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What mathematical modeling can do for sight and
vision?
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O Blinking brings a very thin layer of tear film. How to describe it?
U How to calculate the moment of tear drying (Break-Up-Time, BUT) ?
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® What is the shape of the cornea?
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Eye anatomy

Typical sizes:

m eye size 24mm,

corneal diameter 11.5mm,

corneal thickness
0.5—0.7mm,

height circa 2mm.

Five layers of the cornea:
m epithelium,

= Bowman's layer,

B stroma,

® Descement’'s membrane,

= endothelium.
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Eye anatomy

Typical sizes:

m eye size 24mm,

corneal diameter 11.5mm,

corneal thickness
0.5—0.7mm,

height circa 2mm.

Five layers of the cornea:
m epithelium,

= Bowman's layer,

B stroma,

® Descement’'s membrane,

= endothelium.

Cornea is very important - it accounts for about % eye power!
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Tears and their meaning

Lacrimal puncta Dolny kanal lzowy
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® They moisten the eye and protect from

AQUEQUS LAYER

bacteria. =
= Contents: water, salt (NaCl) and enzymes. Wmmm
® Three layers: lipid 0.1 — 0.2um, aqueous RS S e

4/— 10pm and mucus 0.5 — 1um.
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-
Blinking and the physics

m Blinking brings the tear film over the surface of the cornea.

® Typical time between successive blinks in a healthy patient - about 5 — 8s
(in rabbit’s eye - 10min!).

® Problems: too small tear production, too fast evaporation — "dry eye".

5/ L}l R.J.Braun et al., Thin film dynamics on a prolate spheroid with application to the cornea



-
Blinking and the physics

m Blinking brings the tear film over the surface of the cornea.

® Typical time between successive blinks in a healthy patient - about 5 — 8s
(in rabbit’s eye - 10min!).

® Problems: too small tear production, too fast evaporation — "dry eye".

m Some of the physical properties.

O Lipid layer protects from excessive evaporation. Average evaporation rate is
15 x 107° kg m? 5! for normal eyes and 60 x 10™® kg m? s for dry eyes.

O This layer also weakens the surface tension: tear-air - 43.3mN m™*,
water-air - 72.3mN m~!,

O Tear film is slightly shear thinning - viscosity diminishes with the increase of
shear stress.

O In modeling it is usually assumed that tear is a Newtonian fluid and takes
into account several factors: surface tension, gradients in lipid layer,

evaporation, blinking, heat source and corneal geometry [1]

5/ [;.l R.J.Braun et al., Thin film dynamics on a prolate spheroid with application to the cornea



Interlude: thin layer approximation

m So-called "Lubrication Theory": Reynolds problem on bearing oiling.
m |t is applied when the geometry of the problem is "long an thin": € =
typical thickness / typical length.
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m So-called "Lubrication Theory": Reynolds problem on bearing oiling.

m |t is applied when the geometry of the problem is "long an thin": € =
typical thickness / typical length.

m Example: Plain bearing. The bearing (y = Hph(x/L)) stays motionless
and the surface y = 0 slides with the speed U.

= We scale the unknowns:
Ho u v t p UL
= — * = — * = — t* = * = R /: 2—'
‘cT'Turt Twr Lo P T aog T T

xth component of the nondimensional Navier-Stokes equation then
becomes (dropping asterisks):
Ou  Ou Ou_ 1 ( Op, , 0u  d%u
FU— F v = .
Ox Ox2 ' By?

ot Ox a ~ Re

® Using the continuity equation we obtain Reynolds equation:
30p oh
h? 6—
( c')x) ox’
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Break-up time (BUT)

® It is usually defined as a first moment of dry region to appear just after
blinking.

® |t is a very important parameter measured by ophthalmologists. Very
sensitive to ambient conditions, but usually 20 — 30s.

7/ [22l R.J.Braun, A.D.Fitt, Modelling drainage of the precorneal tear film after a blink
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® Very good estimates were obtained by Braun and Fitt [2] .

® Model: thin-layer theory (¢ = d// = x-dimension / y-dimension) for
Navier-Stokes + evaporation and gravity.
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Break-up time (BUT)

® It is usually defined as a first moment of dry region to appear just after
blinking.

® |t is a very important parameter measured by ophthalmologists. Very
sensitive to ambient conditions, but usually 20 — 30s.

® Very good estimates were obtained by Braun and Fitt [2] .

® Model: thin-layer theory (¢ = d// = x-dimension / y-dimension) for
Navier-Stokes + evaporation and gravity.

® Typical scales:

d =10um, | = 0.36mm, € = 0.028, G = 0.75, U = 0.75mms™*, Re = 0.2.
® Main equation for the tear thickness:
E h3
hi+ —— 4+ | —= (hwx + G)| =0,

X

where E, Jy - constants associated with evaporation and temperature.

7/ [%l R.J.Braun, A.D.Fitt, Modelling drainage of the precorneal tear film after a blink




Break-up time (BUT) c.d.

® Braun and Fitt obtained a numerical solution on a 4000 point-grid. For
the BUT they took the time when h became smaller that grid-size.
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Flows in eye chambers

Cornea

Iris

® Anterior chamber - a region between iris Coeendonc |
and the cornea. Posterior chamber - s ".
. . body
region between iris and lens. Aqusous
. . Sclera \
= Aqueous humor - a fluid that fills the —
/
chambers (about 0.3 cm3). It removes the 7
. . A
products of metabolism, nourishes and 4
prOVideS IOP // Zonules <N |
. - . . i -
= |t is transparent and jelly-like. It consists | =
. . Juxtacanalicular
of water and amino acids. B ior trabecular meshwork
i - channel  Schlemm's | ‘I"’-’
= |t is produces by ciliary body, from where \ o]
it flows through posterior chamber, pupil / /Af\
and is removed in the Schlemm’s canal. Z \
Trabecular #
meshwork
® |t must be conserved (!) - same amount /’
removed as produced.

= How to describe it mathematically?
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Flows in eye chambers cont'd.

® What causes the flow of aqueous humor? [3,4] .

O Buoyancy is a result of temperature gradient between iris and the anterior
chamber.

0 The flow is produced by ciliary body.

O Influence of buoyancy-gravity in horizontal position (ex. during sleeping).

O REM phase.

o004 02 T 0.002 0.004

[3] A.D.Fitt, G.Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber
10 /[42]5C.R.C.nnmg, Fluid flow in the anterior chamber of a human eye




Flows in eye chambers cont'd.

® What causes the flow of aqueous humor? [3,4] .
O Buoyancy is a result of temperature gradient between iris and the anterior
chamber.
0 The flow is produced by ciliary body.
O Influence of buoyancy-gravity in horizontal position (ex. during sleeping).
O REM phase.

® The simplest model: Navier-Stokes
equations, heat equation + Bussinesq
approximation and "lubrication theory".

® |t is possible to obtain an exact solution,
for example

(T — To)gaz2(z - h)2
24vh

w:_

0004 -0.002 U 0.002 0.004

[3] A.D.Fitt, G.Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber
10 /[Q)sC.R.C.nnmg, Fluid flow in the anterior chamber of a human eye




Flows in eye chambers cont'd.

= When patient is asleep, the blood flow
does not necessarily balance the
temperature gradient.

= A very small flow occurs that is a result of
gravity and a minute temperature gradient.

§

® Facodenesis - lens wibrations caused by e —
head movements. s )

® These vibrations have to have sufficiently
small amplitude in order to provide /e
flawless seeing. [

vvvvvv MRS

. . A I TLEEER

= Fitt and Gonzalez assumed a certain — .
periodical "*pumping"’ speed of fluid

through the pupil.

»

ottt
........ ittt

® The flow is essentially 3D.
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Flows in eye chambers cont'd. (Schlemm’s Canal)

[5] Z.Ismail, A.D.Fitt, Mathematical modelling of flow in Schlemm's Canal and its influence on primary open
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Flows in eye chambers cont'd. (Schlemm’s Canal)

® When the anterior chamber holds too much aqueous humor (ex. when
the Schlemm’s Canal becomes stucked), the pressure rises.

m POAG (Primary Open Angle Glaucoma) — advancing and permanent eye
nerve damage — blindness.

[5] Z.Ismail, A.D.Fitt, Mathematical modelling of flow in Schlemm's Canal and its influence on primary open
.nisle/g_‘!-sucoma
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® When the anterior chamber holds too much aqueous humor (ex. when
the Schlemm’s Canal becomes stucked), the pressure rises.

m POAG (Primary Open Angle Glaucoma) — advancing and permanent eye
nerve damage — blindness.

® In [5] Authors use the Friedenwald's Law (relation between IOP and
eye's volume) and thin-layer theory:

(FL) p1 = prexp(KIn10(V4 — V5)).
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Flows in eye chambers cont'd. (Schlemm’s Canal)

® When the anterior chamber holds too much aqueous humor (ex. when
the Schlemm’s Canal becomes stucked), the pressure rises.

m POAG (Primary Open Angle Glaucoma) — advancing and permanent eye
nerve damage — blindness.

® In [5] Authors use the Friedenwald's Law (relation between IOP and
eye's volume) and thin-layer theory:

(FL) p1 = prexp(KIn10(V4 — V5)).

® They obtained an equation that describes increase of IOP that is caused
by Schlemm's Canal occlusion:
dp dVi;
— =~ K .
dt dt
® This occlusion can cause the IOP to become arbitrarily large — glaucoma
and blindness

[5] Z.Ismail, A.D.Fitt, Mathematical modelling of flow in Schlemm's Canal and its influence on primary open
nniile/gz!‘-sucoma



IOP
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IOP

® |t provides a proper eye shape.

m Typical IOP: 10 — 20mmHg. When /OP > 25mmHg glaucoma can
develop (or worse...). When /OP < 10mmHg detunning of lens and
cornea can occur (or worse...).
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cornea can occur (or worse...).

m Measuring the actual value of IOP is crucial (but it is very sensitive on
ambient conditions). This is the field of Tonometry.

® There are some measuring techniques:

O from very invasive (during a surgical operation),
O through invasive, ex. Goldman's Tonometer,
0 to less invasive, ex. air-puff.
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® Imbert-Fick's "Law" (in reality: Newton’s Third Law applied "by force"):
IOP = value of force (in grams) needed to flatten a circle with radius of
3.06mm on the cornea [6].

m Cons: wrong physical basis, not-the-best accuracy especially for high IOP,
unpleasant for the patient, ...
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It provides a proper eye shape.

Typical IOP: 10 — 20mmHg. When /OP > 25mmHg glaucoma can
develop (or worse...). When /OP < 10mmHg detunning of lens and
cornea can occur (or worse...).

Measuring the actual value of IOP is crucial (but it is very sensitive on
ambient conditions). This is the field of Tonometry.

There are some measuring techniques:

O from very invasive (during a surgical operation),

O through invasive, ex. Goldman's Tonometer,

0 to less invasive, ex. air-puff.

Imbert-Fick's "Law" (in reality: Newton's Third Law applied "by force"):
IOP = value of force (in grams) needed to flatten a circle with radius of
3.06mm on the cornea [6].

Cons: wrong physical basis, not-the-best accuracy especially for high I0P,
unpleasant for the patient, ...

A measurement only on the basis of corneal topography?

13
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What is the shape of the cornea?

Contemporary models of corneal topography:

® The simplest: based on the conical curves - mostly parabolas and ellipses
(Helmholtz, 1924) ("statistically" correct).

® Very complicated: based on shell thery and FEM.

® Models based on Zernike Polynomials (1934) - describe aberration.
Lately, also Bessel functions are being used [7].

® Real models of eye.

Survey literature
1. Fowler CW, Dave TN., Review of past and present techniques of measuring corneal
topography, Ophthalmic Physiol Opt. 14(1) (1994), 49-58,

Lindsay R, Smith G, Atchison D., Descriptors of corneal shape, Optom Vis Sci. 75(2) (1998),
156-8.

3. Y. Mejia-Barbosa, D. Malacara-Hernandez, A review of methods for measuring corneal

topography, Optometry and Vision Science 78 (2001), 240-253,

14 /[72]5J.P. Trevino et al., Zernike vs. Bessel circular functions in visual optics



A new model

Main assumptions [8]

m Cornea is a thin membrane (constant surface tension and lack of bending
moments).

® Three forces shape the cornea: surface tension, elasticity and a
pressure-force.

® In the model we describe the height of the cornea h over some reference
plane Q (here: a circle).

Equation of the corneal topography (in a nondimensional form)

—V?h+ ah= b onQ, h=0naodQ,
1+ [|Vh|?
where h-rescaled, a := k—'.;z ib:= P—f and k-elasticity constant, T-tension,

P-intraocular pressure, R-typical size of the cornea.

ki b Plociniczak Nonli Math s ol
15 /[S_JSW.Okr L.P A Model of the Corneal Shape




A direct problem
How, from the knowledge of a and b, find the shape of the cornea h?

® We assume an axial symmetry h = h(r) then a and b have to be constant.
= We solve the problem

1d dh b
_+a an - - < < / = = V.
rdr (rdr>—|—ah V1t h?’ 0<r<1, K(0)=0 h(1)=0. (1)
16 / 25



A direct problem

How, from the knowledge of a and b, find the shape of the cornea h?
® We assume an axial symmetry h = h(r) then a and b have to be constant.
= We solve the problem

1d dh b
(= = <r< '(0) = =0.
P (rdr)—l—ah T 0<r<1 H(0)=0, h(1)=0. (1)

= For sufficiently small b we have existence,
uniqueness, monotonicity and fundamental
estimates of (1) by

where ly is a modified Bessel function of
the first kind.
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A direct problem

How, from the knowledge of a and b, find the shape of the cornea h?

® We assume an axial symmetry h = h(r) then a and b have to be constant.

= We solve the problem
L d rdh + ah
dr

rdr
= For sufficiently small b we have existence,
uniqueness, monotonicity and fundamental
b _ Io(\/Er)

estimates of (1) by
b
(%A

where ly is a modified Bessel function of
the first kind.

b
VIt

ho(r) :=

0.05

0<r<1, H(0)=0, h(1)=0. (1)

0 01 02 03 04 05 06 07 08 09
r

m For small values of a the solution (1) is a parabola.

16 / 25
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Direct problem cont.

Theorem 1

Let b < I;E/ji) —ﬂ%‘i’[l The solution of (1) is a positive, nonincreasing
function f for which we have

Ahy < h < ho,

where hg is defined by the formula

/
ho(r) = b <1 B o(ﬁr)) 7
a lo(v/a)
and h; is the next approximation in the successive approximation scheme.
Moreover,
A 1+ hj(1)?

17 / 25



Inverse problem

How to find a and b when we know h?
® Problems of this kind are usually ill-posed, that is they do not fulfill one
of the following conditions

0 they have a solution,
O they have an unique solution,
O small error in the initial data causes small error in the output (stability).
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Inverse problem

How to find a and b when we know h?
® Problems of this kind are usually ill-posed, that is they do not fulfill one
of the following conditions
0 they have a solution,
O they have an unique solution,
O small error in the initial data causes small error in the output (stability).
® |n our case we consider two problems:
1. ai b are constant and unknown — nonlinear problem,
2. ais known and constant but b (not necessarily constant) has to be found
— linear problem.
= Remark: We cannot hope for an unique solution - we look for a solution
in the L2 norm sense (least-squares).

18 / 25



The nonliear inverse problem (a, b constant and

unknown)
In subsequent considerations we will assume that the curvature of the cornea
is small. It simplifies the equation

190 ( oh

—_—— — —_— p— ! p— =
o rar)+ah b, H(©0)=1, h(1)=0.

19 /{yﬂ W.Okrasinski, £.Plociniczak, Nonli P. Identification in Corneal Geometry Model




The nonliear inverse problem (a, b constant and

unknown)
In subsequent considerations we will assume that the curvature of the cornea
is small. It simplifies the equation
10 ([ oOh
-2 (==
ror \' Or
® The nonlinear problem can be solved in a two-step method [10] :
1. First, using the general theory we find
bt = bl(a) = M7
I(a, )l

) tah=b, H(O)=1, h(1)=0.

where f(a,r) =2 (1 — ’;’(‘/5’)).

o(V/3)

19 /[:E%l W.Okrasinski, £.Plociniczak, Nonli P. Identification in Corneal Geometry Model




The nonliear inverse problem (a, b constant and
unknown)

In subsequent considerations we will assume that the curvature of the cornea
is small. It simplifies the equation
10 ([ oOh
-2 (==
ror \' Or
® The nonlinear problem can be solved in a two-step method [10] :
1. First, using the general theory we find

bt = bT(a) _ (f(a,-), h)
(a1

) tah=b, H(O)=1, h(1)=0.

where f(a, r) := ‘;’ (1 — ’zj((‘\/[i’))).

2. Then, we solve a nonlinear problem of fining a. We use an iterative method
similar to the Newton's tangent scheme (a new proof of convergence)

(h— f(an,-), Zb'(a)f(a;")) .
156 (@)f ()|

19 /[&%] W.Okrasinski, £.Plociniczak, Nonli P. Identification in Corneal Geometry Model

dp+1 — an + Aan, Aa,, =




The linear inverse problem (a constant and known, b
unknown)

10 Oh 1 9%h

_z9 (9 9 = hlao =
ror <r8r> + r2 062 ta b, loa =0,

where 02 is an unit circle.

20 @ t-Plociniczak, W.Okrasinski, Regularization of an lll-posed Model in Corneal Topography



The linear inverse problem (a constant and known, b
unknown)

10 oh 1 0%h
_;E <r5> +ﬁw—|—ah—b, h|89—07

where 0Q is an unit circle.
m We use eigenfunctions [9] ®,(r,0) = \/}G% et

where (ipm is m-th zero of I, (nth order modified Bessel function of the
first kind).

20 @ t-Plociniczak, W.Okrasinski, Regularization of an lll-posed Model in Corneal Topography



The linear inverse problem (a constant and known, b
unknown)

10 oh 1 0%h
_;E (rE) +ﬁw—|—ah—b, h|89—07

where 0Q is an unit circle.
m We use eigenfunctions [9] ®,(r,0) = \/}G% et

where (ipm is m-th zero of I, (nth order modified Bessel function of the
first kind).
= A solution of the inverse problem b’ = > onm (@ = t2m) (B, ®pm) P
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The linear inverse problem (a constant and known, b
unknown)

10 oh 1 0%h
_;E (rE) +ﬁw—|—ah—b, h|89—07

where 02 is an unit circle.

m We use eigenfunctions [9] ®,(r,0) = \/%r% e’

where (ipm is m-th zero of I, (nth order modified Bessel function of the
first kind).

= A solution of the inverse problem b’ = > onm (@ = t2m) (B, ®pm) P

= Remark: a — u2,, — 0o, which destroys stability: small error in h will
cause the series to become divergent.

20 @ t-Plociniczak, W.Okrasinski, Regularization of an lll-posed Model in Corneal Topography



The linear inverse problem (a constant and known, b
unknown)

10 oh 1 0%h
_;E (rE) +ﬁw—|—ah—b, h|89—07

where 0Q is an unit circle.
= We use eigenfunctions [9] ®,,(r,0) := \/}G% e’
where (ipm is m-th zero of I, (nth order modified Bessel function of the
first kind).
= A solution of the inverse problem b’ = > onm (@ = t2m) (B, ®pm) P
= Remark: a — u2,, — 0o, which destroys stability: small error in h will
cause the series to become divergent.
® A regularization is neccessary
N,M

(h,®nm)
bo,T(N,M) = Z ——— b,
n=—N, & a—p2,
m=1

20 @ t-Plociniczak, W.Okrasinski, Regularization of an lll-posed Model in Corneal Topography




The linear inverse problem (a constant and known, b
unknown) cont'd.

How much b}, ; is different from the true value b? (If ||h° — h|| < 6).

Theorem 2
We have

bY, T(w.y — bH <2vDs,

if only o = «(9), N = N(5), M = M(J) are chosen, as to

o+ C(N,M):V%,

where |ly|| < D and C(N, M) :=inf{--2—:|n| < N,m < M}.

2
a—Hom

21 /25




Numerics

Absolute error for fitting (Interior Surface) [mm] Absolute error for fitting (Esterior Surface) [mm]

Fitting errors, with ag i
by constant.

B, where b = by + 0.




Summary

® Mathematical modeling in problems associated with eye is very desired.

® |t is a source of very interesting and nontrivial problems from different
fields on mathematics.
® Further progress in medicine will be very dependent on mathematics.

m We obtained a new, easy to apply, model of corneal topography based on
physical principles.

m \We have presented a new and fast iterative method of determining
unknown parameters in the inverse problem.

O Methods of finding a and b guarantee good model fitting (with small error).

O Coefficients a and b are associated with measurable parameters of the
cornea, and thus can be important in diagnosis and treating eye diseases.

0 The function 3 contains information about lack of axial symmetry of the
cornea.
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