

n

)n
− 1

)
h.

(2.40)
Now, since (1+ 1/n)n ≤ e and nh ≤ Xwe have

|en| ≤
1

2L
max
x∈[0,X]

|y ′′(x)|
(
eLX − 1

)
h = Ch. (2.41)

This ends the proof.

Euler methods are the simplest ones to solve ODEs and many times are not very
useful due to their low accuracy. However, there are many important applications
of using them in numerically solving PDEs since they are very easy to implement in
time-advancement of a scheme. Moreover, sometimes it is not desirable to use high
order methods due to unstable behaviour about which we will have much more to say.
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3 Runge-Kutta methods
There are several ways of generalizing Euler methods to arbitrary high orders. How-
ever, as we have seen some of themmay not be convergent and it is crucial to develop a
scheme of deriving reliable high order methods. One of them are so-called multistage
methods aka Runge-Kutta methods. They are widely known and used in many com-
mercial ODE integrators. We will take a closer look on possibilities to find high order
versions of Euler methods.

3.1 The overall idea
A forward Euler method can also be found from simple Taylor series. Let y = y(x)
satisfy the following ODE

y ′ = f(x, y), y(0) = y0. (3.1)

Then, with the usual grid xn = nh for h > 0we have

y(xn+1) = y(xn) + y
′(xn)h+

1

2
y ′′(xn)h

2 + ... (3.2)

Using the ODE and dropping O(h2) terms we reobtain the Euler forward method
yn+1 = yn + hf(xn, yn). A natural generalization is to keep further terms in the
expansion. However, in subsequent terms we need an expression to calculate higher
derivatives of y. This is relatively straightforward since we know (3.1). For example,

y ′′(x) = fx(x, y(x)) + y
′(x)fy(x, y(x)) = fx(x, y(x)) + f(x, y(x))fy(x, y(x)). (3.3)

This approach is usually very cumbersome and unpractical. It requires calculating
derivatives of arbitrary functionswhich is computationally expensive. This is especially
troublesome for systems of equations. The Taylor series methods are not frequently
used in practice however, some of its modifications are useful in deriving schemes for
hyperbolic PDEs.

Another possibility is to increase the order by calculating the derivatives of f in
some approximatemultistageway. The relevant ideas were developed at the beginning
of the XX century by German mathematicians Carl Runge and Wilhelm Kutta. To
introduce the notion we start from autonomous equations of the form

y ′ = f(y). (3.4)

Consider the following two-stage RK method

y∗ = yn +
1

2
hf(yn),

yn+1 = yn + hf(y
∗),

(3.5)

which can be combined to yield a scheme

yn+1 = yn + hf

(
yn +

1

2
hf(yn)

)
. (3.6)
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The first step is just an Euler forward approximation to the value of un+1/2 while the
second yields the full step. It can also be understood in a different, more historical,
way. Le us integrate our ODE from xn to xn+1

y(xn+1) = y(xn) +

∫ xn+1

xn

f(y(t))dt. (3.7)

We can use any quadrature to compute the resulting integral. For example, if we
approximate the are under f(y(t)) by a rectangle with width xn+1 − xn = h and height
calculated at the midpoint (xn+1+xn)/2 = xn+ 1

2
hwe obtain (the midpoint quadrature

is of second order)

yn+1 = yn + hf

(
y

(
xn +

1

2
h

))
. (3.8)

Notice that we have truncated the remainder of the quadrature and used the subscripts
to indicate the numerical approximation. Further, if we expand

y

(
xn +

1

2
h

)
= y(xn)+

1

2
hy ′(xn)+O(h

2) = y(xn)+
1

2
hf(y(xn))+O(h

2) as h→ 0+

(3.9)
and truncate the remainder we obtain (3.6).

Runge asked whether it is possible to generalize the above approach to the general
ODE (3.1). Before we do that, we will prove that (3.6) is second order accurate. To this
end we will compute the local truncation error

LTE =
y(xn+1) − y(xn)

h
− f

(
y(xn) +

1

2
hf(y(xn))

)
. (3.10)

Since, y ′(x) = f(y(x)) for any xwe first have

f

(
y(xn) +

1

2
hf(yn)

)
= f

(
y(xn) +

1

2
hy ′(xn)

)
= f(y(xn)) +

1

2
hf ′(y(xn))y

′(xn) +O(h
2) ash→ 0+.

(3.11)

Now, because of the fact that y ′′(x) = y ′(x)f ′(y(x)) we can write

f

(
y(xn) +

1

2
hf(yn)

)
= y ′(xn) +

1

2
hy ′′(xn) +O(h

2). (3.12)

Therefore, the above approximates the Taylor expansion of y ′ up to the second order.
Moreover,

LTE = y ′(xn) +
1

2
hy ′′(xn) +

1

6
h2y ′′′(xn) +O(h

3) −

(
y ′(xn) +

1

2
hy ′′(xn) +O(h

2)

)
=
1

6
h2y ′′′(xn) +O(h

3) as h→ 0+.

(3.13)

Therefore, themethod is of second order. Themultistage nature of various RKmethods
is based on successively approximating derivatives of f by stepping forward in some
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fractional distances. A generalization of the above method to the fully general case
(3.1) is the following mid-pointmethod

y∗ = yn +
1

2
hf(xn, yn)

yn+1 = yn + hf

(
xn +

h

2
, y∗
)
.

(3.14)

This is a second order method what can be checked by computing the LTE. However,
the computations are cumbersome.

3.2 General RK methods and Butcher’s tableaux
The calculations leading to some higher order RKmethods soon become very cluttered.
There is however, a very useful method of organizing them. A general s-stage RK
method has the form

yn+1 = yn + h

s∑
i=1

biki, (3.15)

where

ki = f

(
xn + cih, yn + h

s∑
j=1

aijkj

)
. (3.16)

The consistency requires that we have

s∑
j=1

aij = ci,

s∑
j=1

bj = 1. (3.17)

The constants ki are approximations to the derivatives of f at time steps weighted by
ci.

If it happens that aij = 0 for all j ≥ i the method is explicit. Otherwise, it is
implicit. Wewill focus only on explicitmethods since the other type can be prohibitively
expensive to implement. There is one widely used exception, that is the so-called
diagonally implicit RK methods (DIRK) in which aij = 0 for j > i.

If a method satisfies (3.17) it is guaranteed that it will be at least first order accurate.
However, some additional conditions are required for higher accuracy. For example,
second order requires

s∑
j=0

bjcj =
1

2
. (3.18)

The number of conditions to even higher order grows exponentially and some great
amount of work has been done in the last century to find the best methods. More
specifically, one can prove that if an explicit method has order p then the number of
stages s ≥ p or s ≥ p+1when p ≥ 5. We do not know, however, whether these bounds
are sharp. There is an open problem that given order p determine theminimal number
of stages required to construct a RK method. Known values of minimal stage method
for a given order are given in Tab. 1.

11



p 1 2 3 4 5 6 7 8
s 1 2 3 4 6 7 9 11

Table 1: Minimal sharp number of stages s required to devise a RKmethod with order
p.

Method Euler Heun Kutta RK4
Order 1 2 3 4

Tableau
0

1 0

1

0 0

1 1 0
1
2

1
2

0 0
1
2

1
2

0

1 −1 2 0
1
6

2
3

1
6

0 0
1
2

1
2
0

1
2
0 1

2
0

1 0 0 1 0
1
6

1
3

1
3

1
6

Table 2: Some of the most popular RK methods.

There is a useful way of organizing coefficients of RK. It goes by the name of
Butcher’s tableau. It has the form

c1 a11 · · · a1s
... ... ...
cs as1 · · · ass

b1 · · · bs

(3.19)

For example, the second order mid-point method (3.14) is represented by (blank place
is understood as a 0)

0 0
1
2

1
2
0

0 1

(3.20)

Other common tableaux are presented in Tab. 2. The table can of course be expanded
indefinitely. Note that RK4 is very popular since it is easily implemented and gives
very accurate fourth order approximation.

3.3 Embedded methods
In many scientific packages ODE integrators are not based upon a fixed step methods.
They rather adjust the temporal grid spacing to achieve a numerical solution valid to
a given error. Practical way of estimating the error is to use two methods of different
order and then to compare the results. This strategy, however, when used naively can
double the computational costs and cloak the advantageof a adaptive step functionality.
Usually one of the most expensive parts of all ODE methods is evaluation of the
function f. It is thus reasonable to try to find two methods that utilize the same set of
ki parameters and producing approximations of different order. These are embedded
methods.
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Fix the order p and suppose we are given two methods with the above property,
say yn is of order pwhile ŷn+1 of order p+ 1

yn+1 = yn + h

s∑
j=1

biki,

ŷn+1 = yn + h

s∑
j=1

b̂iki,

(3.21)

as h→ 0+. Then, the error

en+1 := ŷn+1 − yn+1 = h

s∑
j=1

(b̂j − bj)ki ≈ O(hp). (3.22)

Therefore, we have a straightforward way of estimating the error of the method. It
can be then be used to compose an adaptive step algorithm. To this end suppose that
e1,2 are errors defined above calculated with a time step h1,2. Moreover, for sufficiently
small steps we should have e1,2 = chp1,2 (we assume that c is essentially the same in
both methods). Then,

e1

e2
=

(
h1

h2

)p
. (3.23)

Therefore, if TOL represents the desired tolerance, e is the error computed with (3.22),
then the new time step should be taken as

hnew = ηhold

∣∣∣∣TOLe
∣∣∣∣ 1p , (3.24)

where a safety factor η ≈ 0.8 − 0.9 has been introduce to offset the inaccurate bounds
above. Note that using an embedded method is essentially free since all work is done
in computing the ki coefficients.

The embeddedRKmethods are depicted in extended Butcher’s tableaux of the form

c1 a11 · · · a1s
... ... ...
cs as1 · · · ass

b1 · · · bs
b̂1 · · · b̂s

(3.25)

For example, the well-known ode45 package uses RK45 what is a 5th order method
used to error estimation for a 4th order method. Its is due to Dormand and Prince.
Other useful methods are by Fahlberg and Cash-Karp.
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4 Multistep methods and stability
Runge-Kutta methods are multistage and in order to compute yn+1 they require yn. In
this section we will turn the situation upside down and consider methods that utilize
yn, yn−1, ... to advance the solution.

4.1 Linear multistep methods
We again start with the usual ODE to solve

y ′ = f(x, y). (4.1)

A general linear multistepmethod is usually written as
s∑
j=0

αjyn+j = h

s∑
j=0

βjf(xn+j, yn+j), (4.2)

where s is the number of steps used. We can see that the value of yn+s is computed
from the values yn+s−1, yn+s−2, ..., yn. If βs = 0 the method is explicit, otherwise it
is implicit. We also usually adopt a normalization αs = 1. Now, we will see some
examples of multistep methods.

Example. (Adams methods) These are the first historical multistep methods developed
by John Couch Adams (the same who predicted the existence of Neptune just with
mathematics!) appeared as a solution of problems in capillary rise stated by Francis
Bashforth in middle of XIX century. Therefore, multistep methods are older that
Runge-Kutta’s.

Adams method utilize the choice

αs = 1, αs−1 = −1, αj = 0 for j < s− 1. (4.3)

The coefficients βj are chosen accordingly to maximize the order of convergence. For
example, if we choose an explicit method, i.e. βs = 0, then it is possible to choose βj
with j = 0, ..., s − 1 to have a method of order s (by Taylor expansion). For implicit
methods we have βs 6= 0 and hence, one additional degree of freedom. It is then
possible to construct s + 1 order s−step methods. Some examples are summarized
in Tabs. 3-4. Explicit methods come with a name Adams-Bashforth while implicit
Adams-Moulton.

Usually, Adams methods can be constructed with a use of the polynomial interpo-
lation. Let p = p(x) be a polynomial of degree s − 1 that agrees with f(x, y(x)) at xn,
xn+1, ..., xn+s−1 (Lagrange interpolation). Then, by integrating (4.1) and approximating
f by pwe can construct a method

yn+s = yn+s−1 +

∫ xn+s

xn+s−1

p(t)dt. (4.4)

The simplest example is the constant polynomial (Euler’s method), however much
more useful is the trapezoidal rule devised by approximating f by a linear interpola-
tion at xn and xn+1.
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# of steps Scheme
1 yn+1 = yn + hf(xn, yn) (forward Euler)
2 yn+2 = yn+1 +

h
2
(−f(xn, yn) + 3f(xn+1, yn+1))

3 yn+3 = yn+2 +
h
12
(5f(xn, yn) − 16f(xn+1, yn+1) + 23f(xn+2, yn+2))

Table 3: Some Adams-Bashforth methods.

# of steps Scheme
1 yn+1 = yn +

h
2
(f(xn, yn) + f(xn+1, yn+1)) (trapezoidal rule)

2 yn+2 = yn+1 +
h
12
(−f(xn, yn) + 8f(xn+1, yn+1) + 5f(xn+2, yn+2))

3 yn+3 = yn+2 +
h
24
(f(xn, yn) − 5f(xn+1, yn+1) + 19f(xn+2, yn+2) + 9f(xn+3, yn+3))

Table 4: Some Adams-Moulton methods.

Example. (Backward differentiation formulas (BDFs)) As the Adams methods are based
on approximating the integral of f, BDFs are based on discretizing the derivative of y.
The general scheme has the form

s∑
j=0

αjyn+j = hβsf(xn+s, yn+s), (4.5)

that is we take βj = 0 for j = 0, 1, ..., s − 1. The name comes from the fact that since
y ′(x) = f(x, y(x)) the above says that the derivative can be approximated by past s
values of y. Some useful BDFs are presented in Tab. 5. They all have the order equal
to number of steps.

These methods were introduced in 1950s by Curtiss and Hirschfelder and later
popularized by Gear. They are very useful in integrating the so-called stiff equations
which we will describe further.

Similarly as with the RK methods, one can derive some order conditions for a
given linear multistep scheme had a particular order. We do not want to address this
technical issue here. Moreover, in contrast to the RKmethods the question of choosing
appropriate starting points for multistep schemes is highly nontrivial. Take a s−step
method of order p and assume that we know y0 from the initial condition. We have
to calculate yj for j = 1, 2, ..., s − 1 in such a way to not to decrease the accuracy. In
practice this is done by using some simpler p− 1 order method (for example RK ones).
How a lower order scheme can give starting values for p order method?

It is useful to see this on an example (the general case can be found in the literature).
Suppose that we would like to use second order Adamsmethod from Tab. 3 and know

# of steps Scheme
1 yn+1 = yn + hf(xn+1, yn+1) (backward Euler)
2 3yn+2 − 4yn+1 + yn = 2hf(xn+2, yn+2)
3 11yn+3 − 18yn+2 + 9yn+1 − 2yn = 6hf(xn+3, yn+3)

Table 5: Some Backward Differentiation methods.

15



y0. We can use a simple forward Euler to determine y1 and then to start Adams. More
specifically, the so-called one-step error for Euler is

y(x1) − y1 = y0 + hy
′(x0) + h

2y ′′(ξ) − y0 − hf(x0, y0) = h
2y ′′(ξ), (4.6)

since y0 = y(x0) and y ′(x) = f(x, y(x)). Therefore, the error in calculating y1 is O(h2)
locally. When we integrated the ODE with Euler method for all xn we would conduct
O(n) stepswhichwould accumulate the local error into a global error ofO(nh2) = O(h)
as h → 0+ and nh-bounded. Of course, we have proved that before however, we now
see that one step local error is always one order higher that the LTE. Since the number
of steps s in a multistep method is independent of n calculating starting values with a
p− 1 order method will always yield p order accurate results.

4.2 Stability
We now have learned about many different numerical methods for solving ODEs. It
is relatively easy to compute their LTE and hence to ascertain that a given method ap-
proximates the correct ODE. However, we have seen that there are consistent methods
which are not convergent. Moreover, there are methods which are convergent but for
only certain types of ODEs. This is certainly too weak requirement because a reliable
method should converge for a large class of problems. Sometimes, the convergence
is hard to prove (especially for PDEs) and one has to proceed in some other way. A
consistent method in each step introduces some one-step error. If this error will not
be amplified too much during the iteration, the method should be convergent. This
feature of not amplification of truncation errors is called the stability. Note that when
solving anything on the computer we always have to deal with round-off error. If a
method were unstable, these numerical errors would exponentially grow yielding a
worthless method. This discussion is very vague at the moment and we will proceed
to stating matters rigorously. We will start from an example that will motivate our
definition of the first notion of stability.

Example. Consider a trivial ODE y ′ = 0 with y(0) = 0 and a first order consistent
multistep method (verify it!)

yn+2 − 3yn+1 + 2yn = 0. (4.7)

As a starting values we may take any numbers y1,2(h) → 0 as h → 0+. The general
solution of the recurrence is

yn = 2y0 − y1 + 2
n(y1 − y0), (4.8)

which do not converge to the exact solution y ≡ 0 unless y0 = y1 = 0. In fact it diverges
exponentially. The method is thus highly unstable!

Recall that the linear recurrence equations can be solved by looking for the power
type solutions. If we have an equation

s∑
j=0

αjyn+j = 0, (4.9)
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then plugging yn = rn yields
s∑
j=0

αjr
j = 0. (4.10)

The solutions are thus roots of the above. This motivates us to make the following
definition.

Defition 4. A characteristic polynomial for (4.2) is defined as

ρ(r) =

s∑
j=0

αjr
j. (4.11)

For instance, the characteristic polynomial for the above example is ρ(r) = (r −
1)(r − 2). We see that if ρ has a root that is greater than one in modulus, it cannot
be convergent. It is interesting to ask the opposite question: whether the method is
convergent provided that all roots have modulus less than equal to one? If there are
no repeated roots then one can easily see than yn will converge. However, if there is
a repeated root, then a special solution of the recurrence will contain terms nkrn with
modulus nk and thus divergent.

Defition 5. A linear s−step method (4.2) is zero-stable if the roots rj of characteristic polyno-
mial ρ satisfy

|rj| ≤ 1 j = 1, 2, ..., s, (4.12)
and if rj0 is a repeated root then

|rj0 | < 1. (4.13)
If the above conditions are satisfied the polynomial ρ is said to satisfy the root condition.

Example. For Adams methods of the form

yn+s = yn+s−1 + h

s∑
j=0

βjf(xn+j, yn+j), (4.14)

we have
ρ(r) = rs − rs−1 = rs−1(r− 1). (4.15)

The repeated root is r = 0 < 1while the other r = 1 yielding a zero-stable method.

Not that the zero-stability is a result of application of the multistep method for a
particular trivial ODE y ′ = 0. It is remarkable that this suffices for a general ODE!

Theorem 2 (Dahlquist). If a linear multistep method (4.2) is applied to an ODE (4.1) then

consistency + zero-stability ⇐⇒ convergence. (4.16)

This result is typical however highly nontrivial in numerical analysis. It basically
means that a certain notion of stability is equivalent to convergence (since consistency
is almost always satisfied by construction). We will see this result in different guises in
further chapters. Note also that for one-step method such as Euler or trapezoidal, the
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consistency guarantees that the only root of ρ is equal to 1. Therefore, these methods
are always zero-stable and hence, convergent.

The notion of zero-stability comes from the fact that we actually have taken h→ 0+

and investigated what happens with the recurrence. However, in practice we are
always conducting our calculations for finite h > 0. There are certain important
stability issues that can arise in this situation. Most importantly, in many cases in
order to achieve sufficient accuracy some methods require prohibitively small steps
that cannot be resolved by the computer.

We will develop a different notion than zero-stability that can yield some useful
information in practice. The study of stability usually starts from the so-called test
equation and applying a particular method for solving it. For ODE’s the usual choice
is

y ′ = λy, (4.17)

which has a solution y(x) = y0 exp(λx) and hence decays exponentially for λ < 0.
Forward Euler method applied to solving the above has the form

yn+1 = (1+ λh)yn. (4.18)

This can be continued inductively

yn+1 = (1+ λh)ny0. (4.19)

Therefore, if λ < 0 the method converges to zero only when

|1+ λh| ≤ 1, (4.20)

that is for λh ∈ [−2, 0]. Suppose, that λ = −100 then we would require h ≤ 0.02 to
have a stable method. This notion of stability can also we understood when there in
an error in the initial data (very common situation). For if yδ0 = y0+ δ is the noisy data
we have

|yδn+1 − yn+1| ≤ |1+ λh|nδ, (4.21)

and hence if λh < −2 the initial measurement error will be amplified exponentially.
The method would thus be useless in applications.

Since usually one dealswith systems ofODEs and eigenvalues of the corresponding
Jacobians, which can be imaginary, it is customary to let z := λh ∈ C and talk about the
region of absolute stability. In the case of Euler method |1+ z| ≤ 1 is a circle on a complex
plane centred at z = −1 and radius 1. We can now give a definition applicable for a
general one-step methods.

Defition 6. A one step method
yn+1 = G(λh)yn, (4.22)

is absolutely stable if
|G(z)| ≤ 1. (4.23)

The function G is called the gain factor, amplification factor or stability function.
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If we apply a general multistep method (4.2) to (4.17) then we obtain

s∑
j=0

(αj − zβj)yn+j = 0. (4.24)

Considering power function solutions we are immediately lead to the following defi-
nition.

Defition 7. A stability polynomial for (4.2) is

π(r, z) :=

s∑
j=0

(αj − zβj) r
j = ρ(r) − zσ(r). (4.25)

In order for the above recurrence to have bounded solutions we thus require that π
satisfies the root condition stated in Def. 5.

Defition 8. The region of absolute stability for a multistep method (4.2) is the set

{z ∈ C : π(·, z) satisfies the root condition} . (4.26)

A method is zero-stable if z = 0 lies in the stability region.

Example. (Backward Euler) For the backward Euler we have yn+1 = yn + zyn+1. There-
fore,

π(r, z) = (1− z)r− 1, (4.27)

with root r1 = (1− z)−1. Whence,

|(1− z)−1| ≤ 1 ⇐⇒ |1− z| ≥ 1. (4.28)

The stability region is thus the exterior of a unit circle centred at z = 1. Note that
the same can be inferred from actually solving the backward Euler recurrence, i.e.
yn+1 = (1− z)−1yn thus obtaining the gain function.

Example. (Trapezoidal method) For trapezoidal scheme we have

π(r, z) =

(
1−

1

2
z

)
r−

(
1+

1

2
z

)
, (4.29)

with a root
r1 =

1+ 1
2
z

1− 1
2
z
. (4.30)

The condition |r1| ≤ 1 translates into Re(z) ≤ 0 which is the whole left half-plane.
A rather large region! The trapezoidal method is very simple, robust, and versatile
numerical scheme.
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5 Boundary value problems
So far we have considered only initial value problems which are natural to evolution
equations. When considering quantities that change in space one is usually faced with
solving boundary value problems (BVPs) which are of utmost importance in applied
mathematics. In this chapter we will consider several methods of solving them.

The general boundary value problem for ODEs can be formulated as follows

y ′′ = f(x, y, y ′), y(0) = α, y(1) = β. (5.1)

Here we have imposed Dirichlet boundary conditions however, any other could be
applied here. From the general theory it follows that the above has a unique solution
if f, fy, and fy ′ are continuous in a region [0, 1] × R2 with fx > 0 and fy bounded. We
will develop all the methods for a simple BVP of the form

− y ′′ = f(x), y(0) = 0, y(1) = 0, x ∈ (0, 1). (5.2)

This model example is very simple to solve however, notwithstanding being so simple,
(5.2) can present almost all difficulties that arise when constructing numerical methods
for solving BVPs.

5.1 Shooting method
The shooting method is based on an idea to transform the BVP into an initial value
problem for ODE where the initial value to the derivative is treated as a parameter
(shooting angle).

− y ′′ = f(x), y(0) = 0, y ′(0) = ϕ. (5.3)

From the above cited theory it follows that there exists a unique ϕ∗ such that y(1) = 0.
Therefore, the problem is well-posed. The interpretation is straightforward: we try to
shoot a projectile at the angle ϕ to hit the target at (1, 0).

In practice we use some ODE integrator to solve (5.3) up to the point x = 1 for a
general initial condition ϕ. We can then define the function

F(ϕ) = y(1;ϕ), (5.4)

and apply some zero searching algorithm (bisection, Newton, secant, ...) to it which
usually requires some initial guess of ϕ∗.

Single shooting method is in practice used mainly for solving some very simple
ODEs for which initial value integrators can proceed quickly. The method has some
drawbacks:

• computational cost especially in systems (ODE + nonlinear equation to solve),

• stability (BVP can be stable while IVP not).

A partial aid of the above is realized as amultiple shootingmethods where one divides
the interval [0, 1] into some smaller portions and on each of then shoots and patches
the solution. This procedure has much better stability properties.

20



5.2 Finite difference methods
We can also discretize the BVP directly by the use of the finite differences. Let h =
1/(n+ 1) he the mesh width for xj = jh with j = 0, 1, ...,m+ 1. The second derivative
can be conveniently approximated by the second order centred difference (check it!)

y ′′(x) ≈ δ−δ+y(x) =
y(x− h) − 2y(x) + y(x+ h)

h2
. (5.5)

Applying the above to (5.2) yields

1

h2
(yj−1 − 2yj + yj+1) = −f(xj), j = 1, 2, ..., n. (5.6)

We know that y0 = yn+1 = 0 and hence we are left with a system of n linear equations
to solve with n unknowns. If y = (yj)

n
j=1 is a column vector we can write the system as

Ay = −F, (5.7)

where

A =
1

h2



−2 1

1 −2 1

1 −2 1
. . .

1 −2 1

1 −2


, F =


f(x1)
f(x2)
f(x3)
...

f(xn)

 . (5.8)

This is a so-called tridiagonal system and it is nonsingular and can be solved in a very
efficient numerical algorithms than yield the solution in O(n) steps (instead of O(n3)
required by the Gaussian elimination).

Now, we will discuss the convergence properties of the above scheme. Notice that
when h→ 0+ the number of equations grow to infinity. We have to somehow estimate
whether the resulting solution approximates the exact value of y(x). By ŷ = (y(xj))

n
j=1

denote the vector of the exact solution of (5.2) evaluated at the grid points. The local
truncation error τj is clearly

τj = −

(
y(xj−1) − 2y(xj) + y(xj+1)

h2
+ f(x)

)
= −

1

12
h2y ′′′′(ξj), h→ 0+. (5.9)

Therefore, the method is second order accurate. Now, if define the truncation error
vector as τ = (τj)

n
j=1 we have

τ = −(Aŷ+ F) . (5.10)
Whence, the error e = ŷ− y of the method satisfies a similar linear system as y

Ae = −τ, (5.11)

with e0 = en+1 = 0. The nonhomogeneous term is now represented by the truncation
error. Since A is tridiagonal it can be inverted and hence after taking a norm

‖e‖ ≤ ‖A−1‖ ‖τ‖ . (5.12)
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Since ‖τ‖ = O(h2) as h → 0+ we would like to have ‖A−1‖ ≤ C in order to ‖e‖ be of
second order. Remember that the size of A increases with h → 0+ and hence, we are
faced with the notion of stability. The truncation error should not be amplified when
we refine the grid.
Defition 9. A numerical method for solving BVP in the form Ay = F is stable if ‖A−1‖ ≤ C
as h→ 0+ for some constant C > 0 independent on h.

We now again can see that consistency + stability is equivalent to convergence. In
order to prove that our scheme (5.6) is stable we have to choose an appropriate norm.
There are many choices but probably the second norm yields the clearest results

‖A‖2 := sup
y6=0

‖Ay‖2
‖y‖2

, ‖y‖2 :=

(
h

n∑
j=1

y2j

) 1
2

. (5.13)

Since, A is symmetric the computation of the norm is simple because

‖A‖2 = max
1≤k≤m

|λk|, (5.14)

where λj is the eigenvalue of A. The norm of the inverse is just

‖A−1‖2 =
(

min
1≤k≤m

|λk|

)−1

. (5.15)

It follows from linear algebra that for A as in (5.8) we have

Ayk = λky
k, yk = (sin(kπjh))nj=1 , λk =

2

h2
(cos(kπh) − 1) , (5.16)

where yk is the eigenvector of A with corresponding eigenvalue λk. We conclude that
the smallest eigenvalue is

λ1 =
2

h2
(cos(πh) − 1) = −π2 +O(h2) < 0 as h→ 0+. (5.17)

Further, we have

‖e‖2 ≤ ‖A−1‖2‖τ‖2 ≤
h2

2 (1− cos(πh))‖τ‖2, (5.18)

and to show the convergence we have to estimate the truncation error. First, from (5.2)
we have τj = −1

2
h2y ′′′′(ξj) = − 1

12
h2f ′′(ξj) what yields

‖τ‖2 =
h2

12

(
h

n∑
j=1

f(ξj)
2

) 1
2

=
h2

12
‖f ′′‖2 +O(h3) as h→ 0+, (5.19)

since the sum in the above is just the Riemann sum for the integral. Here, ‖f ′′‖2 is the
continuous second norm of f ′′. We have thus proved the following result.
Theorem 3. The discrete scheme (5.6) is second order convergent with

‖e‖2 ≤
π2

12
‖f ′′‖2h2 +O(h3) as h→ 0+. (5.20)

Notice how different is this approach to our previous considerations concerning
initial value problems. We will see that similar reasoning is needed for solving PDEs.
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5.3 Finite element methods
Now we change gears and introduce yet another, very robust, method of a completely
different nature. Finite element method is indispensable when one solves problems
on unstructured grids or realistic geometries. It is mainly used in many multiphysics
applications such as construction, heat conduction, acoustics, material science, and
electricity. We will develop it from the very beginning based on our simple problem
(5.2).

The finite element method begins with the so-called weak formulation. Let us go
back to the original problem (5.2), multiply it by a sufficiently smooth function ϕ such
that ϕ(0) = ϕ(1) = 0, and integrate by parts to obtain

(f, ϕ) :=

∫ 1
0

f(x)ϕ(x)dx = −

∫ 1
0

u ′′(x)ϕ(x)dx =

∫ 1
0

u ′(x)ϕ ′(x)dx =: a(u,ϕ), (5.21)

where we have defined two (symmetric) bilinear forms (·, ·) and a(·, ·). Notice that
thanks to the vanishing of ϕ at the boundary of [0, 1] guarantees that there are no
remainder terms from the integration by parts. This Dirichlet boundary condition in
the jargon of finite elements is called essentialwhile Neumann would be called natural.
We define the function space in which we will look for solutions of the above

V =
{
u ∈ L2[0, 1] : a(u, v) <∞ and u(0) = u(1) = 0

}
, (5.22)

where L2[0, 1] is the Lebesgue space of square-integrable functions on [0, 1]. Therefore,
we are interested in solving the following variational or weakly formulated problem

Find u ∈ V such that a(u,ϕ) = (f, ϕ) for all ϕ ∈ V. (5.23)

The adjective variational indicates that we can vary ϕ in order to satisfy the above
equation. Notice that also we have moved some regularity requirements from u to ϕ.
This means that the solution of (5.23) does not have to be twice-differentiable, hence
the name - weak. In contrast, the solution of (5.2) is called classical. It is also easy to
show that when u ∈ C2[0, 1] is a solution of the weak problem it is also a classical
solution. Therefore, sufficiently regular weak solutions are also classical. However, it
is sometimesmuchmore convenient to workwith variational formulation since we can
then use the theory of Hilbert spaces.

Up to now we have only formulated the original problem in a new setting. Now,
we will see how to construct a very robust numerical method known as Ritz-Galerkin
approximation. This is extremely simple. Choose any finite dimensional subspace S ⊂ V
and replace (5.23) with

Find uS ∈ S such that a(uS, ϕ) = (f, ϕ) for all ϕ ∈ S. (5.24)

Of course, the above formulation does not guarantee that it iswell-defined, i.e. whether
it possesses a unique solution. The following result establishes that fact.

Proposition 1. Let f ∈ L2[0, 1]. Then, there is only one solution of (5.24).
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Proof. Let us choose a basis of S, say {φi}
n
i=1. Due to linearity, the system (5.24) can then

be written as
KU = F, (5.25)

which is a linear finite dimensional system. Here, U = (Ui) is the solution vector,
K = (Kij) = (a(φi, φj)) is the stiffness matrix, and F = (Fi) = ((f, φi)) is the load vector
(terms borrowed from engineering).

Note that for linear finite dimensional problems the existence is equivalent to
uniqueness. We will show the latter. Suppose that there exists a vector V = (Vi)
such that KV = 0 and a corresponding function v =

∑n
1 Viφi. It, in turn, means

that a(V,φi) = 0. If we multiply this by Vi, sum over j and use linearity, we obtain
a(v, v) = 0. But from the definition of a we have 0 =

∫1
0
(v ′)2dx which can happen

only when v ′ ≡ 0. However, the boundary conditions imply that v ≡ 0 and since {φi}

constitute a basis we have V = 0. This ends the proof.

Now, themethod (5.24) canyield someuseful approximations however, it remains to
be proved that it really converges in some sensewhenwe increase the dimensionality of
the subspace S. We begin with a very important remark concerning the orthogonality.
When we subtract (5.24) from (5.23) we obtain

a(u− us, w) = 0, w ∈ S. (5.26)

Since a(·, ·) is symmetric, bilinear, and positive definite it can be promoted to be a
scalar product which implies the so-called energy norm

‖v‖E :=
√
a(v, v). (5.27)

Suppose we would like to estimate the difference between u and uS in this natural
norm. To this end we choose v ∈ S and write

‖u−uS‖2E = a(u−uS, u−uS) = a(u−us, u−v)+a(u−uS, v−uS) = a(u−uS, u−v) ≤ ‖u−uS‖E‖u−v‖E,
(5.28)

where in the third equality we have used (5.26) while in the last - Schwarz inequality.
Therefore

‖u− uS‖E ≤ ‖u− v‖E, v ∈ S. (5.29)

Since the above is true for any v ∈ S it is also valid for the minimum (the subspace S is
finite dimensional)

‖u− uS‖E ≤ min {‖u− v‖E : v ∈ S} . (5.30)

But of course, min {‖u− v‖E : v ∈ S} ≤ ‖u − uS‖E since uS ∈ S. Therefore, we have
proved the following result.

Theorem 4. It holds that ‖u− uS‖E = min {‖u− v‖E : v ∈ S}.

The above states that the Ritz-Galerkin approximation is optimal in the energy
norm. That is, this is the best approximation when wemeasure the discrepancy in that
norm.
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We can go even further and try to find the bound for the error in the usual L2 norm.
We will use a reasoning that is called the duality argument. Let w be a solution of the
following equation

−w ′′ = u− uS, w(0) = w(1) = 0. (5.31)
Taking the usual scalar product of the above with u− uS we obtain

‖u−uS‖2 = (u−uS, u−uS) = (u−uS,−w
′′) = a(u−uS, w) = a(u−uS, w−v), (5.32)

for v ∈ S. In the third equality we have integrated by parts and used the boundary
conditionswhile in the last the orthogonality (5.26). Now, an application of the Schwarz
inequality leads to

‖u− uS‖ ≤
‖u− uS‖E‖w− v‖E

‖u− uS‖
=
‖u− uS‖E‖w− v‖E

‖w ′′‖
, (5.33)

which after taking infimum produces

‖u− uS‖ ≤
‖u− uS‖E
‖w ′′‖

inf{‖w− v‖E : v ∈ S}. (5.34)

We can see that if w can be well-approximated with a function from S the right-hand
side of the above can be made very small. To be precise, we make the following
approximation assumption

inf{‖w− v‖E : v ∈ S} ≤ ε‖w ′′‖, (5.35)

for some ε > 0. Whence,
‖u− uS‖ ≤ ε‖u− uS‖E, (5.36)

and the L2 norm is much smaller than the energy norm. When we replace u instead of
w in (5.35) and invoke Theorem 4 we further have

‖u− uS‖E ≤ ε‖u ′′‖. (5.37)

Combining the two above estimates leads us finally to the following important result.

Theorem 5. Assume (5.35). Then, it holds that ‖u− uS‖ ≤ ε2‖f‖.

What is left to show is the fact that the above approximation assumption can in
reality be made. That is, ε can be made arbitrarily small with a suitable choice of S.
This leads to the notion of finite element method.

Let us partition the [0, 1] interval into (not necessarily equal) segments 0 = x0 <

x1 < ... < xn = 1 and let S be a space of continuous functions such that v|[xi−1, xi] is a
linear polynomial and v(0) = v(1) = 0. As the basis we choose φi such that φi(xj) = δij.
These functions can be easily visualised as so-called hat functions. Given v ∈ S is called
an interpolant and can be written as vI =

∑n
1 v(xi)φi. Having chosen the linear element

we are able to prove the fundamental approximation result.

Lemma 1. Let h = maxi(xi − xi−1). Then for all u ∈ V

‖u− uI‖E ≤ Ch‖u ′′‖, (5.38)

where C is independent of h and u.
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Proof. It is sufficient to prove the inequality piecewise, i.e.∫ xi
xi−1

(u− uI)
2dx ≤ c(xi − xi−1)2

∫ xi
xi−1

(u ′′)2dx. (5.39)

Let us introduce the error e = u − uI. Observe that since uI is piecewise linear we
have u ′′I = 0 almost everywhere and hence, e ′′ = u ′′. Moreover, after substitution
x = xi−1 + y(xi − xi−1) we can write the above integrals as∫ 1

0

e(y)2dy ≤ c
∫ 1
0

e ′′(y)2dy. (5.40)

Note that we have got rid of any scale present in the problem, i.e. the estimate do
not depend on the mesh spacing h. This procedure is very useful and known as
homogeneity argument.

Now, to prove our claims we observe that since e(0) = e(1) = 0 by Rolle’s Theorem
we must have w ′(ξ) = 0 for some ξ ∈ (0, 1). From this we can estimate

|e ′(x)| =

∣∣∣∣∫ x
ξ

e ′′(y)dy

∣∣∣∣ ≤ (∫ x
ξ

dy

) 1
2
(∫ x

ξ

e ′′(y)2dy

) 1
2

≤ |x− ξ|
1
2

(∫ 1
0

e ′′(y)2dy

) 1
2

, (5.41)

where the first inequality follows from Schwarz. Now, squaring and integrating the
above yields ∫ 1

0

e ′(y)2dy ≤
(∫ 1

0

|x− ξ|dx

) ∫ 1
0

e ′′(y)2dy ≤ 1
2

∫ 1
0

e ′′(y)2dy, (5.42)

and therefore c = 1
2
. The proof is completed.

Note that the above lemma is valid for any u ∈ V . If we gather all we have found
for the solution of the Ritz-Galerkin approximation (5.24) we arrive at the fundamental
estimate for the finite element method

Theorem 6. Let u satisfy (5.23) while uS is a solution of (5.24) with S being the linear element
space. Then, for h = maxi(xi − xi−1) we have

‖u− uS‖+ Ch‖u− uS‖E ≤ 2(Ch)2‖f‖, (5.43)

where C > 0 is a constant independent on u and h.

Proof. Notice that due to Lemma 1 we can take ε = Ch in (5.35). Then, we can use
Theorem 5.

We have thus proved that the finite elementmethodwith linear interpolation is sec-
ond order accurate for approximating the function while first order for approximating
the derivative. The finite element method is very robust since the overall methodology
stays the same regardless of the geometry of the domain. It can be carried over to two
and three dimensional regions with irregular shapes without the effort required by the
finite difference method. In two dimensional geometries, the main domain is usually
decomposed into triangles on which hat functions are constructed. This allows to treat
almost arbitrary shapes and thus has found its applications in engineering.
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6 Methods for conservation laws and hyperbolic equa-
tions

Conservation laws are one of the most fundamental relations in science. They math-
ematically encapsulate the balance between various quantities in the investigated sys-
tem. For example, they are a basis of fluid mechanics, electromagnetism, diffusion
models, weather prediction and many more. The resulting mathematical formulation
is usually given as a system of nonlinear first order hyperbolic equations. Since their
importance many numerical methods are still being developed to treat different situ-
ations that can arise in practice. Mostly, they go into two families: finite differences
(which we know a lot) and finite volumes (which wewill learn a little). In what follows
wewill demonstrate the development of numericalmethods for scalar equations in one
dimensional space. However, many of ideas can be carried over to higher dimensions
or systems.

As we recall from the PDE course, conservation laws can usually be written as

ut(x, t) + f(u(x, t))x = 0, (6.1)

where u = u(x, t) is the conserved quantity while f = f(u) is the flux. We will mostly
be concerned with linear advection equation for which f(u) = cu and hence

ut + cux = 0, x ∈ R, t > 0. (6.2)

We know that the solution of the above is given by u(x, t) = φ(x − ct) for φ = φ(x)
being the initial condition. This equation will be our model problem for developing
many useful (or not) methods.

6.1 Finite difference methods and stability
We begin with finite difference methods, i.e. we introduce the grid (xj, tn) = (jk, nh)
with nN and j ∈ Z. Moreover, by unj we denote the numerical approximation of
u(xj, tn). As usual in the finite difference method, we discretize the equation (6.2) by
approximating derivatives. First, let us use δ+ to discretize temporal and δ− for the
spatial derivative to obtain

un+1j − unj
h

+ c
unj − u

n
j−1

k
= 0, (6.3)

which can be written as

un+1j = unj − ν
(
unj − u

n
j−1

)
, ν =

ch

k
. (6.4)

Since for c > 0 the exact solution of the PDE (6.2) is a wave travelling to the right, the
above numerical scheme is called the upwind method because it needs values of u in the
direction of the propagating wave. The upwind method for c < 0 could be obtained
exactly in the same manner with δ+ used instead of δ− on the spatial side.

Due to the first order finite differences used in the discretization we expect that the
method is itself of the same accuracy. This is formulated in the following result. Note
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that since we are considering PDEs we have to measure the numerical error in some
norm. In practice it is convenient to use either first, second or supremum norm with
respect to the spatial variable, couple h and k somehow (we will see how), and take
the limit h→ 0+.

Theorem 7. Assume that 0 < ν ≤ 1 then the upwind method (6.4) gives a first order
approximation to the solution of (6.2). More specifically, for t ≤ T we have

max
j

|u(xj, tn) − u
n
j | ≤ CT h, h→ 0+ with h

k
fixed, (6.5)

where C is independent on h.

Proof. Let us denote the error by enj := u(xj, tn) − u
n
j . Then, expanding in Taylor series

and using (6.4) we have

en+1j = u(xj, tn+1) − u
n+1
j = enj + ut(xj, tn)h+

1

2
utt(xj, τn)h

2 + ν(unj − u
n
j−1). (6.6)

Since by (6.2) we have ut = −cux we can further write

en+1j = enj + ν
(
kux(xj, tn) − u

n
j + u

n
j−1

)
+
1

2
utt(xj, τn)h

2. (6.7)

Further, because for any function y we have y ′(x) = k−1(y(x) − y(x − k)) + ky ′′(ξ)/2
we can simplify

en+1j = enj + ν
(
enj − e

n
j−1

)
+
1

2
(−uxx(ξj, tn)k+ utt(xj, τn)h)h. (6.8)

Taking the maximum and using the assumption that 0 < ν ≤ 1we obtain

max
j

|en+1j | = (1− ν)max
j

|enj |+ νmax
j

|enj |+
h

2
max
j

|(−uxx(ξj, tn)k+ utt(xj, τn)h|. (6.9)

The truncation error can be estimated by the fact that h/k remain fixed when h→ 0+.
Therefore,

max
j

|en+1j | ≤ max
j

|enj |+ Ch
2. (6.10)

When we repeat this inequality n times we arrive at

max
j

|en+1j | ≤ Cnh2, (6.11)

where we used the fact that the initial conditions are the same, i.e. e0j = 0. Because
nh ≤ T we conclude the proof.

Notice the importance of the number ch
k

in the above proof. It appears in any
numerical method for hyperbolic equation and goes by the name of the pioneers of
finite different schemes: Courant, Friedrichs, Lewy number (CFL). We will denote it by

ν :=
ch

k
. (6.12)
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Loosely speaking, solutions of hyperbolic equations evaluated at some point in space-
time depend on its past values in some region in space. For example, a solution of
(6.2) at (x, t) depends only on the point (x− ct, 0). A set of all points that influence the
value of u(x, t) is called the domain of dependence. A similar definition can be given for a
numerical domain of dependence. The seminal paper of CFL gave a fundamental theorem
stating that a numerical method can be convergent only if the domain of dependence
is a subset of the numerical domain of dependence (at least for small k and h). In the
upwindmethodwe see that since calculating un+1j requires unj and unj−1. If we carry this
over until t = 0, we see that it requires knowing φ(xi) such that xj − k/htn ≤ xi ≤ xj.
Due to CFL condition, this set has to contain xn−ctn and this could only happen when
0 < ν ≤ 1.

Note that CFL condition is only necessary and there are examples when it is not
sufficient. In practice one usually fixes the number 0 < ν ≤ 1 and chooses the temporal
grid size according to h = kν/c. This means that the space and time discretization has
to be of the same order.

Another way of discretizing (6.2) is to use centred approximation of the derivative.
Having replaced temporal and spatial derivatives with δ0 would lead to the so-called
leapfrog method. This scheme is sometimes useful however, in order to calculate the
solution at time n + 1 it requires to use values at time n − 1. This may not be very
useful in practise when we would like to have more time-stepping algorithm when
the next step is calculated from the previous one. We are thus left with centred space
discretization which leads to

un+1j = unj −
1

2
ν
(
unj+1 − u

n
j−1

)
. (6.13)

This may seem as a second-order in space accurate method. However, it has some very
serious stability properties making it useless in practice.

Analysing stability for PDEs is usually more elaborate than for ODEs. There are
several approaches and one of them is particularly useful, fast, and easy to conduct
for linear equations with constant coefficients. This is the von Neumann analysis and it
is based on Fourier transform. Before we explain it, we define a correct notion of the
stability used in PDEs.
Defition 10. A numerical method calculating unj is stable if

‖un+1‖ ≤ ‖un‖ , (6.14)
where ‖·‖ is a chosen norm taken with respect to the spatial variable.

This definition states that a stablemethod does not increase the normof the solution
when time advances forward. In other words, a small error introduced in the initial
step will not grow with time. Sometimes, the stability condition can be made more
stringent

∥∥un+1∥∥ ≤ (1+ αh) ‖un‖ which would also lead to a useful scheme (compare
the proof of the convergence of Euler method). However, we will focus on the more
simple one.

Suppose that we have a grid xj = jk and sequence vj ∈ l2,k (square summable)
where j ∈ Z. Then, we can define its discrete Fourier transform as

v̂(ξ) =
k√
2π

∞∑
j=−∞ vje

−ijkξ, (6.15)
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where the factor k is needed for consistency with the continuous Fourier transform
when k→ 0+. Further, we can recover the original sequence with

vj =
1√
2π

∫π/k
−π/k

v̂(ξ)eijkξdξ. (6.16)

The von Neumann analysis stems from two ingredients. The first one is the Parseval’s
theorem stating that Fourier transform is an isometry

‖v‖2,k = ‖v̂‖2 , where ‖v‖2,k =

(
h

∞∑
j=−∞ |vj|

2

) 1
2

, ‖v̂‖2 =

(∫π/k
−π/k

|v̂(ξ)|2dξ

) 1
2

.

(6.17)
The second ingredient is the fact that eijkξ is an eigenfunction of any difference operator
(similarly, as ex is a eigenfunction of any derivative operator). This means that we
can „diagonalize” any finite difference scheme, i.e. decouple its modes. It has a
tremendousmeaning since calculating the norm of unj requires knowledge of all points
in its numerical domain of dependence. To see this choose any finite difference scheme

un+1j =
∑
p

apu
n
j−p. (6.18)

Its Fourier transform is

ûn+1(ξ) =
k√
2π

∞∑
j=−∞

(∑
p

apu
n
j−p

)
e−ijkξ. (6.19)

Interchanging order of summation we can arrive at

ûn+1(ξ) =
k√
2π

∑
p

ape
−ipkξ

∞∑
j=−∞u

n
j−pe

−i(j−p)kξ =

(∑
p

ape
−ipkξ

)
ûn(ξ) = G(ξ)ûn(ξ).

(6.20)
Therefore, time-stepping finite difference scheme forward is equivalent to saying that
the Fourier transform is multiplied by some amplification factor (or symbol). Therefore,
the stability in the second norm can be stated by requirement that

‖Gûn‖2 =
∥∥ûn+1∥∥

2
=
∥∥un+1∥∥

2,k
≤ ‖un‖2,k = ‖û

n‖2 , (6.21)

which happens if and only if
|G(ξ)| ≤ 1, (6.22)

which is the von Neumann stability condition. We have just proved the following fact.

Theorem 8. A linear numerical method with constant coefficients is stable if and only if its
amplification factor satisfies (6.22).

Example. Let us investigate the stability of the upwind method (6.4). Calculating the
discrete Fourier transform we obtain

ûn+1 = ûn − ν
(
ûn − eikξûn

)
=
(
1− ν+ νeikξ

)
ûn. (6.23)
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Then, we require that
|G(ξ)| = |1− ν+ νeikξ| ≤ 1. (6.24)

We can square the above to obtain

|1−ν+νeikξ|2 = (1− ν+ ν cos(kξ))2+(ν sin(kξ))2 = (1−ν)2+2ν(1−ν) cos(kξ)+ν2 ≤ 1,
(6.25)

which is equivalent to

(1− ν)2 + 2ν(1− ν) cos(kξ) ≤ (1− ν)(1+ ν). (6.26)

When ν = 1 this is obviously satisfied, while when 0 < ν < 1we can divide and obtain

cos(kξ) ≤ 1, (6.27)

which is true. Notice that we have obtain exactly the same condition as in the conver-
gence proof and CFL condition.

There is also a quickerway of estimating the size of amplification factor. Look for kξ
for which the expression attains its minimum and maximum values. Computing the
derivative and equating it to zero we would obtain kξ = 0, π. In these cases |G(0)| = 1
and |G(π/k)| = (1− 2ν)2 ≤ 1 only for 0 < ν ≤ 1.

Example. Now, for the second method we derived (6.13) we obtain

ûn+1 = ûn −
1

2
ν
(
e−kξûn − eikξûn

)
=

(
1−

1

2
ν(e−kξ − eikξ)

)
ûn. (6.28)

Therefore, the von Neumann stability condition is

|G(ξ)| = |1+ iν sin(kξ)| =
√
1+ ν2 sin2(kξ) > 1, (6.29)

for any ν 6= 0. Therefore, the method is severely unstable.

As we have seen, the presumably second order in space scheme (6.13) is hopelessly
useless. There is, however, a way of making it stable. Since averaging usually improves
stability, we can propose the following method

un+1j =
1

2

(
unj+1 + u

n
j−1

)
−
1

2
ν
(
unj+1 − u

n
j−1

)
=
1

2

[
(1− ν)unj+1 + (1+ ν)unj−1

]
, (6.30)

where instead of unj we have taken its averaged value taken over neighbouring grid
points. This method is called Lax-Friedrichs scheme and it is left as an exercise to
show that it is a stable first order method. Therefore, we are still left with a question
how to develop higher order schemes? We can for example use the leapfrog method
discussed before however, it may be very inconvenient in higher dimensions. We may
also devise a trapezoidal scheme but, as we have seen, for hyperbolic equations there
is usually no need for introducing another complication like the implicitly defined
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method (since explicit ones are stable). Another way of improving order is to time-
discretize using some RK methods. This requires more storage and careful treatment
near the boundaries. One useful way is to consider Taylor series expansions

u(x, t+ h) = u(x, t) + ut(x, t)h+
1

2
utt(x, t)h

2 +O(h2), as h→ 0+. (6.31)

Now, because u is a solution of (6.2) we have ut = −cux and utt = c2uxx and hence

u(x, t+ h) = u(x, t) − cux(x, t)h+
1

2
c2uxx(x, t)h

2 +O(h2), as h→ 0+. (6.32)

If we approximate the derivatives with centred differences and drop O(h3) terms we
obtain

un+1j = unj −
1

2
ν
(
unj+1 − u

n
j−1

)
+
1

2
ν2
(
unj+1 − 2u

n
j + u

n
j−1

)
, (6.33)

which is known as the Lax-Wendroff scheme. It is also left as an exercise to show that
it is second order stable. Notice that for the first order equation we have introduces a
discretization of the second order derivative. This adds the so-called artificial diffusion
into the scheme and has some strong stabilization properties. Lax-Friedrichs method
can also be recast in away to see the diffusion operator explicitly. Thismethod is robust
and can be applied to many other equations.

We end this section with a fundamental convergence theorem for linear constant
coefficients numerical methods for PDEs. This is analogous to the Dahlquist theorem
for multistep methods (see Theorem 2).

Theorem 9 (Lax). If a linear constant coefficient finite difference method is applied to a PDE
then

consistency+ stability ⇐⇒ convergence (6.34)

The order of convergence is the same as of the truncation error.

Therefore, for linear methods we can easily check the consistency and use von
Neumann analysis to ascertain stability. The convergence follows fromLax equivalence
theorem. The situation is much for difficult for nonlinear equations.

6.2 Finite volume methods
Numerical treatment of a general conservation laws requires amany-volume treatment
and is certainly beyond the scope of this lecture. However, we will sketch the overall
theory. We will consider possibly nonlinear equations in the form (6.1). Recall from
the PDE course that in many situations solutions of nonlinear equations can develop
discontinuities even if the initial data is smooth (the so-called shockwaves). This forces
to use the integral equation from which the PDE originates and obtain the solution
with a help of Rankine-Hugoniot’s condition. Of course, the resulting solution has to
be interpreted in a weak sense. Certainly these features have to be resolved by a good
numerical method.
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The essential RH condition that yields the correct shock velocity is a manifestation
of the conservation law that can be reobtained by integrating (6.1) from x = a to x = b
where a and b are arbitrary

d

dt

∫b
a

u(x, t)dx = −

∫b
a

(f(u(x, t)))x dx = f(u(a)) − f(u(b)), (6.35)

which states that the total amount of u in [a, b] can change only due to the flux through
the boundary. In order to develop a discrete method which has a similar property we
introduce a space-time cell [xj−1/2, xj+1/2]× [tn, tn+1]where are usual (xj, tn) = (jk, nh).
Here xj±1/2 = xj + k/2. If we now integrate (6.1) over this cell we have∫ xj+1/2

xj−1/2

(u(x, tn+1) − u(x, tn))dx = −

∫ tn+1

tn

(
f(u(xj+1/2, t)) − f(u(xj−1/2, t))

)
dt. (6.36)

If we now consider the cell average

unj :=
1

k

∫ xj+1/2

xj−1/2

u(x, tn)dx, (6.37)

and the so-called numerical flux

Fnj+1/2 :=
1

h

∫ tn+1

tn

f(u(xj+1/2, t))dt, (6.38)

we can recast the scheme as

un+1j = unj −
h

k

(
Fnj+1/2 − F

n
j−1/2

)
, (6.39)

which is known as the finite volume method. The first thing that is worth noticing is that
unj now represent the cell average and not an approximation to its point value. Note
also that usually, in order to approximate the integral in (6.38) we have to reconstruct
the value of u inside some cells. In that case we have

Fnj+1/2 = F(u
n
j−p, · · · , unj+q). (6.40)

In order to ascertain consistency we have to assume that F(u, · · · , u) = f(u), i.e. the
numerical flux reduces to the continuous one. As it appears, this requirement is not
strong enough and we need the Lipschitz continuity

|F(u−p, · · · , uq) − f(u)| ≤ L max
−p≤r≤q

|ur − u| for |ur − u| small enough. (6.41)

As a result and by construction (6.39) satisfies the conservation law which is stated in
the following result.

Theorem 10. Finite volume method (6.39) is conservative in the discrete sense.
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Proof. For simplicityweassume thatp = 0 andq = 1and therefore Fnj+1/2 = Fnj+1/2(unj , unj+1).
When we sum the method (6.39) with respect to J ≤ j ≤ K with J < K arbitrary we
obtain

k

(
K∑
j=J

(
un+1j − unj

))
= −h

K∑
j=J

(
Fnj+1/2 − F

n
j−1/2

)
= −h

(
FnK+1/2 − F

n
J−1/2

)
(6.42)

If now, the initial condition φ is constant outside some bounded interval then so is unj
since explicit methods have finite domain of dependence. Therefore, if we choose J
and K sufficiently far apart we obtain

k

(
K∑
j=J

(
un+1j − unj

))
= −h (f(u∞) − f(u−∞)) , (6.43)

where by u±∞ we have denoted limits of φ at ±∞. Notice also that here we have used
the consistency of the numerical flux, i.e. F(u, · · · , u) = f(u). Now, if we apply the
above equality recursively (and translate the indices) we can get

k

K∑
j=J

unj = k

K∑
j=J

u0j − t
n (f(u∞) − f(u−∞)) . (6.44)

Therefore, if we define the initial step as

k

K∑
j=J

u0j =

∫ xK+1/2

xJ−1/2

φ(x)dx, (6.45)

we recover ∫ xK+1/2

xJ−1/2

u(x, tn)dx =

∫ xK+1/2

xJ−1/2

φ(x)dx− tn (f(u∞) − f(u−∞)) , (6.46)

which precisely is a specific form of the integral conservation law (6.35).

Knowing that any finite volume method (6.39) is conservative ascertains that the
shock speeds will have the correct value and we will not simulate any unphysical mass
fluxes. This is of utmost importance in applications. For example, we do not want to
compute any artificialwinds or ocean currents inweather prediction or electromagnetic
fields in engineering.

Therefore, in order to construct a conservative numerical method we have to pre-
scribe a numerical flux. This is many times a very nontrivial task especially if we aim
for high resolution methods. More or less, the flux should be given in order to obtain
a method which reconstructs un+1j based on some cell averages at previous times. It
is also a good news that many finite difference methods can be immediately cast into
conservative form that can be easily generalized to nonlinear equations or even sys-
tems. For example, the upwindmethod (6.4) can solve a nonlinear equation (6.1) when
written as

un+1j = unj −
h

k

(
f(unj ) − f(u

n
j−1)
)
, (6.47)
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however care has to be taken to modify the scheme according to the velocity of the
wave (which is ∼ f ′). To see that it gives a conservative method we have to identify
the numerical flux. This is simple for that method and here Fnj+1/2 = F(unj ) = f(unj ). A
more refined example is the generalization of the Lax-Friedrichs scheme (6.30)

un+1j =
1

2

(
unj+1 + u

n
j−1

)
−
h

2k

(
f(unj+1) − f(u

n
j−1))

)
, (6.48)

with the flux

Fnj+1/2 = F(u
n
j , u

n
j+1) =

h

2k

(
unj − u

n
j+1

)
+
1

2

(
f(unj ) + f(u

n
j+1)
)
. (6.49)

Many other finite difference schemes can be shown to be conservative in the above
sense. However, this certainly is not the only way of developing numerical methods
for conservation laws. It can be shown that Lax-Friedrichs has some serious prob-
lems when resolving discontinuous solution, specifically it smears out them due to the
diffusive character of the stabilisation component. Other methods introduce oscilla-
tions which are even worse since can predict negative values of quantities that should
necessarily be positive (for ex. density, energy). Mathematicians have thus worked
very hard to overcome these difficulties by finding other ways of devising numerical
fluxes. Godunov’s, WENO, MUSCL methods are just some examples. Going beyond
first order accuracy is even harder since it just makes no sense to use a high order
method near discontinuities. Flux- or slope-limiter methods are the ones that weight
high and low resolution schemes according to the smoothness of the solution. This is
a fascinating subject that an interested reader can find in many voluminous books.
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7 Methods for parabolic equations
An archetype for the parabolic PDEs is the heat equation{

ut = uxx, x ∈ R, t > 0,

u(x, 0) = φ(x), x ∈ R.
(7.1)

where for simplicity we consider only one dimensional case in the initial value for-
mulation for the whole real space. Adding boundary conditions is not very difficult
however, makes the stability analysis harder. Since finite difference methods are very
robust for the one dimensional problem we will focus solely on them. On the other
hand, finite element methods are much more convenient for higher dimensional do-
mains and hence we leave their analysis to the next section on elliptic equations.

As always, we begin by discretization of (7.1). The spatial derivative is most con-
veniently tackled by a symmetric second order finite difference, while for temporal
side we have several choices. For example, approximating ∂t by δ+ yields Euler forward
method

un+1j = unj + λ
(
unj+1 − 2u

n
j + u

n
j−1

)
, (7.2)

where, as usual, unj denotes the numerical approximation to u(xj, tn) where xj = jk,
and tn = nh. We have also introduced the mesh ratio λ := h/k2. This parameter is
crucial for stability analysis. Derived method is explicit since un+1j depends only on
the knowledge of unj at previous time step. Recall that a numerical scheme is stable if
it does not increase the norm of the solution when time advances. We can show the
following result.

Proposition 2. Forward Euler method (7.2) for solving heat equation (7.1) is conditionally
stable in the uniform norm provided that 0 < λ ≤ 1/2, that is

‖un+1‖∞ ≤ ‖u0‖∞, (7.3)

where ‖un‖ := maxj∈Z |unj |.

Proof. We begin by writing

|un+1j | = |λunj+1 + (1− 2λ)unj + λu
n
j−1| ≤ λ|unj+1|+ (1− 2λ)|unj |+ λu

n
j−1, (7.4)

where we have used the assumption. Now, taking supremum over j ∈ Zwe obtain

‖un+1‖∞ ≤ λ‖un‖∞ + (1− 2λ)‖un‖∞ + λ‖un‖∞ = ‖un‖∞. (7.5)

Iterating the above finishes the proof.

This stability result is sharp, that is to say, when we chose λ > 1/2 we obtain an
unstable method.

Example. Choose vnj = (−1)jnε where ε� 1. Then, having λ > 1/2 and using (7.2) we
have

v1j =
[
(−1)j + λ

(
(−1)j+1 − 2(−1)j + (−1)j−1

)]
ε = (1− 4λ)(−1)jε. (7.6)
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Therefore,
vnj = (1− 4λ)n(−1)jε, (7.7)

which leads to
‖vn‖∞ = (4λ− 1)nε→∞ when n→∞. (7.8)

Hence, the normof the approximation becomes arbitrarily large regardless of the small-
ness of the initial data even when the final time step t ≤ T is fixed.

Sincewe have shown stability, due to Lax equivalence theorem (Theorem 9) in order
to show convergence we are left with showing consistency. The truncation error can
be calculated by plugging the exact solution of (7.1) into the numerical method (7.2)

τ(x, t) :=
u(x, t+ h) − u(x, t)

h
−
u(x+ k, t) − 2u(x, t) + u(x− k, t)

k2
. (7.9)

Expanding in the Taylor series we have

τ(x, t) = ut(x, t) +
1

2
utt(x, η)h− uxx(x, t) −

1

12
uxxxx(ξ, t), (7.10)

and since ut = uxx we have τ(x, t) = O(h + k2) when h, k → 0+ provided that u is
sufficiently smooth (and from theory of PDEs we known that it is indeed infinitely
smooth!). Therefore, combining the above with (2) with (9) we arrive at

Theorem 11. The forward Euler method (7.2) is convergent to the exact solution of the heat
equation (7.1) provided that λ ≤ 1/2. Moreover, it is first order accurate in time and second in
space.

In practice we usually fix the value of λ along with k and choose h according to
h = λk2. Note that in order to provide stability we can obtain prohibitively small
values of time grid when we aim for higher spatial accuracy (compare the fact that
for hyperbolic equations we had h = νk which yields the same order of mesh sizes).
Therefore, forward Euler method has a limited practical value.

Exactly as with ODEs we can propose a Backward Euler Scheme

un+1j = unj + λ
(
un+1j+1 − 2un+1j + un+1j−1

)
, (7.11)

which, as can be easily shown, is stable for any λ > 0. The stability comes for the
price of the method being implicit: in each time step we have to solve a system of
linear equations. Since computers cannot cope with infinite matrices we impose some
artificial bounds

unj = 0 for |j| ≥ J, J ∈ N, j ∈ Z. (7.12)

Then, (7.11) can written in the form

− λ
(
un+1j+1 + un+1j−1

)
+ (1+ 2λ)un+1j = unj , (7.13)

and the system can be cast into
Aun+1 = un, (7.14)
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where A is a (2J− 2)× (2J− 2) matrix

A =


1+ 2λ −λ 0 · · · 0

−λ 1+ 2λ −λ · · · 0
... · · · · · · · · · ...
0 · · · −λ 1+ 2λ −λ
0 · · · · · · −λ 1+ 2λ

 . (7.15)

Note thatA is a tridiagonalmatrix and therefore can be very easily and cheaply inverted
numerically (notice that Gaussian elimination requiresO(N3) operations whereN×N
is the size of the matrix, whereas tridiagonal algorithm requires only O(N)).

Having a stable and relatively cheapmethod of solving one dimensional heat equa-
tion one would like to aim for some more accuracy. Unfortunately, backward Euler
method is only first order in time. As always, there are many ways to achieve it and
probably the most versatile and useful is the following Crank-Nicolson scheme

un+1j = unj + λ

(
un+1j+1 − 2un+1j + un+1j−1

2
+
unj+1 − 2u

n
j + u

n
j−1

2

)
, (7.16)

which can be conveniently written as

−
λ

2

(
un+1j+1 + un+1j−1

)
+ (1+ λ)un+1j =

λ

2

(
unj+1 + u

n
j−1

)
+ (1− λ)unj . (7.17)

The above is manifestly a tridiagonal system with the same matrix as before, i.e (7.15).
The second order both in space and time accuracy of C-Nmethod is ascertained by the
averaging of the spatial derivatives with respect to time. That is to say, we introduce a
symmetry around tn+1/2 point in time. Moreover, we have the following result.

Theorem 12. The Crank-Nicolson method (7.16) is stable with respect to the ‖ · ‖2,k norm and
second order accurate in space and time. Therefore, it is convergent to the exact solution of (7.1).

Proof. We start with finding the truncation error

τ(x, t) =
u(x, t+ h) − u(t)

h
−
1

2
(∂+∂−u(x, t+ h) + ∂+∂−u(x, t)) , (7.18)

where for brevity we have denoted the spatial finite differences by δ±. Expanding the
first term gives

u(x, t+ h) − u(t)

h
= ut(x, t)+utt(x, t)h+

1

6
uttt(x, η1) = ut(x, t)+uxxxx(x, t)h+

1

6
uttt(x, η1),

(7.19)
where we have used the original PDE (7.1) yielding utt = uxxxx. Further,

∂+∂−u(x, t+ h) =

(
uxx(x, t) + uxxt(x, t)h+

1

2
uxxtt(x, η2)h

2

)
+
1

12
uxxxx(ξ1, t+ h)k

2,

(7.20)
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where the term in the parentheses is the Taylor expansion of uxx(x, t + h) for small
h > 0. Finally,

∂+∂−u(x, t) = uxx +
1

12
uxxxx(ξ2, t)k

2. (7.21)

Now, we plug the above expansions in the truncation error and because uxxt = uxxxx
the O(h) terms cancel leaving

τ(x, t) =

(
1

6
uxxxxxx(x, η1) −

1

4
uxxxxxx(x, η2)

)
h2 −

1

12
(uxxxx(ξ1, t+ h) + uxxxx(ξ2, t))k

2.

(7.22)
Therefore, if u is smooth enough (and we know it is) we obtain

|τ(x, t)| ≤ C(k2 + h2) for h, k→ 0+, (7.23)

which states that the method is second order accurate.
Now, we turn to the ‖ · ‖2,h stability. To this end we use von Neumann analysis.

Fourier expanding (7.16) yields

ûn+1(ξ) = ûn(ξ) +
λ

2

(
e−ikξ − 2+ eikξ

)
ûn+1(ξ) +

λ

2

(
e−ikξ − 2+ eikξ

)
ûn(ξ). (7.24)

Simplifying,

ûn+1(ξ) =
1− λ(1− cos(kξ))
1+ λ(1− cos(kξ)) û

n(ξ), (7.25)

and therefore the amplification factor is

g(ξ) =
1− z

1+ z
= 1−

2z

1+ z
where z = λ(1− cos(kξ)). (7.26)

Since z ≥ 0 we obviously have |g(ξ)| ≤ 1 for any λ > 0. This yields stability and
applying Theorem 9 forces convergence.

It is also possible to investigate the stability of C-N scheme in the ‖ · ‖∞,h norm
however, the analysis is more involved especially in the λ > 1 case. The strong stability
properties of C-N method along its moderately cheap computational cost makes it
the method of choice for solving one dimensional heat conduction problems with
or without boundary conditions. It also generalizes very easily to nonhomogeneous
equations and even nonlinear ones. However, in the latter case the analysis is much
more difficult.
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8 Methods for elliptic equations
In this section we will investigate numerical methods for solving elliptic PDEs which
are represented by Poisson’s equation{

−∆u = f, x ∈ D,
u = g, x ∈ ∂D,

(8.1)

where the domain D ⊆ R2 can be bounded or unbounded (higher dimensional cases
are also possible). In the homogeneous case, i.e. f ≡ 0, we obtain the Laplace’s
equation. It is good to think about the above PDE as a steady-state heat distribution or
potential generated by a charge distributed according to f. We consider two ways of
discretizing (8.1): finite differences and finite elements.

8.1 Finite difference methods
This family of schemes is most useful for rectangular domains or the whole two-
dimensional space. We assume that D = [0, 1]2 with the uniform grid xi = ih and
yj = jh with 1 ≤ i, j ≤ n, that is h = 1/(n + 1). The discretization of the Laplace
operator can be done in many ways, the simplest one is the so-called 5-point Laplacian

1

h2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j) = fi,j, (8.2)

where ui,j is the approximation to u(xi, yj). This 5-point stencil uses all the values of u
around (xi, yj). The above is just a sum of two centred finite differences with respect to
x and y. We thus arrive at n2 equations to be solved for ui,j. The boundary values, for
i, j = 0 or i, j = n+1, can bemoved to the right-hand side since they are represented by
g. There are many ways of putting the above scheme into matrix form in each of them
we would obtain a very sparse matrix, i.e. having almost all entries equal to zero. In
two dimensions there is no such a convenient way to order the unknowns and hence,
no cheap algorithm to perform the inversion. For example, if one would blindly like
to use Gaussian elimination they would perform O(n6) operations and which would
be disastrous even for fast computers (say take modest n = 100). If we use some more
sophisticated methods that take sparsity into account we can reduce the number of
operations to O(n3) and it has been proved to be the best we can hope for when using
Gaussian elimination.

Another possibility of solving the system (8.2) is to resign from aiming for exact
methods. That is to say, we use some iterative linear system solving method which
improved accuracy in each iteration. This proves to be very fast and reliable. We give
a short account of two classical methods that, although converge very slowly, help to
build some more sophisticated modern algorithms.

To begin, write (8.2) in the form

ui,j =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) −

h2

4
fi,j. (8.3)

Note that for Laplace’s equation the above is a discrete version of the well-known
fact that a harmonic function has the mean-value property, i.e. its value at (x, y) is
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an averaged of values around that point. The above formula suggest the following
iteration

u
(m+1)
i,j =

1

4

(
u
(m)
i−1,j + u

(m)
i+1,j + u

(m)
i,j−1 + u

(m)
i,j+1

)
−
h2

4
fi,j, (8.4)

where the superscript denotes the number of iterations. This is known as the Jacobi
method and it can be shown to converge to the solution of (8.2) (which itself is an
approximation to (8.1)). This algorithm can be refined by noticing that ui−1,j and ui,j−1
are already found when we try to update ui,j. This leads to the Gauss-Seidel method

u
(m+1)
i,j =

1

4

(
u
(m+1)
i−1,j + u

(m)
i+1,j + u

(m+1)
i,j−1 + u

(m)
i,j+1

)
−
h2

4
fi,j, (8.5)

which converges twice fast as the Jacobi iteration. These methods can be upgraded to
Successive Over-Relaxation (SOR) iteration or, instead, we can use Steepest Descent or
Conjugate Gradient methods. They all are very well described in numerical analysis
literature.

8.2 Finite element methods
As we have seen, finite difference methods yield an interesting algebraic system to
solve. By construction, they are mostly limited to rather simple domains (however,
there are ways of extending their applications to irregular geometries). An easier
approach is to use finite element methods. By multiplying (8.1) with a sufficiently
smooth function we obtain the weak formulation

a(u, v) = (f, v), v ∈ C10(D), (8.6)

where
a(u, v) =

∫
D

∇u · ∇v dx, (u, v) =

∫
D

uvdx. (8.7)

We assume thatD is a convex polygonwhich implies the regularity estimate (see theory
of PDEs)

‖u‖22 + ‖∇u‖22 ≤ C‖f‖2. (8.8)

Next, as with the one-dimensional case, we have to divide the domain D into subsets
on which it is easy to introduce a basis. Usual choice is to define a triangulation such
that

D̄ =
⋃
K∈Th

K, hK = diam(K), h = max
K∈Th

hK, (8.9)

where Th = {K} is a set of closed triangles. The vertices of these triangles are called
nodes and we require that an intersection of two of them is either empty, a node, or a
common edge. That is, there are no nodes located in the interior of an edge. With this
triangulation we associate a function space

Sh =
{
v ∈ C(D̄) : v is linear in K for each K ∈ Th, v = 0 on ∂D

}
. (8.10)
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One of the simplest examples are pyramid functions which are generalizations of the
previously met hat functions. If {Pi}Ni is the set of interior nodes we define the basis as
a piecewise linear functions

ϕi(Pj) =

{
1, i = j,

0, i 6= j.
(8.11)

The finite element approximation to (8.6) is thus

find uh such that a(uh, ϕ) = (f, ϕ) for all ϕ ∈ Sh. (8.12)

We can write uh(x) =
∑

i uiϕi(x) and plug it in (8.12) to obtain∑
i

uia(ϕi, ϕj) = (f, ϕj) j = 1, · · · , N. (8.13)

Again, this can be easily written as a matrix equation Au = bwith the solution vector,
u = (ui)i, load vector b = ((f, ϕi))i and the stiffness matrix A = (a(ϕi, ϕj))i. The
matrix A is symmetric and positive definite and hence possesses a unique solution.
Moreover, it is very sparse and hence, allows for some efficient solvers. Similarly as we
did in the section on one-dimensional boundary value problems, we can show that

‖uh − u‖2 ≤ C‖f‖2h2, (8.14)

that is, the method is of second order. To sum up, if we have a irregular domain D
we have to generate its triangulation Th which might not be a trivial task. Then, we
generate entries of the stiffnessmatrix and solve the linear system (8.13) with a possibly
iterative method.

Both the finite difference method and finite element method can be used in solving
time dependent problems in higher dimensions (parabolic or hyperbolic). Usually first
we discretize space according to them, and then apply some time marching scheme
such as Euler, R-K, or similar. In each time step we solve the linear system and then
update for the new time value. Possibilities are many and this is certainly not a trivial
exercise since we always have to take into account computational and storage costs.
However, this is another story...
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