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What mathematical modeling can do for sight and
vision?

� Blinking and tears.
� Dry eye syndrome (disease of a�uence: prolonged reading, driving a car,

contact lenses...).
� Blinking brings a very thin layer of tear �lm. How to describe it?
� How to calculate the moment of tear drying (Break-Up-Time, BUT) ?

� Flow of aqueous humor in chambers.
� Aqueous humor - a jelly-like substance �owing in chambers of the eye.
� It is a source of the intraocular pressure (IOP).
� Its balanced �ow is necessary for proper eye functioning.

� Tonometry and other ways of measuring IOP.
� IOP is determined in almost every eye examination.
� Keeping IOP in proper bounds is very important: too large → glaucoma,

too small → hypotony.
� Noninvasive means of measuring IOP: maybe from the topography?

� What is the shape of the cornea?
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Eye anatomy
Typical sizes:

� eye size 24mm,

� corneal diameter 11.5mm,

� corneal thickness
0.5− 0.7mm,

� height circa 2mm.

Five layers of the cornea:

� epithelium,

� Bowman's layer,

� stroma,

� Descement's membrane,

� endothelium.

Cornea is very important - it accounts for about 2
3 eye power!
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Tears and their meaning

� They moisten the eye and protect from
bacteria.

� Contents: water, salt (NaCl) and enzymes.

� Three layers: lipid 0.1− 0.2µm, aqueous
4− 10µm and mucus 0.5− 1µm.
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Blinking and the physics

� Blinking brings the tear �lm over the surface of the cornea.

� Typical time between successive blinks in a healthy patient - about 5− 8s
(in rabbit's eye - 10min!).

� Problems: too small tear production, too fast evaporation → "dry eye".

� Some of the physical properties.
� Lipid layer protects from excessive evaporation. Average evaporation rate is

15× 10−6 kg m2 s−1 for normal eyes and 60× 10−6 kg m2 s−1 for dry eyes.
� This layer also weakens the surface tension: tear-air - 43.3mN m−1,

water-air - 72.3mN m−1.
� Tear �lm is slightly shear thinning - viscosity diminishes with the increase of

shear stress.
� In modeling it is usually assumed that tear is a Newtonian �uid and takes

into account several factors: surface tension, gradients in lipid layer,
evaporation, blinking, heat source and corneal geometry [1]

[1] R.J.Braun et al., Thin �lm dynamics on a prolate spheroid with application to the cornea
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Interlude: thin layer approximation
� So-called "Lubrication Theory": Reynolds problem on bearing oiling.
� It is applied when the geometry of the problem is "long an thin": ε =

typical thickness / typical length.

� Example: Plain bearing. The bearing (y = H0h(x/L)) stays motionless
and the surface y = 0 slides with the speed U.

� We scale the unknowns:

ε =
H0

L
, u∗ =

u

U
, v∗ =

v

εU
, t∗ =

t

L/U
, p∗ =

p

µUL/H2
0

, Re′ = ε2
UL

ν
.

xth component of the nondimensional Navier-Stokes equation then
becomes (dropping asterisks):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re′

(
−∂p
∂x

+ ε2
∂2u

∂x2
+
∂2u

∂y2

)
.

� Using the continuity equation we obtain Reynolds equation:

d

dx

(
h3
∂p

∂x

)
= 6

∂h

∂x
.
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Break-up time (BUT)
� It is usually de�ned as a �rst moment of dry region to appear just after

blinking.

� It is a very important parameter measured by ophthalmologists. Very
sensitive to ambient conditions, but usually 20− 30s.

� Very good estimates were obtained by Braun and Fitt [2] .

� Model: thin-layer theory (ε = d/l = x-dimension / y -dimension) for
Navier-Stokes + evaporation and gravity.

� Typical scales:

d = 10µm, l = 0.36mm, ε = 0.028, G = 0.75, U = 0.75mms−1, Re = 0.2.

� Main equation for the tear thickness:

ht +
E

J−10 + h
+

[
h3

12
(hxxx + G )

]
x

= 0,

where E , J0 - constants associated with evaporation and temperature.

[2] R.J.Braun, A.D.Fitt, Modelling drainage of the precorneal tear �lm after a blink
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Break-up time (BUT) c.d.

� Braun and Fitt obtained a numerical solution on a 4000 point-grid. For
the BUT they took the time when h became smaller that grid-size.

8 / 25



Flows in eye chambers

� Anterior chamber - a region between iris
and the cornea. Posterior chamber -
region between iris and lens.

� Aqueous humor - a �uid that �lls the
chambers (about 0.3 cm3). It removes the
products of metabolism, nourishes and
provides IOP.

� It is transparent and jelly-like. It consists
of water and amino acids.

� It is produces by ciliary body, from where
it �ows through posterior chamber, pupil
and is removed in the Schlemm's canal.

� It must be conserved (!) - same amount
removed as produced.

� How to describe it mathematically?
9 / 25



Flows in eye chambers cont'd.

� What causes the �ow of aqueous humor? [3,4] .
� Buoyancy is a result of temperature gradient between iris and the anterior

chamber.
� The �ow is produced by ciliary body.
� In�uence of buoyancy-gravity in horizontal position (ex. during sleeping).
� REM phase.

� The simplest model: Navier-Stokes
equations, heat equation + Bussinesq
approximation and "lubrication theory".

� It is possible to obtain an exact solution,
for example

ψ = − (T1 − T0)gαz2(z − h)2

24νh

[3] A.D.Fitt, G.Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber

[4] C.R.Canning, Fluid �ow in the anterior chamber of a human eye
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Flows in eye chambers cont'd.

� When patient is asleep, the blood �ow
does not necessarily balance the
temperature gradient.

� A very small �ow occurs that is a result of
gravity and a minute temperature gradient.

� Facodenesis - lens wibrations caused by
head movements.

� These vibrations have to have su�ciently
small amplitude in order to provide
�awless seeing.

� Fitt and Gonzalez assumed a certain
periodical "`pumping"' speed of �uid
through the pupil.

� The �ow is essentially 3D.

11 / 25



Flows in eye chambers cont'd. (Schlemm's Canal)

� When the anterior chamber holds too much aqueous humor (ex. when
the Schlemm's Canal becomes stucked), the pressure rises.

� POAG (Primary Open Angle Glaucoma) → advancing and permanent eye
nerve damage → blindness.

� In [5] Authors use the Friedenwald's Law (relation between IOP and
eye's volume) and thin-layer theory:

(FL) p1 = p2 exp (K ln 10(V1 − V2)) .

� They obtained an equation that describes increase of IOP that is caused
by Schlemm's Canal occlusion:

dp

dt
≈ Kp

dVin

dt
.

� This occlusion can cause the IOP to become arbitrarily large → glaucoma
and blindness.

[5] Z.Ismail, A.D.Fitt, Mathematical modelling of �ow in Schlemm's Canal and its in�uence on primary open
angle glaucoma
12 / 25
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IOP

� It provides a proper eye shape.
� Typical IOP: 10− 20mmHg. When IOP > 25mmHg glaucoma can

develop (or worse...). When IOP < 10mmHg detunning of lens and
cornea can occur (or worse...).

� Measuring the actual value of IOP is crucial (but it is very sensitive on
ambient conditions). This is the �eld of Tonometry.

� There are some measuring techniques:
� from very invasive (during a surgical operation),
� through invasive, ex. Goldman's Tonometer,
� to less invasive, ex. air-pu�.

� Imbert-Fick's "Law" (in reality: Newton's Third Law applied "by force"):
IOP = value of force (in grams) needed to �atten a circle with radius of
3.06mm on the cornea [6].

� Cons: wrong physical basis, not-the-best accuracy especially for high IOP,
unpleasant for the patient, ...

� A measurement only on the basis of corneal topography?

[6] Markiewitz HH, The so-called Imbert-Fick Law
13 / 25
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What is the shape of the cornea?

Contemporary models of corneal topography:

� The simplest: based on the conical curves - mostly parabolas and ellipses
(Helmholtz, 1924) ("statistically" correct).

� Very complicated: based on shell thery and FEM.

� Models based on Zernike Polynomials (1934) - describe aberration.
Lately, also Bessel functions are being used [7].

� Real models of eye.

Survey literature

1. Fowler CW, Dave TN., Review of past and present techniques of measuring corneal
topography, Ophthalmic Physiol Opt. 14(1) (1994), 49�58,

2. Lindsay R, Smith G, Atchison D., Descriptors of corneal shape, Optom Vis Sci. 75(2) (1998),
156�8.

3. Y. Mejía-Barbosa, D. Malacara-Hernández, A review of methods for measuring corneal
topography, Optometry and Vision Science 78 (2001), 240�253,

[7] J.P. Trevino et al., Zernike vs. Bessel circular functions in visual optics
14 / 25



A new model
Main assumptions [8]

� Cornea is a thin membrane (constant surface tension and lack of bending
moments).

� Three forces shape the cornea: surface tension, elasticity and a
pressure-force.

� In the model we describe the height of the cornea h over some reference
plane Ω (here: a circle).

Equation of the corneal topography (in a nondimensional form)

−∇2h + ah =
b√

1 + ‖∇h‖2
on Ω, h = 0 na ∂Ω,

where h-rescaled, a := kR2

T i b := PR
T and k-elasticity constant, T -tension,

P-intraocular pressure, R-typical size of the cornea.

[8] W.Okrasi«ski, �.Pªociniczak, A Nonlinear Mathematical Model of the Corneal Shape
15 / 25



A direct problem
How, from the knowledge of a and b, �nd the shape of the cornea h?

� We assume an axial symmetry h = h(r) then a and b have to be constant.
� We solve the problem

−1

r

d

dr

(
r
dh

dr

)
+ ah =

b√
1 + h′2

, 0 ≤ r ≤ 1, h′(0) = 0, h(1) = 0. (1)

� For su�ciently small b we have existence,
uniqueness, monotonicity and fundamental
estimates of (1) by

h0(r) :=
b

a

(
1− I0(

√
ar)

I0(
√
a)

)
,

where I0 is a modi�ed Bessel function of
the �rst kind.
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Direct problem cont.

Theorem 1
Let b ≤

√
a

I1(
√
a)

√
2I0(
√
a)−1

I0(
√
a)−1 . The solution of (1) is a positive, nonincreasing

function f for which we have

Ah1 ≤ h ≤ h0,

where h0 is de�ned by the formula

h0(r) :=
b

a

(
1− I0(

√
ar)

I0(
√
a)

)
,

and h1 is the next approximation in the successive approximation scheme.
Moreover,

A =

√√√√ 1 + h′0(1)2

1 +
(
2− 1

I0(
√
a)

)
h′0(1)2

.
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Inverse problem

How to �nd a and b when we know h?

� Problems of this kind are usually ill-posed, that is they do not ful�ll one
of the following conditions
� they have a solution,
� they have an unique solution,
� small error in the initial data causes small error in the output (stability).

� In our case we consider two problems:

1. a i b are constant and unknown → nonlinear problem,
2. a is known and constant but b (not necessarily constant) has to be found
→ linear problem.

� Remark: We cannot hope for an unique solution - we look for a solution
in the L2 norm sense (least-squares).
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The nonliear inverse problem (a, b constant and
unknown)
In subsequent considerations we will assume that the curvature of the cornea
is small. It simpli�es the equation

−1

r

∂

∂r

(
r
∂h

∂r

)
+ ah = b, h′(0) = 1, h(1) = 0.

� The nonlinear problem can be solved in a two-step method [10] :
1. First, using the general theory we �nd

b† = b†(a) =
〈f (a, ·), h〉
‖f (a, ·)‖2

,

where f (a, r) := b
a

(
1− I0(

√
ar)

I0(
√
a)

)
.

2. Then, we solve a nonlinear problem of �ning a. We use an iterative method
similar to the Newton's tangent scheme (a new proof of convergence)

an+1 = an + ∆an, ∆an =

〈
h − f (an, ·), ∂

∂a
b†(a)f (a; ·)

〉∥∥ ∂
∂a
b†(a)f (a; ·)

∥∥2 .
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The linear inverse problem (a constant and known, b
unknown)

−1

r

∂

∂r

(
r
∂h

∂r

)
+

1

r2
∂2h

∂θ2
+ ah = b, h|∂Ω = 0,

where ∂Ω is an unit circle.

� We use eigenfunctions [9] Φnm(r , θ) := 1√
4π

In(µnmr)
In+1(µnm)e

inθ,

where µnm is m-th zero of In (nth order modi�ed Bessel function of the
�rst kind).

� A solution of the inverse problem b† =
∑

n,m (a− µ2nm) 〈h,Φnm〉Φnm.

� Remark: a− µ2nm →∞, which destroys stability: small error in h will
cause the series to become divergent.

� A regularization is neccessary

bα,T (N,M) :=

N,M∑
n=−N,
m=1

〈h,Φnm〉
α + 1

a−µ2nm

Φnm.

[9] �.Pªociniczak, W.Okrasi«ski, Regularization of an Ill-posed Model in Corneal Topography
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The linear inverse problem (a constant and known, b
unknown) cont'd.

How much bδα,T is di�erent from the true value b? (If
∥∥hδ − h

∥∥ ≤ δ).
Theorem 2
We have ∥∥∥bδα,T (N,M) − b

∥∥∥ ≤ 2
√
Dδ,

if only α = α(δ), N = N(δ), M = M(δ) are chosen, as to

α + C (N,M) =

√
δ

D
,

where ‖y‖ ≤ D and C (N,M) := inf{ 1
a−µ2nm

: |n| ≤ N,m ≤ M}.
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Numerics

Fitting errors, with a0 i
b0 constant.

β, where b = b0 + β.
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Summary

� Mathematical modeling in problems associated with eye is very desired.

� It is a source of very interesting and nontrivial problems from di�erent
�elds on mathematics.

� Further progress in medicine will be very dependent on mathematics.

� We obtained a new, easy to apply, model of corneal topography based on
physical principles.

� We have presented a new and fast iterative method of determining
unknown parameters in the inverse problem.
� Methods of �nding a and b guarantee good model �tting (with small error).
� Coe�cients a and b are associated with measurable parameters of the

cornea, and thus can be important in diagnosis and treating eye diseases.
� The function β contains information about lack of axial symmetry of the

cornea.
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