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Some preliminary information
Literature. The lecture will be self-sufficient, but some textbooks will be very helpful.
Below are my suggestions (from the most basic to more advanced).

1. A. Friedman, W. Littman, Industrial Mathematics - A Course in Solving Real-World
Problems, SIAM, Philadelphia 1994. A compilation of various modelling tech-
niques illustrated with a real-world examples from the industry.

2. S. Howison, Practical Applied Mathematics, Cambridge Texts in Applied Mathe-
matics. A highly readable book on modelling in industry and other fields of
science and technology. Contains an interesting material concerning thin film
flows and lubrication theory.

3. C.C. Lin, L.A. Segel, Mathematics Applied to Deterministic Problems in the Natural
Sciences, SIAM 1988. A classical text on modelling with differential equations. A
must-read for everyone interested in applied mathematics.
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1 Introduction
This lecture is aboutmathematicalmodelling not only in industry (as its name says) but
also in many other branches of science and technology. "Industry" is a vast container
and everyone agrees that nowadays there is no clear boundary indicating what is and
what is not an industry any more. Therefore, apart from the traditional notion of an
industry we will learn about applied mathematics in biology, medicine, chemistry,
physics, geophysics, agriculture and so on. In that we way we may appreciate how
applied mathematics is useful in describing real-world phenomena.

Note that the material of this lecture concerns only deterministic and can be consid-
ered as a classical training of undergraduate applied mathematician. There is a huge
dual branch of probabilistic modelling which will be covered on other courses (e.g.
time series, stochastic processes, statistics, etc.).

The most important philosophical concept that we will learn about is modelling.
It is something between science and art and one has to learn it in practice (hence
the seminar). Mathematical modelling tries to formalize certain natural or industrial
phenomena to understand them, forecast, improve, and eventually benefit. Without
models the present technology would not be as we can experience it. In industry one
usually utilizes mathematics as a optimization tool used in quality and cost control.
There are many success stories where an intelligent mathematical model reduced the
cost of the whole process. Note that using mathematics is usually very cost-effective -
you only need your brain, paper, pencil, and a computer.

It is very hard to define what a model really is and we will defer it for philosophers.
ABritish statisticianGeorgeBoxwrote "allmodels arewrong, but someare useful." This
sentence captures the essence of a good mathematical model - it has to be useful. On
the other hand, in thewords ofMark Kac - "Models are, for themost part, caricatures of
reality, but if they are good, they portray some features of the real world." One usually
wants to build up a model that describes the essential features of the considered
problem which forms from physical principles by a series of simplifications (but not
too much of them). They have to be done systematically in an intelligent way because
otherwise, we can loose the predicability of the model and, hence, its usefulness. We
are always doing some trade-offs between computational complexity and predictive
capabilities. It is an art to find the balance between these two.

A warning is in order. When formulating or analysing real-world models prepare
to forget about clean and elegant formulas. Textbook examples are good for learning
various techniques however, the reality is muchmore complex and interesting. Mathe-
maticians are usually very good at reducing the whole complexity of the phenomenon
to an isolated subproblem that then can be analysed (a conceptual model). In other
case, it would be too cumbersome or even impossible to tackle the complete problem.
A good example comes from weather forecast. The equations describing the state of
the atmosphere and ocean are nonlinear partial differential equations to be solved on
a spherical shell. They are so complicated that this task is virtually impossible even
on present day supercomputers. What applied mathematicians do is to focus on really
important phenomena and filter out these which are not. For example, sound waves
are inessential for meteorology while the whole air flow is shallow (weather happen-
ing on 1000 km scales is mostly contained in the troposphere which is about 10 km
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thick). Even after many simplification weather forecast is carried over on powerful
supercomputers. Everyone knows how useful it is and that is saves lives.

Another textbookhabit of undergraduates is anticipationof exact solutionsof solved
problems. In real life this is hardly the case and even when we are in possession of
such, it may be completely useless because of its complexity. Approximate solutions
are much better since they allow us to focus on crucial features of the system. The
difficulty is to find a systematic way of finding such approximations. In this lecture we
will learn of several techniques that are very useful.

Usually mathematical modelling progresses in two stages: formulation, and so-
lution. When formulating a model we use out knowledge about physics, chemistry,
biology, economics, ..., to describe what is happening in the analyses phenomenon.
Then, we formulate that in terms of equations. This is a difficult part since, by nature,
is highly interdisciplinary and requires many skills that cannot be learned from text-
books (such as interpersonal communication with people of different backgrounds).
Then, in the solution phase of modelling we reduce the model to be trackable and
explicatory. Here, we can use our intuition and many techniques that can be mastered
by doing exercises.

Apart from purely deductive models outlined above, there is a large class of the
so-called black box models. More or less, this is a data trained system of mathematical
tools that given an input produces an output. The user does not knowwhat happens in
between and we usually loose the information about physics. Lately however, models
based on neural networks andmachine learning are becoming more popular, effective,
and quite useful. This is also an interesting topic for another course.
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2 Scaling and dimensional analysis
In this section we will consider a simple yet extremely useful tool of applied mathe-
matics - dimensional analysis. It is very surprising that having only the knowledge of
physical quantities that may affect a certain outcome we can infer about their relative
combination that has its place in the solution. This works even if we do not know that
solution or it is impossible to get an exact one. What we only need to know is a little
bit of linear algebra. We will illustrate the method of dimensional reduction or scaling on
a classical example.

Example. (Projectile problem) Suppose we throw a ball or shoot a projectile vertically in
the x-direction. By x = x(t) denote the position of the particle at time t > 0. Suppose
also that initially it is on the ground and is thrown at velocity v0. Then, by Newton’s
second law and the law of universal attraction it follows that

m
d2x

dt2
= −

GMm

(R+ x)2
, (2.1)

with initial conditions
x(0) = 0,

dx

dt
(0) = v0. (2.2)

Here, G is the gravitational constant, while R = 6371 km andM = 5.9× 1024 kg are the
radius andmass of Earth. Note that this is really a quite difficult problem! A nonlinear
second order equation requires much care to analyse. We can also use numerical
methods for solving it however, then we may loose all relevant information about the
dependence of the solution on the model parameters1. To have a useful model we have
to understand how things work and why. Therefore, we will try to find an informative
approximate solution.

We can play with the above ODE and use the definition of the gravitational accel-
eration g = GM/R2 to obtain

d2x

dt2
= −

gR2

(R+ x)2
. (2.3)

Now, our intuition about throwing balls in the air tells us that most frequently x is
much smaller than R and we denote it by x� R (this notation will be made precise in
later section). Therefore, it is reasonable to think that R+ x ≈ R and hence,

d2x

dt2
= −g, (2.4)

which, along with initial conditions, has the simple high-school solution

x(t) = v0t−
gt2

2
. (2.5)

1Remember that computer simulations are always solving one concrete example of a set of model
parameters at a time. It is very difficult then to learn about qualitative properties of the phenomenon.
Therefore, analytical reasoning and human ingenuity is very important and will never be suppressed
by computers.
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Figure 1: A height of the projectile in time for two different maximal heights. The solid
line is the numerical solution while dashed represents approximation.

On Fig. 1 we can see a comparison between numerical and approximate solution
that we have obtained. It is clear that for low maximal height, say ≤ 30 km, the
approximation is extremely accurate. For larger heights it is no longer valid and must
not be used in high precision simulations such as space flight.

Numerical simulations are only an experiment. We empirically know, more or
less, about the region of applicability of our approximation. Applied mathematician,
however, should not be satisfied by this answer. We would like to know exactly about
the error thatwemake, howdoes themaximal height depend on themodel parameters,
and how to conduct all the steps systematically in order to improve the approximation.

The validity of the approximation can be inferred by the back-of-the-envelope cal-
culation. From (2.5) we know that the maximal height is v2/(2g) which implies that
we have to assume that

v2

2Rg
� 1, (2.6)

in order to have a consistent approximation. This requirement, however, is vague since
we have to be precise what does the "much smaller than" rigorously mean.

We would like to make the above consideration systematic and precise. More
specifically, we would like to knowwhen it is possible to discard a part of the equation
andwhat error we thenmake. In muchmore complicated problems (and in real-world
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we meet such) this may be not so obvious (and it is not). Further, we would like to
improve on our approximation to go further beyond the linear terms (as the uniform
gravitational field g in the above example). We will learn about all of these in the
sequel.

2.1 Examples of dimensional reduction
We start with the profound idea of dimensional reduction and scaling. Recall that
all physical quantities must either be numbers or have a dimension. The types of
the latter are length L, mass M, time T , electric current I, and temperature θ. From
these primary quantities all other physical units can be composed. Note that these are
abstract notions indicating various types of a given variable or a space in which it lives.
They do not have nothing to do with specific units used in calculations such as meters,
kilograms, seconds, amperes, or kelvins in SI system. However, they become specific
once we fix the unit system. For example, it does not make any sense to add two
quantities representing length and mass nor it is absurd to subtract force from velocity
even though they mathematically are vectors. A dimension denotes the vector space
in which everything is happening. This is the basic idea of dimensional reduction.

The second observation is that equations describing physical situations have to be
independent of the specific unit system. Nature does not distinguish between ergs or
joules, for it the energy is just energy. Therefore, transforming the equation into a
nondimensional form should reveal physics (and usually is much more computation-
ally trackable). The caveat is that in complicated models there is no unique way of
doing so and many independent and non-equivalent paths of reasoning exits.

In what follows by the bracket we will denote the dimension of a given quantity,
for example for the force Fwe have [F] =ML/T 2.

Example. (Projectile problem cont’d) Suppose we would like to find an expression for
the maximal height xm of the flight of the projectile as a function of the remaining
parameters. We encapsulate all the information inside some unknown function f. This
is the law that interconnects xm, v, R, and g and can be written abstractly as

f(xm, v, R, g) = 0. (2.7)

Now, since the laws of physics laws are independent on the units we must be able to
choose such a combination of all present quantities in order to obtain a nondimensional
result. That is, we look for exponents a, b, c, and d such that

[xm]
a[v]b[R]c[g]d = L0M0T 0 = 1. (2.8)

Recalling that [v] = L/T , [R] = L, and [g] = L/T 2 we have

LaLbT−bLcLdT−2d = 1. (2.9)

Since the fundamental dimensions are independent we obtain a system of linear equa-
tions {

a+ b+ c+ d = 0,

−b− 2d = 0.
(2.10)
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Solving it we obtain a two-parameter family

b = −2d, c = d− a, a, d ∈ R. (2.11)

Therefore, we learn that the following combination of our parameters is nondimen-
sional

xamv
−2dRd−agd =

(xm
R

)a( v2
Rg

)−d

. (2.12)

Hence, we can infer that due to dimensional homogeneity of physical laws we should
have

f(xm, v, R, g) = f

(
xm

R
,
v2

Rg

)
= 0. (2.13)

This tells us a lot! For example, it is almost always the case that we can solve the above
implicit equation for one of its variables (Inverse function theorem). In this way we
know that there exists a function h = h(z) such that

xm = Rh

(
v2

Rg

)
. (2.14)

This is the only way that the maximal height can depend on the remaining parameters.
The simplest choice is, of course, h being a linear function (since a constant does not
make sense). For example, our approximation (2.5) tells us that h(z) ≈ z/2 and on
Fig. 2 we indeed see that if xm ≤ 100 km it is a very good approximation. This shows
that even if we do not know h exactly, a first guess can be decently accurate (up to a
constant). The exact form of the function h can be found, as we did, by numerical or
real-world experiments. Note however, howmuchwe have learned about the projectile
without actually solving anything! This is a great aid in modelling. Note that we did
not even need to know the exact form of the differential equation as long we knew the
relevant physical quantities that entered the formulation.

Example. (Drag on a sphere) Wewill now investigate a classical problem of determining
the drag force on a spherical object submersed in a fluid. This has a profoundmeaning
in motor and aerospace industries. Engineers constantly want to design bicycles, cars,
and airplanes to have the smallest drag possible. This is a subject of constant research
and investigation even in XIX century. We will see how dimensional analysis can
help us to determine the formula for the drag even without knowing the form of the
governing differential equations for the flow2.

Assume that a ball of radius R is immersed inside a flowing fluid of density ρ,
velocity U and viscosity µ. By FD we denote the drag force acting on the sphere.
As in the previous example, we assume that the physical law combining all of these
quantities is given by a function f, i.e. f(R, ρ,U, µ, FD) = 0. Now, we collect all the
relevant dimensions

[R] = L, [ρ] =ML−3, [U] = LT−1, [µ] =ML−1T−1, [FD] =MLT
−2. (2.15)

2They are the celebrated Navier-Stokes equations.
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Figure 2: On the left: projectile maximal height (solid line) and its approximation
v2/(2g) (dashed line) as a function of initial velocity. On the right: projectile maximal
height as a function of v2/(Rg) (solid line) and its linear approximation h(z) = z/2.
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Since all physical laws have to be independent on the specific units chosen, they have
to depend only the nondimensional quantities that can be formed from the above. We
thus look for a, b, c, d, and e such that

RaρbUcµdFeD = 1. (2.16)

Plugging the relevant dimensions we obtain

1 = LaMbL−3bLcT−cµdMdL−dT−dMeLeT−2e = La−3b+c−d+eMb+d+eT−c−d−2e, (2.17)

which, due to independence of fundamental dimensions leads to
a− 3b+ c− d+ e = 0,

b+ d+ e = 0,

−c− d− 2e = 0.

(2.18)

The solution is a two-parameter family given by3

b = a+ e, c = a, d = −a− 2e, a, e ∈ R. (2.19)

Therefore, we can form a nondimensional combination known as nondimensional group

Raρa+eUaµ−a−2eFeD =

(
RρU

µ

)a(
ρFD

µ2

)e
. (2.20)

Hence, our physical law depends only on two nondimensional parameters in a specific
combination instead of five dimensional ones. We can thus write

f(R, ρ,U, µ, FD) = f

(
RρU

µ
,
ρFD

µ2

)
= 0. (2.21)

One number that appeared above is of great importance in fluid dynamics, it is the
Reynolds number

Re =
RρU

µ
. (2.22)

This quantity helps to find the properties of the flow and is usually found that for low
Reynolds number the flow is laminar (calm, smooth, constant) while for larger values
- turbulent. It can be thought as a ratio of inertial to viscous forces. The nonlinear
equation f = 0 can be solved for one of its variables yielding

FD =
µ2

ρ
F(Re). (2.23)

This expression can be conveniently transformed into

FD = ρR2U2
µ2

R2ρ2U2
F(Re) = ρR2U2G(Re), (2.24)

3Note that it is very beneficial to have the exponent of sought quantity being taken as a parameter of
our solution, i.e. e ∈ R.
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Figure 3: A general shape for the drag coefficient G for a flow over a sphere.

where we defined a new (unknown) function G, the so-called drag coefficient modulo
some constants, which has to be found either by solving Navier-Stokes equations
or doing experiments. An experimentally obtained graph is given on Fig. 3. We
immediately notice that for 103 < Re < 105 the drag coefficient is almost constant with
G ≈ 0.7. This is the simplest choice. Therefore, we obtain the extremely useful and
widely used relationship

FD ∝ ρAU2, 103 < Re < 105, (2.25)

which means that the drag is proportional to the density, area of a body, and velocity
squared. Everyone who rides a bicycle knows that very well - it requires much more
energy to accelerate from 30 to 31 km/h than from 20 to 21 km/h in the same wind
conditions.

Further, for the low Reynolds number, that is for laminar flow, the graph on Fig. 3
is linearly decreasing on a log-log scale. Translating it backwards it follows that a very
good fit can be obtained in the form G(Re) ∝ Re−1. Therefore,

FD ∝ µRU, Re < 20, (2.26)

which is the famous Stokes Law of drag around a sphere. Stokes solved the dynamical
equations analytically and obtained that the drag is proportional to viscosity, radius,
and the velocity (not squared!). The constant of proportionality is equal to 6π. This is
another triumph of clever analytical reasoning.

Another important application of the found formulas can be found inmodel testing.
The crucial observation follows from the nondimensional units: two flows with the
same nondimensional parameters are the same. This means that instead of testing,
for example, a large-scale original vessel we can build its small model and choose a
particular fluid for the Reynolds numbers to be equal. Evidently, this has great impact
on streamlining the process of construction, design and is very economical.
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Notice that we were able to deduce an enormous amount of information without
even the knowledge of Navier-Stokes equations! Obtained formulas have been im-
proved, tested, and used in industry for over 150 years and certainly will be usedmuch
longer.

Example. (Pendulum) We will revisit the high school problem of finding the period P
of a mathematical pendulum of massm, length l, and initial angle θ. The gravitational
acceleration is g. Note that it appears that me mentioned all the relevant quantities.
The physical law, as before, is f(P,m, l, θ, g) = 0 and we would like to construct a
nondimensional combination of given parameters

[P]a[m]b[l]c[θ]d[g]e = 1, (2.27)

where a, b, c, and d are unknowns while [P] = T , [m] = M, [l] = L, [θ] = 1, and
[g] = LT−2 (the angle is nondimensional since it is a ratio of two lengths). Whence,

TaMbLcLeT−2e = 1, (2.28)

which leads to 
a− 2e = 0,

b = 0,

c+ e = 0,

(2.29)

with solution
b = 0, c = −

a

2
, e =

a

2
, a, d ∈ R. (2.30)

Therefore, the mass does not enter the equation what we know very well from physics.
We have the nondimensional group

Pal−
a
2 θdg

a
2 =

(
P

√
g

l

)a
θd, (2.31)

and hence our law can be resolved to

P = 2π

√
l

g
F(θ), (2.32)

for some F. The constant 2π in from of the above expression was added to remind us
that for the harmonic oscillator, i.e. pendulum with small initial angle, the period is
equal to 2π

√
l/g. Note that thanks to the dimensional analysis we have determined the

unique form of the formula for the period. You may remember from the ODE course
that the function F can be found by solving the respective equation which we did not
even write here! The answer is

F(θ) =

∫ θ
0

dϕ√
cosϕ− cos θ

= 1+
1

16
θ2 +

11

3072
θ4 + ... (2.33)

We see that the simplest guess, that is F constant, gives us a second order correction
(since θ2).
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Example. (Pulsating stars) Certain stars change its luminosity in a periodic manner
thanks to different mechanisms. For example they can shrink and expand due to
thermodynamic processes, or be eclipsed by some smaller object lying on our line of
sight. We will use dimensional analysis to find the period of a internally pulsating star
of mass m, radius r, period P. The gravitational constant is G. We assume that the
physical law governing this phenomenon is f(m, r, P,G) = 0, where [m] =M, [r] = L,
[P] = T , and [G] = L3M−1T−2. We have

MaLbT cL3dM−dT−2d =Ma−dLb+3dT c−2d = 0, (2.34)

from which we deduce 
a− d = 0,

b+ 3d = 0,

c− 2d = 0,

(2.35)

with a solution
a =

1

2
c, b = −

3

2
c, d =

1

2
c, c ∈ R. (2.36)

Further, we have nondimensional group

m
c
2 r−

3c
2 PcG

c
2 =

(
P

√
mG

r3

)c
. (2.37)

We can now invert the physical law to obtain

f

(
P

√
mG

r3

)
= 0→ P = C

√
r3

Gm
. (2.38)

Recalling thatm/r3 is proportional to the mean density of the star we can rewrite this
as

P = D

√
1

Gρ
, (2.39)

hence, the period is inversely proportional to the square root of the density. English
astronomer - Arthur Eddington - analytically calculated the prefactor with the use of
thermodynamics, his result states that D =

√
3π/2γ with γ is a ratio of specific heats

of stellar material. Note that this result is completely independent on the star size!

Example. (Nuclear bomb) A famous example of dimensional analysis comes from one
of the greatest English applied mathematicians - G.I. Taylor. Appointed by the British
government he was working on development of nuclear weapons. From security
reasons he did not take part in the Manhattan project4. Instead, he was armed with
a ingenuity in mathematics, physics, and some photographs of the Trinity explosion.
Taylor knew that the nuclear explosion creates a spherical shock wave that separates
areas of different pressure. By solving fluid flow equations, which was a daunting

4Independently, John von Neumann worked on similar topics in US, while Leonid Sedov in USSR.
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task, Taylor assumed that the radius r of the explosion depended on the density of
air ρ, released energy E, and time after the blast t. Note that guessing the relevant
quantities in that case is extremely difficult. The dimensions are [r] = L, [ρ] = ML−3,
[E] =ML2T−2, and [t] = T . We have f(r, ρ, E, t) = 0, and

LaMbL−3bMcL2cT−2cTd = La−3b+2cMb+cT−2c+d = 1, (2.40)

and hence 
a− 3b+ 2c = 0,

b+ c = 0,

−2c+ d = 0.

(2.41)

The solution is a one-parameter space

b =
a

5
, c = −

a

5
, d = −

2a

5
, a ∈ R. (2.42)

This gives us that

r5 = C
Et2

ρ
, (2.43)

and from here we can express the energy of the blast

E = C
ρr5

t2
. (2.44)

The constant C follows from thermodynamics and flow equations, it can safely be
assumed that it is close to 1 (actually 1.036). Taylor looked at the publicly accessible
photographs showing the snapshots of a Trinity explosion andplugged several radii for
given times. On this basis, he was able to accurately estimate the energy of detonation.
His results, 20 kilotons of TNT, were very close to the official value of 22 kilotons of
TNT. Similar dimensional reasoning leads to a results that the volume V of a crater
resulted from the explosion is

V = C

(
E

ρg

) 3
4

. (2.45)

Governments were shocked and Taylor’s papers were classified for several years. Ob-
serve how far mathematics can take you.

Example. (Pythagoras theorem) Another remarkable example concerns Pythagoras the-
orem. Let there be a right triangle with sides a, b, and c being its hypotenuse. By
α denote one of its acute angles. We assume that the area A can be calculated with
knowledge of the hypotenuse and the angle. Since the area has to have dimension L2
we have

A = c2f(α). (2.46)
Now, if we drop a altitude on the side c we obtain two similar triangles with hy-
potenuses a and b and areas A1, A2 with A1 +A2 = A. Note also that in both of these
triangles one of the acute angles is α. This gives us that

A1 = a
2f(α), A2 = b

2f(α). (2.47)
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But,
A = A1 +A2 → c2f(α) = a2f(α) + b2f(α). (2.48)

Cancelling f yields the Pythagoras theorem. What is the exact form of f?

Example. (Waves in the ocean) As with any fluid, the ocean can host many different kind
of waves. Let us find the frequency ω of such wave with respect to the wavelength λ,
surface tension σ, the density of water ρ, and gravity g. We have f(ω, λ, σ, ρ, g) = 0

and plugging it respective dimensions we obtain (note that [σ] =MT−2)

T−aLbMcT−2cMdL−3dLeT−2e = Lb−3d+eMc+dT−a−2c−2e = 1. (2.49)

It follows that 
b− 3d+ e = 0,

c+ d = 0,

−a− 2c− 2e = 0,

(2.50)

with a two-parameter space of solutions

b =
a

2
− 2c, d = −c, e = −

a

2
− c, a, c ∈ R, (2.51)

from which it follows that
ω =

√
g

λ
F

(
σ

gρλ2

)
, (2.52)

for some F. We will learn in the sequel that the correct formula for the frequency of
the ocean waves is

ω =

√
2π
g

λ
+ (2π)3

σ

ρλ3
=

√
2π
g

λ

√
1+ 4π2

σ

gρλ3
, (2.53)

from which we can infer about the correct form of the F function. Note also that the
first formula above shows that the gravity and capillary effects are separated. Indeed,
surface tension is usually very small and hence only observable for very small wave-
lengths. Do an experiment in your bath tube and on a lake.

Finally, we state some additional interesting results for Reader’s own practice and
entertainment. All the below examples can be obtained by similar arguments as above.
Here, C always denotes a constant that has to be determined by experiment or theory.

1. The pressure p of a soap bubble of radius r and surface tension σ is given by

p = C
σ

r
. (2.54)

Notice that smaller bubbles burst more noisily!

2. The speed of sound c in a medium of density ρ and pressure p is given by

c = C

√
p

ρ
. (2.55)
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3. The tail-beat frequency f of of swimming fish of body length l, muscle strength
σ (stress) in a fluid of density ρ is

f =
C

l

√
σ

ρ
. (2.56)

4. The time t needed to cool a drink of thermal conductivity κ, and heat capacity c,
and temperature θwith ice cubes of side L is

t = C
L2c

κ
. (2.57)

Notice that t depends on L2: it is quicker to cool a drink with smaller cubes than
larger since the area of heat conduction is greater given the same volume. A
striking fact is that this does not depend on the temperature!

5. There are n people in a boat and each of them occupies volume V and puts
power P in accelerating it by rowing. Show that the wetted area A of the boat is
proportional to (nV)

2
3 . Use the previously determined formula for a drag force,

i.e. proportional to ρU2Awhere U is the velocity, while ρ density, to show that

U = C

(
n
1
3P

ρV
2
3

) 1
3

. (2.58)

Moreover, assume that both V and P are proportional to rower’s mass. Is size
then important for winning a race?

Finally, note that the success of dimensional analysis lies in the correct identifi-
cation of relevant parameters and quantities. This comes from trained intuition and
knowledge.

2.2 Buckingham Pi Theorem (optional)
It is time to formalize our previous intuitive, but highly efficient, reasoning. Aswe have
noticed, it is all linear algebra. Suppose we have a physical variable q that depends
on other quantities pi for i = 1, ..., n. Let Di with i = 1, ...,m be the fundamental
dimensions such as L,M, and T . We can thus write

[q] = Dd1
1 D

d2
2 ...D

dm
m , (2.59)

and
[pi] = D

α1i
1 Dα2i

2 ...Dαmi
m , (2.60)

for some fixed αi and di. We start with the physical law q = f(p1, p2, ..., pn), where,
for convenience, we have already used the inverse function theorem. In order to
dimensionally reduce this we ask if there are numbers ai for i = 1, ..., n, for which

[q] = [p1]
a1 [p2]

a2 ...[pn]
an. (2.61)
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Plugging (2.59) and (2.60) into (2.61) we obtain a system of linear equations
n∑
j=1

ajαij = di, i = 1, ...,m. (2.62)

The above can be expressed as a matrix equation
Aa = d, (2.63)

for vectors a = (a1, a2, ..., an)
T and d = (d1, ..., dm)

T and the dimension matrix

A =


α11 α12 · · · α1n
α21 α22 · · · α2n
· · · · · · · · · · · ·
αm1 αm2 · · · αmn

 . (2.64)

As we can see, the number of rows in A is equal to the number of fundamental
dimensions, and the number of columns represents the physical quantities on which
q depends. We recall from linear algebra that the solution of (2.63) can be written as

a = ap +
k∑
i=1

ciai, ci ∈ R, (2.65)

where ap is the particular solution of (2.63), i.e. any vector satisfying this system, and
ai are the vectors spanning Ker A, that is

Aai = 0, i = 1, ..., k, with dim Ker A = k < n. (2.66)
Since ai constitute a basis, say

ai = (a1i, a2i, ..., ani)
T , i = 1, ..., k, (2.67)

the nondimensional products called nondimensional gropus
Πi = p

a1i
1 p

a2i
2 ...p

ani
n , i = 1, ..., k, (2.68)

are independent quantities. Moreover, if
ap = (a1p, a2p, ..., anp)

T , (2.69)
then the quantity

Q = p
a1p
1 p

a2p
2 ...panpn , (2.70)

has the same physical dimension as q. Therefore, our basic physical law can now be
written as

q = QF (Π1, Π2, ..., Πk) , 0 ≤ k < n. (2.71)
We have thus proved the famous Buckingham Pi Theorem5

Theorem 1 (Buckingham Pi Theorem). The dimensional expression q = f(p1, p2, ..., pn)
can be reduced to the form q = QF(Π1, ..., Πk) with Πi being the independent nondimensional
quantities with 0 ≤ k < n and Q having the same physical dimension as q.

Note that if the fundamental dimensions are independent, then k = n−m. In our
preceding cases, k = n− 3. And thus we have n− 3 nondimensional groups.

5The word "Pi" comes from (2.68). Edgar Buckingham did not prove this result as a first one. For
example, several contributions are due to Joseph Bertrand and Lord Rayleigh. However, Buckingham
generalized several special cases and used the letter Π.
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2.3 Scaling and nondimensionalization
Allwe have learned about finding nondimensional quantities has a great importance in
mathematical modelling not only die to finding useful formulas. It is an essential tool
in simplifying differential equations. When modelling, we usually compare different
quantities. Some of them might be neglected due to relative smallness. Dimensional
analysis is crucial in determining the respective scales that various terms represent.
There is a lot of art and understanding of the physical principles in this process which
is the fundamental device in the applied mathematician’s repertoire.

Suppose we have a differential equation modelling a certain quantity to change in
space and time. The fundamental question is how to choose an appropriate nondi-
mensional system of units in order to cast the equation into the most transparent form.
In particular, we would like to see which if the appearing terms play greater role than
the other in considered situation. Choosing an appropriate system of nondimensional
units is called scaling.

There is no general theory for scaling. At least when it comes to arriving at physi-
cally meaningful results. Since a product of nondimensional quantities is still nondi-
mensional we do not know which of these is the most physically relevant. This is the
place where art comes into play. The best way to learn about choosing proper scales is
learning them on examples. We are going to look at some of them.

Example. (Projectile problem revisited) In the projectile problem we have intuitively
assumed that R + x ≈ R for x � R. Now, we would like to see how this can be
done systematically. The answer lies in the appropriate scaling of all of the variables
appearing in the problem: dependent x and independent t. We introduce a system of
nondimensional quantities according to

x = ξx∗, t = τt∗, (2.72)

where starredvariables are nondimensionalwhileξ and τ are scales (a typical values) to
be chosen. These choices are usually the most difficult tasks in dealing with real-world
problems. In some situations it is known from the beginning how to proceed, and in
other we have to use a general framework of dimensional analysis. As an illustration
we will proceed in the latter way.

First, note that the change of variables changes the derivatives in the following way

dx

dt
=
d(ξx∗)

d(τt∗)
=
ξ

τ

dx∗

dt∗
, (2.73)

which is a simple application of the chain rule. Then, the projectile equation transforms
into

ξ

τ2
d2x∗

d(t∗)2
= −

gR2

(R+ ξx∗)2
, (2.74)

while the initial conditions are

x∗(0) = 0,
dx∗

dt∗
(0) =

τ

ξ
v. (2.75)
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Dimensional analysis tells us that there are three independent nondimensional groups

Π1 =
ξ

gt2c
, Π2 =

ξ

R
, Π3 =

τv

ξ
. (2.76)

We have to choose the characteristic scales ξ and τ according to one of the above in
order to represent the physical situation. Note that, mathematically speaking, this
choice is not unique. For example, Π1 is the relative acceleration of the particle with
respect to the gravity, Π2 is the relative height of the flight with respect to the radius
of Earth, and Π3 measures the relative velocity of the particle with respect to the initial
one. Which group to choose as the one relevant to our situation? In general this is far
from obvious. There are papers and book written on such topic. In complex situations
the modeller has to posses a deep knowledge of the problems and underlying physics,
biology, etc. A trial and error method is also frequently implemented.

A good rule to start up is to choose the scale appearing in the initial conditions.
That is, we set Π3 = 1 and, hence, choose

ξ = τv. (2.77)

Second, physically, the projectile does not travel very far and we can choose Π2 → 0.
Therefore, we are left with Π1 = 1which along with (2.77) gives us

ξ =
v2

g
, τ =

v

g
. (2.78)

As the correct scales of this problem. Returning to our differential equation we get

d2x

dt2
= −

1

(1+ εx)2
, ε =

v2

gR
, (2.79)

where we have dropped asterisks in order not to clutter the notation - this is a common
practice once the scales has been chosen (however, this is a slight abuse of notation).
The initial conditions now are

x(0) = 0,
dx

dt
(0) = 1. (2.80)

Observe how does this look much more pleasant than the dimensional problem. We
have chosen the only nondimensional parameter present in the problem to be named
ε not accidentally. For Earth it is ε ≈ 10−8v2 which for usual everyday situations is
very small. This is the reason we can neglect it. This is the systematic statement of the
fact that we previously have simplified the equation by neglecting some terms. Since,
in the nondimensional terms, x is of order of unity (because we have scaled it with its
characteristic scale), εx is a small nondimensional number so we can safely take ε→ 0

and know that we neglect a term of small significance. This is a crucial observation for
the next section when we develop a method of perturbations where we can utilize the
fact that an equation possesses a small parameter.

Notice how the scaling revealed the relative size of various terms appearing in the
equation. It is then meaningful and clear to simplify some of them. Observe, however,
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that this is a reflection of our initial choice of the scales and choosing them differently
would let us focus ondifferent physical situation. Scaling a complex nonlinear equation
is usually very difficult and requires a lot of care.

To get a glimpse of what can go wrong suppose we choose our scales differently.
For example, we set Π2 = 1 and Π3 = 1. Then, our problem is

ε
d2x

dt2
= −

1

(1+ x)2
, (2.81)

with
x(0) = 0, x ′(0) = 1. (2.82)

This is, of course, equivalent to our original problem. That that, however, that the
ε not multiplies the derivative. And thus, having it set to 0 results in a superficial
contradiction 0 = −1. We certainly cannot proceed this way. This is a delicate limit
and we will learn how to deal with it in further section. The chosen scales are such we
choose the typical velocity of the problem to be of the initial one and the height of the
projectile to be comparable to Earth’s radius. This is a different physical situation and
requires a different treatment.

Example. (Damped pendulum) Recall from your ODE course that the evolution of an
angle of afree mathematical pendulum of length l is given by

l
d2θ

dt2
+ k

dθ

dt
+ g sin θ = 0, (2.83)

where k ([k] = LT−1) is the damping constant. We assume the following initial condi-
tions

θ(0) = θ0,
dθ

dt
(0) = Ω0. (2.84)

In order to nondimensionalize the above we have to prescribe scales for the angle Θ
and time τ. For the latter, we have three choices as can be seen by doing dimensional
analysis

τ1 =

√
l

g
, τ2 =

l

k
, τ3 =

1

Ω0

. (2.85)

The first time scale is the period of small undamped oscillations, the second is the time
required for damping to have an effect. The third scale is the inverse of initial angular
velocity, i.e. the time required to cover one radian of motion on a circle. The scales for
the angle are

Θ1 = θ0, Θ2 = Ω0τ, (2.86)
where τ is any of the above time scales. There is certainly a lot of possible choices.

Suppose that we want to study the case when the period of oscillation does not
depart much from the linearised theory, i.e. we scale the time with τ1. Suppose also
that the initial velocity is small and we would like to scale the angle with Θ1 (not
necessarily small). Then for θ = Θ1θ

∗ and t = τ1t∗ we have

dθ

dt
= θ0

√
g

l

dθ∗

dt∗
, (2.87)
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and
lθ0
g

l

d2θ∗

d(t∗)2
+ kθ0

√
g

l

dθ∗

dt∗
+ g sin(θ0θ∗) = 0. (2.88)

This can be simplified by dividing and removing asterisks (for convenience)

d2θ

dt2
+ 2β

dθ

dt
+ω2

0

1

θ0
sin(θ0θ) = 0, β :=

1

2

k√
gl
, ω0 =

√
g

l
, (2.89)

where we have defined the rescaled damping coefficient β and angular frequency of
free oscillationsω0. The initial conditions are now

θ(0) = 1,
dθ

dt
(0) = γ, γ =

1

Ω0θ0

√
g

l
. (2.90)

Notice that scaling has reduced the number ofmodel parameters from5 to 3. Moreover,
the obtained form of the ODE is convenient to analyse when the oscillations are almost
linear. If the initial angle (and due to conservation of energy, all angles) are small, we
can approximate the nonlinear term

1

θ0
sin(θ0θ) = θ−

θ20
6
θ3 + ... (2.91)

Leaving only the first term results in the linear oscillator, while retaining the next term
gives Duffing’s equation. This immediately gives us an important result that the error
we make by linearising is O(θ20). Not bad for just a simple use of algebra.

Example. (Piano string) A rather accurate model of (small) vibrations of the piano
string is the following forth order PDE

ρA
∂2y

∂t2
= T

∂2y

∂x2
− EAk2

∂4y

∂x4
= 0, (2.92)

whereρ is thedensity of the string,A andarea of its cross-section,E is Young’smodulus,
and k the so-called radius of gyration. Moreover, y = y(x, t) denotes the deflection of
the string at time t at position x. Loosely speaking, the second time derivative comes
from Newton’s second law, spatial derivative represents change in potential energy,
while forth derivative describes bending stiffness. Usually, the latter is very small and
can be neglected (as for example, in guitar). We would like to assess the relative size
of this term and see whether we really can ignore it.

Anticipating the smallness of the fourth order term we scale our equation

x = Lx∗, t =
L

c
t∗, c =

√
T

Aρ
, (2.93)

where L is the string length and we have defined the wave velocity c. Note that
both of these scales are natural for a freely vibrating string. Moreover, since the PDE
is homogeneous we do not need to scale the deflection y (why?). After scaling the
equation becomes

∂2y

∂t2
=
∂2y

∂x2
− ε

∂4y

∂x4
, ε =

Ek2

ρL2c2
, (2.94)
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wherewe have defined the nondimensional parameter. Observe that now our problem
contains only one such. This makes the problem much more trackable.

Let us make a quick assessment of the magnitude of ε. For a circular wire of radius
r ≈ 1 mm and length 1m we have k2 = r2/2 ≈ 0.5 × 10−6. Taking the string to be
made of steel we have E = 2 × 1011 Pa and ρ = 7.8 × 103 kg m−3. Moreover, let us
assume that the tension is 103 N. This gives ε ≈ 3 × 10−4 which is quite small. As a
first approximation we can thus neglect the bending stiffness of the string, however,
for more detailed analysis concerning piano tuning we should take it into account.

The proper use of scaling requires a lot of practice. Especially with complex prob-
lems where scales are either not known or too many to just check every possible
combination. Being as close as possible to reality is a very good road sign showing the
correct route of reasoning. This has a tremendous advantages: we reduce the number
of parameters leaving only these combinations that are physically meaningful, and
make possible to compare different terms that directly leads to one of the most useful
techniques of applied mathematics to be discussed in the next section.
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3 Perturbation and asymptotic theory
Convergent series are overadvertised.

In this section wewill present an introduction to perturbation theory which proved
to be one of the most useful and versatile analytical tool in analysing models. It
is indispensable in fluid mechanics, quantum chemistry, gravitation, quantum field
theory, and many other - almost all - fields of science. It lets us to study the influence
of a small (or large) term in a given equation. In many important cases, the model
describing some real-world problem is almost linear. This means that the nonlinearity
is relatively small6. It acts as a kind of perturbation in a sense that we perturb the
previously linear system with some small term. Usually this perturbation does not
have to be very small for the theory to be effective. There is a systematic way of treating
this kind of a problem and we will learn about it.

This is extensively broad subject and itself worth a course of two. There are many
very good books that treat many aspects of perturbation theory. Here are some of
them.

1. M. Holmes - Introduction to Perturbation Methods, Springer

2. J. Murdock - Perturbations: theory and methods, SIAM

3. C. Bender, S. Orszag - Advanced mathematical methods for scientists and engi-
neers, Springer

3.1 Regular perturbations
We will start with the simplest perturbation possible - found in algebraic equations.
Despite the simplicity, they nicely illustrate the general concept and difficulties that
may be found in more complex problems.

Example. (A simple quadratic) Let us begin with a simple example of finding roots of
the following quadratic

x2 + 2εx− 1 = 0. (3.1)
One may ask why to bother in solving this example since every high school student
can do it blindly. The solutions, of course, are

x± = −ε±
√
1+ ε2. (3.2)

Now, this example serves a very important purpose. We can learn what happens to
the equation when ε→ 0+ and this is the limit that we will investigate.

First, we can notice that for small ε the 2εx term serves as a perturbation. We can
write it in a form

x2 − 1 = −2εx, (3.3)
which facilitates the graphical solution: these are the points where x2 − 1 and −2εx
intersect. This is presented on Fig. 17. We immediately see that there are two solutions

6Note that thanks to scaling we already know what "relatively" means.

24



-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-1.0

-0.5

0.5

1.0

y

Figure 4: A graphical solution of the quadratic.

for every ε > 0 and even this holds for ε → 0+. This is what makes the case regular -
the number of solutions of the reduced problem, i.e. for vanishing ε, is the same as in
the original one.

Note also that for ε → 0+ the problem is trivial to solve. Usually we want some-
thing similar. The reduced problem should be somehow trackable in order to utilize
perturbations7. We would like to study what happens with solutions when ε is a small
positive quantity. More specifically, wewant to determine the correction to the reduced
solution for ε→ 0+. This is easily done by expanding the solution x± into Taylor series

x± = ±1− ε± 1
2
ε2 ∓ 1

8
ε4. (3.4)

This makes sense since ε is small and certainly can be made smaller than 1 so the
expansion is convergent. However, this is rather a circular argument since usually we
do not know the solution. We would not need perturbation theory if we knew it!

Instead, we assume that the solution can be expanded into some appropriate series

x = x0 + εx1 + ε
2x2 + ..., (3.5)

where xi are unknown numbers independent on ε. Notice that it is completely not
obvious that the above series has to have integer powers of ε. Usually, they should
also be found as an part of the solution. When we plug (3.5) into our equation (3.1) we
obtain (

x0 + εx1 + ε
2x2 + ...

)2
+ 2ε(x0 + εx1 + ε

2x2 + ...) − 1 = 0. (3.6)
Now, we have to collect various powers of ε and in order to do that we have to expand
the square(
x0 + εx1 + ε

2x2 + ...
) (
x0 + εx1 + ε

2x2 + ...
)
= x20+2εx0x1+ε

2
(
2x0x2 + x

2
1

)
+ ... (3.7)

7It does not have to be trivial, though.
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Then,
x20 − 1+ 2ε (x0 + x0x1) + ε

2
(
2x1 + 2x0x2 + x

2
1

)
+ ... = 0. (3.8)

Note the above is a power series that is identically equal to 0. Therefore, all coefficients
have to vanish, that is 

ε0 : x20 − 1 = 0,

ε1 : x0 + x0x1 = 0,

ε2 : 2x1 + 2x0x2 + x
2
1 = 0.

· · ·

(3.9)

A very important observation is that the above infinite system of equations can be
solved iteratively one after another. This happens in all regular perturbation problems.
Solving, we obtain

x0 = ±1, x1 = −1, x2 = ±
1

2
, ... (3.10)

and the expansion is

x ∼ ±1− ε± 1
2
ε2 + ... as ε→ 0+, (3.11)

which coincides with (3.4). Notice that, here, we do not know anything about the
convergence of the above expansion. Hence, instead of writing " = " we use " ∼ " and
indicate that ε → 0+. In the next subsection we will make this precise and rigorous.
Finally, note that the error that we make by truncating the approximation after x2 is
proportional to ε3 or higher powers. This is a very useful knowledge.

There are certain points that follow from the above simple example into general
regular perturbation case. We always follow the given steps.

1. Scale the problem into nondimensional one.

2. Identify the small parameter (if there is a large one, say λ, put ε = λ−1).

3. Expand the unknown solution into a power series with respect to ε. Note that
here, we may be forced to use Taylor expansions and other techniques.

4. Plug the above into the equation and compare the terms of respective powers of
ε to obtain a system of equations.

5. Solve the system iteratively as far as it is needed for required accuracy or limited
by computational power.

Usually, obtaining very high terms requires a lot of computing power with symbolic
manipulation environments. In many cases, however, one or two terms are sufficient
to work with.

Example. (Transcendental equation) A more interesting example is the following tran-
scendental equation

10x = ex, (3.12)

26



0.05 0.10 0.15 0.20 0.25 0.30
x

0.5

1.0

1.5

2.0

2.5

3.0

y

Figure 5: A graphical solution of a transcendental equation.

presented on Fig. 5.
There is no ε in the above equation and there seems to be no small parameter. To

see what can be done first change the variables y = 10xwhich gives

ye−
y
10 = 1. (3.13)

Now, we can introduce an artificial parameter ε and consider the following generaliza-
tion

ye−εy = 1. (3.14)

For ε→ 0+ the above has a trivial solution y = 1. We would like to find the corrections
and expand

y = 1+ εy1 + ε
2y2 + ... (3.15)

And by plugging into above we obtain

(1+ εy1 + ε
2y2 + ...)e

−ε(1+εy1+ε
2y2+...) = 1. (3.16)

Before we will be able to compare terms with different powers of εwe have to expand
the exponential

e−εy = e−ε(1+εy1+ε
2y2+...) = 1− ε+

(
1

2
− y1

)
ε2 + ... (3.17)

Our equation now becomes

1+ (y1 − 1)ε+

(
1

2
− 2y1 + y2

)
ε2 + ... = 1. (3.18)
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Immediately we have y1 = 1 and y2 = 3/2. We can thus form an approximation

y = 1+ ε+
3

2
ε2 + ... (3.19)

which becomes
x =

1

10

(
1+ ε+

3

2
ε2 + ...

)
. (3.20)

Now, initially ε = 0.1 for which the above approximation gives x = 0.1115 while the
exact solution is x = 0.1118 which differs only at forth decimal place.

The main application of perturbation theory is in differential equations. Let us,
once again, return to the projectile problem.

Example. (Projectile problem revisited again) Our scaled problem (2.79) is

x ′′ = −
1

(1+ εx)2
, x(0) = 0, x ′(0) = 1. (3.21)

Let us begin with proposing a formal expansion.

x(t) ∼ x0(t) + εx1(t) + ε
2x2(t) + ... (3.22)

In order to compare different terms we have to expand the fraction

1

(1+ εx)2
= 1− 2εx+ 3ε2x2 + ... ∼ 1− 2ε

(
x0 + εx1 + ε

2x2 + ...
)
+ 3ε2

(
x0 + εx1 + ε

2x2 + ...
)2

+ ...

= 1− 2εx0 + (3x20 − 2x1)ε
2 + (−4x30 + 6x0x1 − 2x2)ε

3 + ...

(3.23)

Thanks to that, the differential equation becomes

x ′′0 + εx
′′
1 + εx

′′
2 + ... = −1+ 2εx0 − (3x20 − 2x1)ε

2 + ... (3.24)

It is also crucial, and frequently forgotten by beginners, to expand the initial conditions{
x0(0) + εx1(0) + ε

2x2(0) + ... = 0,

x ′0(0) + εx
′
1(0) + ε

2x ′2(0) + ... = 1.
(3.25)

Since the above must be valid for every ε, we have

xi(0) = 0, x ′0(0) = 1, x ′j(0) = 0, i ≥ 0, j ≥ 1. (3.26)

Therefore, all initial positions vanish while only the zeroth approximation has a non-
vanishing derivative. Further, from the ODE, by comparing the terms with powers of
ε, we infer that 

ε0 : x ′′0 = −1,

ε1 : x ′′1 = 2x0,

ε2 : x ′′2 = −3x20 + 2x1,

· · ·

(3.27)
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and again a triangular structure is evident. The solution of the leading order term is

x0(t) = t−
1

2
t2. (3.28)

Hence, the next equation x ′′1 = 2(t− 1
2
t2) is easily integrated to give

x1(t) =
1

12

(
4t3 − t4

)
. (3.29)

Further, doing the analogous steps we have

x2(t) =
1

360

(
−90t4 + 66t5 − 11t6

)
, (3.30)

and we can carry this as far as we want to. The approximation is then

x0(t) ∼ t(1−
1

2
t) +

ε

12
t3 (4− t) +

ε2

360

(
−90t4 + 66t5 − 11t6

)
+ ... ε→ 0+. (3.31)

As we can see, the ε-terms are subsequent corrections to the particle position due to
nonlinear gravitational field. We can quantitatively see the accuracy of the derived
approximation on Fig. 6. We can see that even for rather large ε = 0.1 the two-term
approximation, i.e. x0+ εx1 is very accurate8. The graphs are almost indistinguishable
with absolute errors 2× 10−3 for ε = 0.1 and 2× 10−5 for ε = 0.01 being even smaller
than anticipated. Therefore, for developing an accurate model of low projectiles, this
could serve as a great approximation thanks to its simplicity. Notice howmuch can be
said when the exact analytic form of the solution is not known.

Example. (Space station) One of the origins of perturbation theory is solving various
problems for gravitating particles. Engineers designing spacecrafts, rockets, and shut-
tles has to accurately determine various trajectories, orbits, and their stability. Consider
a satellite or International Space Station orbiting Earth. We know from Physics I that
the equation for its orbit in polar coordinates centred at the Earth is

r ′′ − r (θ ′)
2
= −

GM

r2
,

1

r

(
r2θ ′

) ′
= 0. (3.32)

Here, the prime denotes the derivative with respect to time. The second equation is
the consevration of angular momentum which immediately can be integrated to give
Kepler’s second law

r2θ ′ = k. (3.33)

We will investigate the stability of a circular orbit. That is, we assume that the space
station is perturbed from its original trajectory. Its ultimate fate is what interests us -
will it return to its original motion or be fired away to outer space?

Suppose that there is a small perturbation in the radial velocity equal to a constant
εv (this may happen if an asteroid strikes the hull of the station). We would like to see

8Recall that on Earth ε ≈ 10−8v.
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Figure 6: Perturbation approximation of the solution to the projectile problem. On top:
ε = 0.1, bottom: ε = 0.01. Here, solid line is the numerical solution while dashed line
represents 1 term and dotted line 2 term approximation.
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how the circular orbit, r(t) = R and θ(t) = ωtwith R3ω2 = GM be affected by this. To
this end, suppose that the actual solution expands into

r(t) ∼ R+ εr1(t) + ..., θ(t) ∼ ωt+ εθ1(t) + ..., ε→ 0+. (3.34)

Therefore, our ODEs take the form

r ′′1 + ...− (εr1 + ...)(ω+ εθ ′1 + ...)
2 = −

GM

(R+ εr1 + ...)2
, (3.35)

and
(R+ εr1 + ...)

2(ω+ εθ ′1 + ...) = k. (3.36)
By doing the usual expansions in terms of εwith the use of R3ω2 = GMwe can obtain
equations for the correction

r ′′1 −ω
2r1 = 2Rωθ

′
1, θ ′1 = −

2ω

R
r1. (3.37)

Eliminating θ1 we obtain
r ′′1 +ω

2r1 = 0. (3.38)
This is a good news since we know that the solution of the above is composed of
trigonometric functions

r1(t) = C cosωt+D sinωt. (3.39)
The amplitude of the above

√
C2 +D2 does not change and hence, the space station

will oscillate around the circular orbit. The station is thus neutrally stable. This could
have been anticipated due to the conservative motion of the system. If the station had
some emergency propellers and stabilizers it would return to the original orbit. Since
the perturbation is a trigonometric function with the same frequency as the original
motion, the new orbit will be elliptical with Earth in its focus (see Fig. 7).

Example. (Eigenvalues) In certain boundary value problems with Robin conditions the
following equation determines eigenvalues

x tan x = 1. (3.40)

Since tan x is π-periodic the above has countably many solutions. By inverting we
obtain

x = nπ+ arctan 1
x
, (3.41)

where n ∈ N and inverse tangent is in its principal branch. We can treat it as a small
correction for large x since | arctan(1/x)| ≤ π/2. Then, we can expect that

x ≈ nπ for x→∞. (3.42)

This corresponds to a function 1/x intersecting the tan x near its zero (see Fig. 8). We
would like to improve this result. A very useful technique is to iterate the algebraic
equation. That is, since we have found that x ≈ nπ for large nwe can go back to (3.41)
and write

x = nπ+ arctan 1

nπ
≈ nπ+

1

nπ
for x→∞. (3.43)
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Figure 7: Perturbation approximation of the solution to the space station problem. The
solid line is the original circular orbit while dashed line represents perturbed elliptical
trajectory.
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Figure 8: Graphical solution of equation x tan x = 1.

We can carry this further by using Taylor expansion

arctan 1
x
=
1

x
−

1

3x3
+

1

5x5
+ ... (3.44)

and iterate as long as we want. We would then obtain

x = nπ+
1

nπ
−

4

3(nπ)3
+ ... (3.45)

This is a superb approximation. For example, even for n = 1 the exact zero is 3.4256
while the approximation gives 3.4169. Next, n = 2 yields exact zero 6.4373 while the
approximation is 6.4369 with three correct decimal digits. For n = 5 we have an accu-
racy of 10−4 and so on. We remark that all of the above results were obtained under
the assumption of large n which these considered are certainly not! We obtained the
accuracy for free.

The perturbation theory us also an indispensable tool in analysis of partial differ-
ential equations. We will return to this topic in subsequent sections.

3.2 Asymptotic series
Before we proceed further we have to rigorously define what we mean by various
asymptotic objects. In other case, without any mathematical theory, we could make
many mistakes without knowing it. We start with recalling the order symbols which
denote the relative sizes of different quantities.
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We have to formalize the statements such that, for example, ε goes to zero at the
same rate as sin ε2/ε, or ε2 vanishes quicker than ε, as ε → 0+. These can be made
quantitatively by using the o-notation introduced by Bachmann and popularized by
Landau in the very beginning of the XX century. Nowadays, order notation is widely
used in applied mathematics and computer science. It has the great advantage to
hide unnecessary details yet allow operations and provide insight into the structure of
various formulas.

Definition 1. 1. The function f(ε) has the same growth rate as g(ε) as ε→ 0+ when there
exist constantsM and ε0 > 0 such that

|f(ε)| ≤M|g(ε)| for 0 < ε < ε0. (3.46)

We then write
f = O(g) as ε→ 0+, (3.47)

and say "f is big Oh of g" as ε→ 0+.

2. The function f(ε) vanishes much faster than g(ε) as ε→ 0+ when for every δ there exists
ε1 > 0 such that

|f(ε)| ≤ δ|g(ε)| for 0 < ε < ε1. (3.48)

We then write
f = o(g) as ε→ 0+, (3.49)

and say "f is small oh of g" as ε→ 0+. We also use the notation f� g.

Remark 1. In the above definition we can put x = ε−1 and consider orders of magnitude for
x→∞.

Therefore, since ∣∣∣∣sin ε2ε

∣∣∣∣ = ∣∣∣∣sin ε2ε2

∣∣∣∣ ε ≤ ε, (3.50)

we have sin ε2/ε = O(ε) as ε → 1. Here,M = 1 and, say, ε0 = 1. Similarly, ε2 = o(ε)
in the same limit because

ε2 ≤ δε (3.51)

for any δ > 0 and ε < ε1 = δ. These definitions are useful in showing the relative order
is some pathological cases. very frequently, however, we can use simpler criterion
based on the limits.

Proposition 1. Let ∣∣∣∣ limε→0+
f(ε)

g(ε)

∣∣∣∣ = L, (3.52)

where we assume that the limit exists but may be infinite.

1. If L > 0 is finite, then f = O(g) as ε→ 0+. Moreover, if L = 1 we can write f ∼ g in the
same limit (we pronounce "f twiddles g").

2. If L = 0, then f = o(g) as ε→ 0+.
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3. If L =∞, then g = o(f) as ε→ 0+.
Proof. The proof is elementary and follows from the definition of the limit. We leave it
as an exercise in Calculus I.

Examples.

1. Let f(ε) = ε sin(1 + 1/ε). Notice that we cannot use the above proposition since
the limit does not exist. We have to use the original definition

|ε sin(1+ 1/ε)| ≤ ε, (3.53)

andM = 1 for ε0 = 1.

2. A function f = f(ε) is bounded as ε→ 0+ in and only if9 f = O(1) as ε→ 0+. For
instance, f(ε) = (1+ ε2)−1.

3. A function f = f(ε) vanishes as ε→ 0+ iff f = o(1) as ε→ 0+.

4. If f = o(g) as ε→ 0+, then f = O(g) as ε→ 0+ (takeM = 1 in the definition).

5. Let f(ε) = exp(−1/ε). We have

lim
ε→0+

e−
1
ε

εα
= 0, (3.54)

for any α > 0. Therefore the function f vanishes faster than any power of ε
(beyond all orders). We say that f is transcendentally small with respect to εα as
ε→ 0+.

There is some confusion that arise when using the order notation that may annoy
some purists. Note that sin ε = O(ε) as ε → 0+ but O(ε) = sin ε does not make any
sense! The equals sign is purely formal and customary and does not imply symme-
try. As Donald Knuth pointed out, these are "one-sided equalities". Other examples
include: ε2 = O(ε2) and ε2 = O(ε) but ε 6= ε2 for 0 < ε < 1. To be precise, some
mathematicians use the set notation and write f ∈ O(g) as ε → 0+ and think about
classes of functions. We will not use this device since everyone of us is acquainted
with programming where the " = " operator is usually the assignment and a text such
as x = x+ 1 does not seem to be a contradiction.

Having defined the order notation we can give a precise meaning of asymptotic
series we have found before. The main motif is: accuracy versus convergence. We
would like to answer a question whether we really need convergent series to approxi-
mate real-world phenomena. To this end, we need to quantify when a given function is
well-approximated by some simpler form. The requirement that the error goes to zero
is not enough as the simple example shows. Take f(ε) = ε2 + ε2020. Since ε2020 � ε2

we can take f(ε) ≈ ε2. But also we could have taken f(ε) ≈ ε2/2 since the error
f(ε) − ε2/2→ 0+ as ε→ 0+. The second approximation is of course much worse than
the first, since we have forgot to account for the relative smallness of the error. In the
first case, we have f(ε) − ε2 = O(ε2020) which is extremely small. In the second case,
f(ε) − ε2 = O(ε2) which is of the same order as the approximation. We can now give
a formal definition.

9Halmos introduced the abbreviation "iff".
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Figure 9: A function x (dashed line) as an asymptotic approximation to x + e−xε for
ε = 0.05.

Definition 2. A function φ(ε) is an asymptotic approximation to f(ε) as ε → 0+ when
f ∼ φ, that is f(ε) = φ(ε) + o(φ) as ε→ 0+.
Examples.

1. A natural source of asymptotic expansions is the Taylor series. For example, let
f(ε) = e−ε. Then,

f(ε) = 1− ε+
1

2
ε2 −

1

6
ε3 +O(ε4), ε→ 0+. (3.55)

Subsequent terms are asymptotic approximations to the exponentialwith increas-
ing accuracy. Note that, we also have a strange and lousy looking expression as
f(ε) ∼ cos ε since

e−ε − cos ε = −ε+ ε2 +O(ε3), ε→ 0+. (3.56)

Nonuniqueness is evident. We will correct it below.

2. Let f(x) = x + e−x/ε where x ∈ (0, 1) is fixed. For small ε we have f ∼ x. We
would like, however, to see how does this approximation is valid for all x. We
immediately see that this cannot be a uniform approximation since f(0) = 1 for
every ε > 0. The plot of the situation is depicted on Fig. 9. Note that there is a
relatively large region when the approximation is very accurate. It blows up near
x = 0 for fixed ε. This shows that in order to obtain a uniform approximation
we somehow have to relate ε to x: the closer x to 0 the smaller the ε. This is an
example of the so-called boundary layer which we will soon meet.

In order to obtain a useful asymptotic approximation of various functions we have
to deal with the nonuniqueness and somehow to control the accuracy. The main idea
was introduced by Henri Poincare and we follow his definition.
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Definition 3. 1. A set of functions {φn(ε)}n forms an asymptotic sequence if φn+1 =
o(φn) as ε→ 0+ for all n. We say that φn are gauge functions.

2. If {φn(ε)}n is an asymptotic sequence, then f(ε) has an asymptotic expansion with
respect to {φn}n when for each n there exists a constant an such that

f(ε) =

n∑
i=0

aiφi(ε) + o(φn(ε)) as ε→ 0+. (3.57)

In this case we write that f has an asymptotic series

f(ε) ∼

∞∑
i=0

aiφi(ε) as ε→ 0+. (3.58)

In the above definitions, functions f and φn can also depend on other variables which are
assumed to be fixed.

There aremany possible choices for gauge functions, powerφn(ε) = εn or exponen-
tialφn(ε) = e−n/ε are particular examples. Therefore, an asymptotic series provides an
approximation to fwhen the error of truncation is of smaller order than every retained
term for other variables fixed. Note that these expansions does not have to be conver-
gent in the usual sense such that we fix x and let n → ∞. This can be summarized as
follows

Covergent:
∞∑

i=n+1

aiφi(x, ε)→ 0 as n→∞, ε fixed,

Asymptotic:
∞∑

i=n+1

aiφi(x, ε) = o(φn(x, ε)) as ε→ 0+, n fixed.
(3.59)

We can see that the main issue here concerns the exchange of limits. In the asymptotic
series the remainder does not have to vanish for n → ∞. As a matter of fact, most
useful and accurate series are not convergent. Abel spoke of them as "invention of the
devil".

Example. (Taylor series) A good example of a convergent and asymptotic series is Taylor
series. For if f = f(x) is sufficiently smooth then

f(x) = f(x0)+f
′(x0)(x−x0)+

1

2
f ′′(x0)(x−x0)

2+...+
1

n!
f(n)(x0)(x−x0)

n+
1

(n+ 1)!
f(n+1)(ξ)(x−x0)

n+1,

(3.60)
where ξ = ξ(x0) is some constant. Because f is smooth, and hence bounded, we have

1

(n+ 1)!
f(n+1)(ξ)(x− x0)

n+1 = o((x− x0)
n) as x→ 0. (3.61)

Therefore, retainingfirst three terms in the aboveTaylor series constitutes an asymptotic
expansion and we can write

f(x) ∼

n∑
i=0

f(i)

i!
(x− x0)

i as x→ 0, (3.62)
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and we further know that if certain conditions on the smoothness of f are met, the
above series is also convergent in the classical sense.

Example. (Stielties function) This is probably one of themost famous examples of diver-
gent series that are very accurate. Consider the Stielties function, closely related with
exponential integral, which arises in radiative transfer, heat convection, groundwater
flow, neutron transport, and many other places in science and engineering

S(ε) =

∫∞
0

e−t

1+ εt
dt. (3.63)

In order to find the asymptotic expansion of the above we use the geometric series
valid for arbitrary n

1

1+ εt
=

n∑
i=0

(−εt)i +
(−εt)n+1

1+ εt
, (3.64)

which can be put inside the integral and after interchanging order of summation and
integration (since we are dealing with a finite series)

S(ε) =

n∑
i=0

(−ε)i
∫∞
0

e−ttidt+ En(ε), (3.65)

where the error is
En(ε) = (−ε)n+1

∫∞
0

e−ttn+1

1+ εt
dt. (3.66)

The integral in (3.65) can be computed explicitly, since it is a special value of gamma
function10

S(ε) =

n∑
i=0

(−1)iεii! + En(ε). (3.67)

Note that this is an exact formula. We have not done any approximations or limit
passages. We immediately notice that the above power series is divergent for any ε > 0!
That is, we cannot letn→∞ and yet obtain ameaningful result. Why is that so? When
expanding (1 + εt)−1 into Taylor series we have integrated it outside of its domain of
convergence. Dealing with only a finite expansion, this is not a crime. However, we
are not justified to pass to the limit.

In order to see if (3.67) is an asymptotic expansionwehave to estimate the remainder
En(ε). We have

|En(ε)| = ε
n+1

∫∞
0

e−ttn+1

1+ εt
dt ≤ εn+1

∫∞
0

e−ttn+1dt = (n+ 1)!εn+1 � εn, ε→ 0+.

(3.68)
As an illustration let us numerically assess the accuracy of the asymptotic approxima-
tion of, say four terms

S(ε) ∼ 1− ε+ 2ε2 − 6ε3 + 24ε4. (3.69)
10Recall that Γ(z) =

∫∞
0
xz−1e−xdx.
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Figure 10: A four term asymptotic approximation to the Stielties function (3.63) for
different ε.

The graph of the approximation is depicted on Fig. 10. We can see that for small
values of ε the accuracy is superb. For example with not so small ε = 1/4 we have
E4 ≈ 0.05 while for ε = 0.1 we obtain E4 ≈ 7 × 10−4. This is a typical phenomenon
meaning that, by definition, taking more terms in the asymptotic expansion we obtain
better approximation for ε → 0+. However, adding these terms contributes to lack
of accuracy for fixed ε. What usually happens, is that the first terms get smaller for
smaller ε, then around O(ε−1) term they start to increase. This can be seen from the
n-th term in the series

(−1)nn!εn, (3.70)

where with increasing n the factorial will dominate the power of ε. It is thus beneficial
to truncate the series with respect to ε at the largest integer n that is smaller or equal
than ε−1 since the ratio of n+1 term to n term in (3.67) is−nε. The resulting expansion
is called superasymptotic. This can be carried further to hyperasymptotic expansions by a
careful analysis of the error terms and finding values at which it attains its maximum.
This is, however, beyond the scope of our lecture.

A very useful technique in finding asymptotic expansions is integration by parts.

Example. (Error function (CDF of normal distribution)) One of the most useful and
important special function in partial differential equations and probability is the error
function.

erf(x) =
2√
π

∫ x
0

e−t
2

dt. (3.71)

This is just a rescaled version of the cumulative distribution function of normal distri-
bution - the most important distribution of all. It is also ever present in investigations
of heat conduction in infinite domains. It is thus worth to analyse it thoroughly. Being
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a special function it cannot be written as a finite combination of elementary functions
leaving asymptotic analysis and numerical methods the only way to find its values
with arbitrary accuracy.

The first thing that comes in mind is the Taylor expansion and integration term by
term

erf(x) =
2√
π

∫ x
0

∞∑
k=0

(−1)k
t2k

k!
dt =

2√
π

∞∑
k=0

(−1)k

k!

∫ x
0

t2kdt =
2√
π

∞∑
k=0

(−1)k
x2k+1

(2k+ 1)k!
.

(3.72)
We anticipate that, due to the nature of Taylor series, the above can be accurate for small
x. However, frequently we would like to find the error function for large arguments
especially when we would like to estimate the tail of normal distribution. Numerical
methods may not be optimal for computing large numbers. It is asymptotic analysis
that changes the game.

Note that when x→∞ the integral in (3.71) converges and erf(x)→ 1. In order to
find the rate at which it is approaching that limit we write

erf(x) = 1−
2√
π

∫∞
x

e−t
2

dt. (3.73)

Now, we have only to consider the above integral. We would like to integrate by parts
but, however, this is not straightforward since each integration would produce a factor
of x that will increase the magnitude of the remainder. Then, the expansion would
not be asymptotic. Whence, we have to compute the primitive of a function associated
with e−t2 . To this end write ∫∞

x

e−t
2

dt =

∫∞
x

−2te−t
2

−2t
dt, (3.74)

and, integrating by parts, compute the derivative of 1/(−2t), and antiderivative of
−2te−2t = (e−2t) ′. Thanks to that trick we obtain∫∞

x

e−t
2

dt =
e−x

2

2x
+
1

2

∫∞
x

e−t
2

t2
dt =

e−x
2

2x
−
e−x

2

4x3
+
3

4

∫∞
x

e−t
2

t4
dt. (3.75)

This can be carried over to obtain∫∞
x

e−t
2

dt =
e−x

2

2x

n∑
k=0

(−1)k
(2k− 1)!!

(2x2)k
+ Rn+1(x), (3.76)

where the remainder is

Rn+1(x) = (−1)n+1
(2n− 1)!!

2n

∫∞
x

e−t
2

t2n+1
dt. (3.77)

Each integration by parts brings a odd number to the numerator and a factor of 2 into
the denominator of the expansion. Apart from that, the sign alternates. We have to
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show that the remainder is asymptotically smaller than the last term in the series as
x→∞. This can be seen by writing

|Rn+1(x)| ≤
(2n− 1)!!

2n
1

x2n+1

∫∞
x

e−t
2

dt

=
(2n− 1)!!

2n+1
1

x2n+1

(
e−x

2

x
+

∫∞
x

e−t
2

t3
dt

)
≤ (2n− 1)!!

2n+1
e−x

2

x2n+1

(
1

x
+

∫∞
x

dt

t3

)

=
(2n− 1)!!

2n+1
e−x

2

x2n+1

(
1

x
+

1

2x2

)
= o

(
e−x

2

x2n+1

)
as x→∞.

(3.78)

In the second inequality we have moved the power function in front of the integral,
then integrated by parts, and finally estimated the exponential of the integrand. We
have thus shown that the following asymptotic expansion holds

erf(x) ∼ 1−
e−x

2

x
√
π

∞∑
k=0

(−1)k
(2k− 1)!!

(2x2)k
as x→∞. (3.79)

Now, we can compare various numerical results. On Fig. 11 we can see absolute error
plots with respect to the number of terms in Taylor (3.72) and asymptotic (3.79). Note
that we use two values of x that by no means cannot be classified as large, that is
x = 2 and x = 3. Note the tremendous accuracy of the asymptotic expansion. For
x = 2 the Taylor series need at least 25 terms in order to match the accuracy of 1 term
asymptotic series for which the error is smaller than 10−3. Note also the existence of
optimal number of asymptotic terms to provide the least error. For x = 3 the perfor-
mance of asymptotic over Taylor series is even more pronounced by several orders of
magnitude.

We can enumerate several important properties of the asymptotic series. Notice
that some of them are not intuitive and have no analogy in convergent power series.

1. Uniqueness. For a given set of gauge functions {φn(ε)} the asymptotic series
f ∼
∑

i aiφi as ε→ 0+ is uniquely given with coefficients

a0 = lim
ε→0+

f(ε)

φ0(ε)
, an = lim

ε→0+
f(ε) −

∑n−1
i=0 aiφi(ε)

φn(ε)
, n ≥ 1. (3.80)

2. Nonuniqueness. The asymptotic expansion for a given fmay be nonunique by the
use of different sequences of gauge functions. For example,

sin x ∼ x− 1

6
x3 + ...

∼ tan x− 1

2
(tan x)3 + ... as x→ 0+.

(3.81)

3. Arithmetic. The asymptotic series can be added, subtracted, multiplied, and
divided according to the usual rules for series. This result is a direct consequence
of the definition.

41



5 10 15 20 25 30
number of terms

10
-4

0.001

0.010

0.100

1

absolute error

5 10 15 20 25 30
number of terms

10
-7

10
-5

0.001

0.100

10

absolute error

Figure 11: Absolute errors of approximation erf by Taylor (3.72) (solid, circles) and
asymptotic (3.79) (dashed, triangles) series for x = 2 (top) and x = 3 (bottom).
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4. Integration. The asymptotic power series can be integrated term by term with
respect to the gauge function argument. That is, when the gauge functions are
φn(ε) = ε

n its integral is always o(φn(ε)) as ε→ 0+.
Moreover, the asymptotic series of f(x, ε) can be integrated term by term with
respect to x. This immediately follows from the fact that we can integrate finite
series.

5. Differentiation. In general, asymptotic series cannot be differentiated term by term.
For instance, let f(x, ε) = e−x/ε sin ex/ε. Then, the expansion in terms of power
functions is

f(x) ∼ 0+ 0 · ε+ 0 · ε2 + ... as ε→ 0+, (3.82)
since the function is transcendentally small with respect to {εn}n. However, the
derivative is

∂f

∂x
(x, ε) = −

1

ε
e−

x
ε sin e xε + 1

ε
cos e xε , (3.83)

which does not have the same asymptotic expansion as the zero series given
above. This is due to the transcendentally small terms.
Can we ever differentiate an asymptotic expansion? The answer is - yes - pro-
vided the differentiated series is itself asymptotic with respect to the same gauge
functions. That is, if

f(x, ε) ∼

n∑
i=0

ai(x)φi(ε), (3.84)

and
∂f

∂x
(x, ε) ∼

n∑
i=0

bi(x)φi(ε), (3.85)

as ε→ 0+ then
bi =

d

dx
ai. (3.86)

Wherever we ill differentiate an asymptotic series, we will automatically assume
that the series of derivatives is asymptotic.

Aswe have seen, the optimal number of term needed for an accurate approximation
with the asymptotic series depends on the parameter. Moreover, the most useful series
are divergent. In applied mathematics we usually use asymptotic expansions in order
to learn about physical meaning of the solution. This is almost always the truth - when
doing perturbation analysis we obtain several first terms of the asymptotic expansion
of the sought solution. Due to the anticipated simplicity of the obtained series, we are
able to read physics from the mathematical formulas. Even when the exact analytical
solution is available, usually the asymptotic expansion conveys much more meaning
and transparency. On the other hand, in real-world examples we are rarely able to
obtain more than two or three terms in the expansion due to enormous complexity.
Therefore, we cannot even think about determining whether the series is convergent or
not. As experience taught generations of appliedmathematicians, a solidmathematical
reason combined with physical intuition is the best guide in modelling regardless the
nature of the asymptotic expansion.
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When accuracy is the issue, one usually use high order numericalmethods. Usually,
asymptotic expansion is frequently used in combination with computer calculations.
For example, if we want to compute a value of a certain special function for given
argument xwe can used the hybrid algorithm. For example, if x is small we use Taylor
series when the number of terms is determined by the required accuracy. For large x
we set x = ε−1 and consider ε � 1. For medium size x we use numerical methods
aided with Padé approximations that are more or less, ratios of Taylor series.

3.3 Asymptotic expansion of integrals
We have seen that asymptotic expanding integrals of some parameters leads to some
very useful results. Indeed, many special functions may be represented by integrals
and intelligent asymptotic expansion is invaluable aid in their analysis. One way of
systematic obtaining such formulas is to use the simple device of integration by parts.
There are, as usual, certain situations that it fails. We are going to investigate when it
does so and how to repair this.

The class of integrals that we will be analysis is represented by the so-called Laplace
integral

I(x) =

∫b
a

f(t)exφ(t)dt, x > 0, (3.87)

where a, b may be infinite if the integral is uniformly convergent, f and φ are given
functions, and we consider x → ∞. These integrals arise in waves, optics, special
functions, and Laplace transform among other places. Moreover, many integrals can
be transformed into (3.87). Taught by the example with error function (3.71) we try to
integrate by parts by writing

I(x) =
1

x

∫b
a

f(t)

φ ′(t)

∂

∂t

(
exφ(t)

)
dt =

1

x

[
f(t)

φ ′(t)
exφ(t)

]t=b
t=a

−
1

x

∫b
a

(
f(t)

φ ′(t)

) ′
exφ(t)dt. (3.88)

By the exactly the same procedure as in the analysis of error function we can show that
the integral remainder above is asymptotically smaller than the first term, and hence
we prove the following important result.

Lemma 1. Assume that φ ∈ C2[a, b], and f ∈ C[a, b]. Moreover, let φ ′(t) 6= 0 for t ∈ [a, b]
and either f(a) 6= 0 or f(b) 6= 0. Then, the Laplace integral (3.87) has the following asymptotic
expansion

I(x) ∼
1

x

[
f(t)

φ ′(t)
exφ(t)

]t=b
t=a

as x→∞. (3.89)

The assumptions in the theorem are needed to ensure that the remainder integral is
well-defined. The above integration by parts algorithm can be continued indefinitely
in order to obtain a full expansion with gauge functions {x−n}n.

This is not the end of the story since in many important examples it happens that
φ attains its extreme value in the considered interval and hence, the above theorem
cannot be applied.
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Example. Consider the exactly solvable integral∫∞
0

e−xt
2

dt =
1

2

√
π

x
. (3.90)

Since the result contains an non-integer power of x we expect that the integration by
part fails. Here, φ(t) = −t2 with φ ′(t) = −2t vanishing at t = 0 and integrating by
parts we obtain an absurd result∫∞

0

e−xt
2

dt =

∫∞
0

−2xte−xt
2

−2xt
dt =

[
e−xt

2

−2xt

]∞
0

−

∫∞
0

e−xt
2

2xt2
dt. (3.91)

The above expression does not even exist.

The solution of this is due to Laplace. Suppose that smooth φ has a maximum at
t = c, that is φ ′(c) = 0 for c ∈ [a, b]. Then, we have the following observation.

Main idea: It is only the immediate neighbourhood of t = c that contributes to the
asymptotic expansion of I(x) as x→∞.

We will prove that this is really the case. We can have three possibilities: c ∈ (a, b),
c = a, or c = b. We will focus only on the first of these since it is the most interesting.
The rest can be dealt in almost the same manner. Fix ε > 0. We claim that for x → ∞
independently on εwe have

I(x) ∼ I(x; ε) as x→∞ where I(x; ε) =

∫ c+ε
c−ε

f(t)exφ(t)dt. (3.92)

That is, we want to prove that an arbitrary neighbourhood conveys all the information
about the asymptotic behaviour of I(x). To this end, separate the integral into three
terms

I(x) − I(x; ε) =

∫ c−ε
a

+

∫b
c+ε

. (3.93)

Without any lose of generality we consider only the integral
∫c−ε
a

. Integrating by parts
gives us∫ c−ε
a

f(t)exφ(t)dt =
1

x

∫ c−ε
a

f(t)

φ ′(t)

∂

∂t

(
exφ(t)

)
dt =

1

x

[
f(t)

φ ′(t)
exφ(t)

]t=c−ε
t=a

−
1

x

∫ c−ε
a

(
f(t)

φ ′(t)

) ′
exφ(t)dt.

(3.94)
Since φ(t) attains its maximum at t = c the above is exponentially smaller than I(x).
Therefore, I(x) ∼ I(x; ε) as x→∞. As we have this result we can choose ε sufficiently
small to approximate φ by its Taylor series near t = c

φ(t) = φ(c) +
1

2
φ ′′(c)(t− c)2 + o((t− c)3), as t→ c. (3.95)

Similarly,
f(t) = f(c) + o(1), as t→ c. (3.96)
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Therefore,

I(x) ∼ I(x; ε) =

∫ c+ε
c−ε

f(t)exφ(t)dt ∼ f(c)exφ(c)
∫ c+ε
c−ε

e
x
2
φ ′′(c)(t−c)2dt, x→∞. (3.97)

Now, an important point is that in the above last integral is asymptotic to the integral
over the whole R because φ ′′(c) < 0 (t = c is a maximum)11 and a change of variable
s =

√
−xφ ′′(c)/2(t− c) leads to

I(x) ∼

√
2f(c)exφ(c)√
−xφ ′′(c)

∫∞
−∞ e

−s2ds, x→∞. (3.98)

Therefore, we have our main result.

Theorem 2 (Laplace method for integrals). Letφ ∈ C2[a, b] and f ∈ C[a, b]withφ ′(c) =
0 and f(c) 6= 0 for c ∈ [a, b].

• If c = a we have

I(x) ∼
f(a)exφ(a)

xφ ′′(a)
, x→∞. (3.99)

• If a < c < b we have

I(x) ∼

√
2π f(c)exφ(c)√
−xφ ′′(c)

, x→∞. (3.100)

• If c = b we have

I(x) ∼
f(b)exφ(b)

xφ ′′(b)
, x→∞. (3.101)

The most subtle point of the above proof is the asymptotic equality of and integral
over [c − ε, c + ε] to an integral over R. The former has an arbitrarily small measure
while the latter - infinite! This is the beauty of asymptotic analysis. The difference of
these two integrals is exponentially small due to the form of the integrand.

If φ has many extrema inside the interval [a, b] we deal with them by splitting the
integral into several parts. Moreover, the method can be simply modified if φ ′′(c) = 0
by using the appropriate Taylor expansion. This method can also be used in determin-
ing the subsequent terms apart from the leading. This is an involved topic which is
neatly described in Bender and Orszag’s book.

We illustrate the use of Laplace method for one of the most important and useful
formulas we have.

Example. (Stirling’s formula) We will derive the famous approximation of the factorial
due to Stirling12. We will start with gamma function

Γ(x+ 1) =

∫∞
0

txe−tdt, (3.102)

11Exercise: prove that
∫cε
c−ε

∼
∫∞
−∞ as x→∞. Hint: the remainder is exponentially small.

12Actually, de Moivre was the first to discover that n! = O(nn+1/2e−n) as n→∞. Stirling found the√
2π constant of proportionality so that we can write ∼.
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Figure 12: The function exp(xφ(t))/ exp(−x) for Striling formula for different: x = 1

(solid line), x = 5 (dashed line), and x = 50 (dotted line). We divide by exp(−x) in
order to normalize the magnitude of all graphs.

and will find its leading order behaviour for x→∞. By writing

Γ(x+ 1) =

∫∞
0

e−t+x ln tdt, (3.103)

we identify that f(t) = e−t while φ(t) = ln t having its maximum at infinity! Unfortu-
nately, Laplace method cannot be directly applied. However, we can substitute t = xs
which gives

Γ(x+ 1) =

∫∞
0

e−xs+x ln x+x ln sxds = xx+1
∫∞
0

ex(−s+ln s)ds. (3.104)

Now, this is exactly a Laplace integral with f(t) = 1 and φ(t) = −t + ln t. We have
φ ′(t) = −1 + 1/t and φ ′′(t) = −1/t2. And we see that the global maximum occurs at
t = 1. On the other hand, the function xφ(t) becomes more and more focused around
this maximumwhich is the general observation for Laplace integrals (see Fig. 12). The
value of the integral is thus almost equal to the area under the curve near t = 1.

From the Laplace method (3.100) we thus obtain

Γ(x+ 1) ∼
√
2πxx+

1
2e−x as x→∞. (3.105)

As can almost always be anticipated from the asymptotic theory, the accuracy of the
approximation is splendid as can be seen on Fig. 13. Even for arguments that cannot
be classified as large.
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Figure 13: Stirling formula (dashed line) approximating Γ(x+ 1) (solid line).

Laplace method can also be utilized in order to find more terms in the asymptotic
expansion by further expanding f and φ. The result is

Γ(x+ 1) ∼
√
2πxx+

1
2e−x

(
1+

1

12x
−

1

288x3
+

139

51840x5
− ...

)
as x→∞, (3.106)

and shows even better accuracy.

There are some interesting generalizations of the Laplace method which enlarge its
applicability. The most general case is when we allow the Laplace integral (3.87) to be
computed over a path in a complex plane with f and φ be complex functions. This
leads to the Steepest descent method. We will not pursue this issue here, however, a great
account can be found in Bender and Orszag. Instead, we will consider the Method of
stationary phase when φ is purely imaginary

J(x) =

∫b
a

f(t)eixφ(t)dt, (3.107)

where x � 1, and a, b can be infinite (and usually are). Here, a significant difference
can be quickly spotted, since | exp(ixφ(t))| = 1, there is no exponential decay that
can dominate the growth of f away fr4om the maximum of φ. The convergence of
that integral is much more subtle. The basic idea comes from an observation that the
exponential is a oscillating function with frequency proportional to xφ(t). Hence, for
large x we may expect that this function oscillates such rapidly that the integrand is
almost equal to zero due to cancellations of positive and negative contributions from
adjacent periods. This can clearly be seen on Fig. 14.
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Figure 14: A function e−(t−π)2 cos(100t). We can see that there is almost the same
number of positive and negative peaks near a given point. The integral almost cancels
out.

The rigorous result is a very well-known theorem in harmonic analysis of Fourier
series known as the Riemann-Lebesgue lemma. We will prove its easier version for
smooth functions however, the most general result requires only integrability.

Lemma 2 (Riemann-Lebesgue). Let f be aC1[a, b] integrable function along with its deriva-
tive. Moreover, assume that φ ∈ C1[a, b] with φ ′(t) 6= 0. Then,

lim
x→∞
∫b
a

f(t)eixφ(t)dt = 0. (3.108)

Proof. The proof of the smooth version is simple: integration by parts. We have

J(x) =

[
f(t)

ixφ ′(t)

]t=b
t=a

+
i

x

∫b
a

(
f(t)

φ ′(t)

) ′
eixφ(t)dt. (3.109)

Now, since φ ′(t) 6= 0we have∣∣∣∣∣
[
f(t)

ixφ ′(t)

]t=b
t=a

∣∣∣∣∣ ≤ 1x max
t∈{a,b}

∣∣∣∣ f(t)φ ′(t)

∣∣∣∣→ 0 as x→∞. (3.110)

Similarly, due to integrability of f ′ we can write∣∣∣∣ ix
∫b
a

(
f(t)

φ ′(t)

) ′
eixφ(t)dt

∣∣∣∣ ≤ 1x
∫b
a

∣∣∣∣( f(t)

φ ′(t)

) ′∣∣∣∣dt→ 0 as x→∞. (3.111)
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Since the two terms resulting from the integration by parts vanish we have J(x)→ 0 as
x→∞. The proof is complete.

In asymptotic analysis we would like to have something more - a precise indication
of the order of convergence to zero of J(x). Iterating Riemann-Lebesgue lemma under
suitable regularity of the integrand yields the sought result. However, we note that the
Riemann-Lebesgue lemma is valid only with a mild assumption of f being integrable
and φ continuously differentiable but not constant over any subinterval.

Corolary 1. Let the assumptions of the Riemann-Lebesgue lemma be satisfied. Morever,
suppose that (f(t)/φ ′(t)) ′ is integrable. Then,

J(x) = O

(
1

x

)
as x→∞. (3.112)

Proof. Integrating by parts we, again, arrive at (3.109). The first term vanishes asO(x−1)
while the second is o(x−1) as x→∞ because the Riemann-Lebesgue lemma due to the
assumption.

We can illustrate the above results in an example.

Example. Consider the following Fourier integral∫ 1
0

eixt

1+ t
dt. (3.113)

If we integrate by parts we obtain∫ 1
0

eixt

1+ t
dt = −

i

2x
eix +

i

x
−
i

x

∫ 1
0

eixt

(1+ t)2
dt. (3.114)

We have to show that the integral above is O(x−2) as x → ∞. To this end we can
integrate by parts once again to obtain

−
i

x

∫ 1
0

eixt

(1+ t)2
dt = −

1

4x2
eix +

1

x2
−
2

x2

∫ 1
0

eixt

(1+ t)3
dt. (3.115)

Now, the last integral can be estimated by∣∣∣∣∫ 1
0

eixt

(1+ t)3
dt

∣∣∣∣ ≤ ∫ 1
0

1

(1+ t)3
dt =

3

8
. (3.116)

Therefore, ∫ 1
0

eixt

1+ t
dt ∼ −

i

2x
eix +

i

x
, (3.117)

as x→∞.

The above integration by parts results may fail when φ ′(c) = 0 for some c ∈ [a, b].
This is frequently the case and brings us to the method of stationary phase. The im-
portant remark is the following.
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Basic idea. If φ ′(c) = 0 for a unique c ∈ [a, b] then the asymptotic behaviour of J(x)
integral is dominated by the integrand in the neighbourhood of t = c. The point t = c
is called stationary.

The proof of the above follows the same route as the one for the Laplace method:
show that the immediate vicinity of t = c carries themajority of themass of the integral,
expand φ in Taylor series, and compute the asymptotic result explicitly. However, this
time the reasoning utilizes complex analysis and, hence, we omit the proof.

Theorem 3 (Method of Stationary Phase). Let the assumptions of Riemann-Lebesgue lemma
be satisfied andφ ′(c) = 0with c ∈ (a, b). Then, the integral J(x) has the following asymptotic
behaviour

J(x) ∼ f(c)eixφ(c)+
iπ
4

sgnφ ′′(c)

√
2π

x|φ ′′(c)|
as x→∞. (3.118)

From the above result we see that J oscillates with a frequency given by the value
of φ(c) and amplitude decaying as x−1/2. If there are many stationary points we have
to separate the integral into several ones having only one point each. In contrast with
Laplace method obtaining further asymptotic terms is much more problematic due to
lack of exponential decay.

Example. (Bessel functions) One of the most important special functions arising in
problems of circular and cylindrical symmetries are Bessel functions. We meet them
frequently in heat conduction, fluid dynamics, acoustics, electromagnetism, etc. The
n-th Bessel function can be represented as an integral

Jn(x) =
1

π

∫π
0

cos(x sin t− nt)dt. (3.119)

In order to use the Method of Stationary Phase we have to write the above in an
appropriate form

Jn(x) = Re 1
π

∫π
0

e−inteix sin tdt, (3.120)

where Re is the real part of a complex number. Here, f(t) = exp(−int) andφ(t) = sin t.
We have φ ′(t) = cos t for which c = π/2. The function cos(x sin t) for large x oscillates
very rapidly far from π/2 as can be seen on Fig. 15. Most of these oscillations cancel
out leaving only the immediate neighbourhood of π/2 to be meaningful. Our formula
(3.118) gives then

Jn(x) ∼ Re 1
π
e−

inπ
2 eix−

iπ
4

√
2

πx
=

√
2

πx
cos
(
x−

nπ

2
−
π

4

)
as x→∞. (3.121)

The accuracy of such an approximation is very decent (see Fig. 15). Note that we
probably can safely use the asymptotic formula for x ≥ 4which is much more straight-
forward than the superposition of all oscillatory modes given by (3.119).

The method of stationary phase, apart from being extremely useful for resolving
complicated oscillatory integrals and Fourier transforms, is an indispensable aid for
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Figure 15: On the top: a function cos(100 sin t). On the bottom: Bessel function J0(x)
(solid) and its asymptotic approximation (dashed).
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numerical analysis. Using straightforward quadratures to compute integrals of the
form (3.107) is very demanding on computer power for large x. Using the Method of
Stationary Phase helps us to see what are really themost essential frequencies and how
to resolve them. This trait is crucial in optics or water wave analysis on which we will
have something to say in further sections.

3.4 Asymptotic expansion of sums. Euler-Maclaurin formula
We will now derive a very elegant formula for finding approximate form of the sums

n∑
k=1

f(k). (3.122)

When n→∞wewill also be able to derive asymptotic expansions. The result is due to
Euler and Maclaurin who discovered it in the first half of the XVII century. Euler used
it to approximate the sum

∑n
k=1 k

−2 to 20 decimal places. This lead him to a rigorous
solution of the famous Basel problem while he was 27 years old. It was Poisson who
later provided the formula for the remainder of their approximation. In XX century it
appeared that the Euler-Maclaurin formula is an essential tool in analysing algorithms
and numerical methods.

The main idea for the method is based on successive integration by parts in a clever
way. We assume that f is sufficiently smooth and consider the integral∫n

0

f(x)dx =

n−1∑
k=0

∫ k+1
k

f(x)dx. (3.123)

We would like to integrate by parts in such a way that the antiderivative of g(x) = 1

is the same in each interval (k, k + 1). Thanks to that, we will be able to sum these
contributions in a neat way. This is the main idea of the method. By this requirement,
this has to be a periodic linear function with unit period with

P1(x) = x− [x] −
1

2
for x /∈ N and lim

x→k± P1(x) = ±
1

2
, (3.124)

where [x] is the integer part of x, and k ∈ N. The above is called the first Bernoulli
function and is a periodic version of the first Bernoulli polynomial

B1(x) = x−
1

2
. (3.125)

Of course P ′1(x) = 1 for x that are not integers. Consider only the integral over one
subinterval and integrate by parts to obtain∫ k+1

k

f(x)dx = [f(x)P1(x)]
k+1
k −

∫k+1
k

f ′(x)P1(x)dx

=
1

2
(f(k) + f(k+ 1)) −

∫k+1
k

f ′(x)P1(x)dx.

(3.126)
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Now, if we sum the above for k = 0 to k = n− 1we obtain∫n
0

f(x)dx =
1

2
(f(0) + f(n)) +

n−1∑
k=1

f(k) −

∫n
0

f ′(x)P1(x)dx. (3.127)

We can now simplify the above form by adding (f(n) − f(0))/2∫n
0

f(x)dx+
f(n) − f(0)

2
=

n∑
k=1

f(k) −

∫n
0

f ′(x)P1(x)dx, (3.128)

and hence,
n∑
k=1

f(k) =

∫n
0

f(x)dx+
f(n) − f(0)

2
+

∫n
0

f ′(x)P1(x)dx. (3.129)

In this waywe havewritten an integral as a sum of the values of the integrated function
at integer points. Notice also the explicit form of the remainder. In numerical analysis
this is the trapezoidal rule for quadrature.

To carry this further we have to integrate by parts the remainder term, that is after
division into subintervals (k, k+ 1) we have∫ k+1

k

f ′(x)P1(x)dx =

[
f ′(x)P2(x)

2

]k+1
k

−
1

2

∫ k+1
k

f ′′(x)P2(x)dx, (3.130)

where we have to specify the second Bernoulli function P2(x) (note that for convenience
we have moved the factor 1/2 out of definition). First of all, for x ∈ (0, 1) we should
have P ′2(x) = 2B1(x) = 2x − 1. Furthermore, P2(x) should be continuously periodic
with period 1. Therefore, it should be a periodic second order polynomial of the form
x2 − x+ B2, where the constant C has to be determined from the periodicity condition
(since, as we will see, higher degree Bernoulli functions will also be periodic)∫ 1

0

P2(x)dx = 0 → 1

3
−
1

2
+ B2 = 0, (3.131)

and hence B2 = 1/6. Therefore, P2(x) is a periodic repetition of the second Bernoulli
polynomial

B2(x) = x
2 − x+

1

6
. (3.132)

Now, P2(x) is continuous. Returning to our integral and evaluating P2(x) we obtain∫ k+1
k

f ′(x)P1(x)dx =
1

12
(f ′(k+ 1) − f ′(k)) −

1

2

∫ k+1
k

f ′′(x)P2(x)dx, (3.133)

and hence, by summing over k, we arrive at

n∑
k=1

f(k) =

∫n
0

f(x)dx+
f(n) − f(0)

2
+
1

2
P2(0) (f

′(n) − f ′(0))−
1

2

∫n
0

f ′′(x)P2(x)dx. (3.134)
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It is now apparent how to continue this procedure of integration by parts. All is needed
to do is to define the k-th Bernoulli functions

Pk(x) = k

∫ x
0

Pk−1(x)dx+ Bk where Bk is chosen to satisfy
∫ 1
0

Pk(x)dx = 0. (3.135)

which are periodic versions of n-th Bernoulli polynomials

B0(x) = 1, B1(x) = x−
1

2
, B2(x) = x

2 − x+
1

6
, B3(x) = x

3 −
3

2
x2 +

1

2
x,

B4(x) = x
4 − 2x3 + x2 +

1

30
, B5(x) = x

5 −
1

2
x4 +

1

3
x3 −

1

30
x, ...

(3.136)

that is Pk(x) = Bk(x − [x]). The constants B0 = 1, B1 = −B1(0) = B1(1) = and
Bk = Bk(0) = Bk(1), for k > 1, are called Bernoulli numbers. They vanish for odd k
and are chosen in order to satisfy the periodicity requirement. Bernoulli polynomials
and numbers have many interesting properties on their own and arise frequently in
calculus. Having all this machinery we can formulate the most general result.

Theorem 4 (Euler-Maclaurin). If f ∈ Cp([1, n]), then we have

n∑
k=1

f(k) =

∫n
0

f(x)dx+
f(n) − f(0)

2
+

[p/2]∑
k=1

B2k

(2k)!

(
f(2k−1)(n) − f(2k−1)(0)

)
+ Rp, (3.137)

where the remainder is
Rp =

(−1)p

p!

∫n
0

f(p)(x)Pp(x)dx. (3.138)

The essential result in the Euler-Maclaurin summation formula is the explicit form
of the remainder (3.138). Since Pp, from definition, has zero average, we expect that
the remainder could actually be really small. Moreover, there is a very sophisticated
and difficult result stating that |Bp(x)| ≤ 2p!/(2π)pζ(p), where ζ is the Riemann Zeta
function. For even p this bound is optimal and attained for x = 0. Having this, we can
obtain a very useful estimate for the remainder

|Rp| ≤
2ζ(p)

(2π)p

∫n
0

|f(p)(x)|dx. (3.139)

Usually, a little simpler formula can be obtainedwhen f alongwith all of its derivatives
vanish at infinity and f(p) is integrable. Letting n→∞ in (3.137) we obtain

∞∑
k=1

f(k) =

∫∞
0

f(x)dx−
f(0)

2
−

[p/2]∑
k=1

B2k

(2k)!

(
f(2k−1)(0)

)
+

(−1)p

p!

∫∞
0

f(p)(x)Pp(x)dx. (3.140)

One can also let p → ∞ if the function f is infinitely smooth. However, it then rarely
happens that the series above is convergent is the classical sense. Instead, from (3.137)
we obtain

n∑
k=1

f(k) ≈
∫n
0

f(x)dx+
f(n) − f(0)

2
+

∞∑
k=1

B2k

(2k)!

(
f(2k−1)(n) − f(2k−1)(0)

)
. (3.141)
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In many important cases the integral above can be evaluated explicitly giving a neat
way of expressing the sum for large n. We will illustrate the summation formula with
several examples.

Example. (Euler-Mascheroni constant) Recall from Calculus 1 that the following limit
exists and is called the Euler-Mascheroni constant

γ = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
. (3.142)

Take f(x) = (1+x)−1, then f(p)(x) = (−1)pp!(1+x)−1−p. Therefore, the Euler-Maclaurin
summation formula (3.141) written for n− 1 instead of n and p→∞ gives

n−1∑
k=1

1

k+ 1
−

∫n−1
0

dx

1+ x
= γ+

1

2n
−

∞∑
k=1

B2k

2k

1

n2k
, (3.143)

where we have put all the constants into γ − 1. It is precisely the Euler-Mascheroni
constant because evaluating the integral and changing the limits of summation yields

n∑
k=2

1

k
− lnn = γ− 1+

1

2n
−

∞∑
k=1

B2k

2k

1

n2k
, (3.144)

which can be rearranged into

γ ∼

n∑
k=1

1

k
− lnn−

1

2n
+

∞∑
k=1

B2k

2k

1

n2k
, n→∞. (3.145)

The right-hand side of the equation converges to γ. However, the above asymptotic
expansion is much better than a simple statement of a limit. For example, using the
seemingly crude approximation with only one Bernoulli number B2 = 1/6

γ ≈
n∑
k=1

1

k
− lnn−

1

2n
+

1

12n2
(3.146)

and putting n = 10 one obtains γ ≈ 0.57721 where all digits are accurate. Note that
you can easily do these calculations on a handheld calculator. Computing γ from the
definition requires taking n ≥ 106 in order to obtain the same accuracy! This throttles
even a decently fast modern computer. Note the genius of Euler.

Example. (Riemann Zeta) The same technique as above can be used in order to find
an asymptotic formula for Riemann zeta function which is one of the most profound
special functions that has far-reaching applications in computer science and constitute
a bridge between analysis and number theory. The result is as follows

n∑
k=1

1

ks
∼ ζ(s) −

1

(s− 1)ns−1
+

1

2ns
−

∞∑
k=1

B2k

(2k)!

(s+ 2k− 2)!

(s− 1)!ns+2k−1
as n→∞, (3.147)
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where ζ(s) is the Riemann Zeta function. This, as Euler did, can be inverted to obtain
an accurate approximation of the Basel problem for s = 2

ζ(2) ∼

n∑
k=1

1

k2
+
1

n
−

1

2n2
+

1

6n3
−

1

30n4
+ ... as n→∞. (3.148)

For example, plugging n = 10 into the above gives ζ(2) ≈ 1.64493 which are all exact
digits for the value ζ(2) = π2/6. Remarkably, n = 2 gives 3 accurate decimal digits!
This approximation led Euler to guess the true solution of the Basel problem and prove
it rigorously by different means.

Example. (Sums of powers (Faulhaber’s formula)) This example traces the historical origin
of Bernoulli numbers. If we put f(x) = xm in (3.137) the m + 1 derivative vanishes
yielding a zero remainder and an exact formula. That is,

n∑
k=1

km =
1

m+ 1
nm+1 +

1

2
nm +

[m/2]∑
k=1

B2k

(2k)!
m(m− 1)...(m− 2k+ 2)nm−2k+1 (3.149)

The sum can be simplified by noticing that the binomial coefficient can be simply
factored

[m/2]∑
k=1

B2k

(2k)!
m(m− 1)...(m− 2k+ 2)nm−2k+1 =

1

m+ 1

[m/2]∑
k=1

B2k

(2k)!

(m+ 1)!

(m+ 1− 2k)!
nm−2k+1

=
1

m+ 1

[m/2]∑
k=1

(
m+ 1

2k

)
B2kn

m−2k+1.

(3.150)

Now, since the odd Bernoulli number vanish we can introduce a new summation
variable j = 2k to have

n∑
k=1

km =
1

m+ 1
nm+1 +

1

2
nm +

1

m+ 1

m∑
j=2

(
m+ 1

j

)
Bjn

m−j+1. (3.151)

The above can be simplified further with recalling that B0 = 1 and B1 = 1/2 to absorb
the nm+1 and nm terms into the sum. We finally have the very elegant Faulhaber’s
formula of sums of integer powers

n∑
k=1

km =
1

m+ 1

m∑
j=0

(
m+ 1

j

)
Bjn

m−j+1 (3.152)

For example, withm = 1, 2, 3 we obtain the well-known polynomials

n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

n∑
k=1

k3 =

(
n(n+ 1)

2

)2
. (3.153)
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Note that this has nothing to do with asymptotics and is just a different proof of these
exact formulas.

There is an interesting history behind many results concerning sums of integer
powers. The idea of summing successive squares and cubes can be dated to ancient
Greece (Pythagoras, Archimedes), India (Aryabhata), and medieval Persia (Abu Bakr
al-Karaji). Then, in the mid XVII century Faulhaber gave formulas for summing pow-
ers up to 17th. However, it was Jakob Bernoulli who found out that the polynomial
coefficients constitute a sequence that can be defined in a recursive way. A completely
rigorous proof of Faulhaber’s formula was given in the mid XIX century by Jacobi.

Example. In this example we will consider the following sum that is closely related
with Jacobi theta function that appears in harmonic analysis, heat conduction, and
quantum field theory among others. It has the form

n∑
k=−n

e−
k2

n . (3.154)

This series cannot be summed in an exact form and due to exponential decay the terms
may be difficult to compute for large n. This is the limit we would like to study. Note
that the above series is a little bit different than the one we considered. However, it is
easy to write a generalization of Euler-Maclaurin summation formula for this case

n∑
k=−n

f(k) =

∫n
−n

f(x)dx+
f(−n) + f(n)

2
+

[p/2]∑
k=1

B2k

(2k)!

(
f(2k−1)(n) − f(2k−1)(−n)

)
+ Rp.

(3.155)
Now, taking f(x) = g(x/

√
n) where g(x) = e−x

2 and remembering an exercise from
Calculus I we have

f(k)(x) = n−k
2Qk

(
x√
n

)
e−

x2

n , (3.156)

where Qk is some13 polynomial of degree k. Note also that due to the exponential
decay, f(k)(x)→ 0when x→ ±∞. This causes the sum in (3.155) to vanish in that limit.
On the other hand, the integral is∫n

−n

e−
x2

n dx =
√
n

∫√n
−
√
n

e−y
2

dy ∼
√
nπ as n→∞. (3.157)

We are only left in investigating the remainder. From (3.138)

|Rp| ≤
2ζ(p)

(2π)p
1

n−k
2

∫√n
−
√
n

|Pp(y)|e
−y2dy ∼

2ζ(p)

(2π)p
1

n
p
2
−1

∫∞
−∞ |Pk(y)|e

−y2dy as n→∞,
(3.158)

where the integral above is convergent thanks to the Gaussian. Combining all terms
needed for the Euler-Maculaurin formula we arrive at

n∑
k=−n

e−
k2

n ∼
√
nπ+O(n1−

p
2 ) as n→∞, (3.159)

13It is closely related to Hermite polynomial.
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Figure 16: A log plot of the relative error of approximating (3.154) with
√
nπ.

where p > 0 is an arbitrarily large number. Therefore, the remainder is transcenden-
tally small with respect to integer powers of inverse n and it can be shown that it is
indeed exponentially small. On Fig. 16 we can see the log plot of the relative error of
approximating the above series with

√
nπ. Notice the extreme smallness of it even for

n ≈ 0.5 while the above asymptotic result way obtained only for n → ∞. Behold the
true power of asymptotic analysis!

Many examples above show that having an asymptotic series that may not be
convergent is surprisinglyuseful in accurately calculatingmanyquantities. Asymptotic
series are used in almost every field that uses mathematics: from computer science,
through astronomy, to mathematical biology. It is not true that having a computer lets
you calculate everything with arbitrary accuracy. You have to have many ingenious
algorithms in hand unless you have time to wait for the calculations to complete (you
do not). Practical algorithms are always constructedwith the aid of asymptotic analysis
that helps to quantify computational complexity or use divergent series as a superb
approximation for computed functions. Notice that understanding some of these ideas
requires opening your mind to new material that may have been controversial some
time ago. However, this is mathematics and everything is perfectly rigorous when
considering theory. In applications one usually is not that lucky and have to rely on
intuition, knowledge, and simulations to build and analyse a successful model. For
example, in dealing with realistic perturbation series one usually is able to find one or
two first terms. Then, there is no question about convergence or even themathematical
meaning about the series. We have to learn to livewith that lack of complete knowledge
and use our experience and understanding to guide us. With sufficient training this
approach is highly successful.
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3.5 Singular perturbations and boundary layers
Armed with all we learned on asymptotic analysis we now go back to the beginning
of this section in which we analysed the perturbation theory. We have developed an
algorithm for finding regular perturbation expansions for which we now know that
the are asymptotic with respect to ε. In practice, however, one is usually faced with
more complex circumstances where the regular perturbations fail. For example, it can
happen that when passing with ε → 0 we loose one of the solutions - the one that
is relevant. We cave defined the regular perturbations as these which do not change
the number of solutions when ε → 0. Those perturbations that are not regular are
called singular and, not surprisingly, constitute a vast field of applied mathematics.
Much broader, voluminous, and rich in interesting examples and prolific applications
than regular perturbations. In this part we will only scratch the surface of singular
perturbation theory. There are many books written on that subject and the research is
still ongoing. We will illustrate the topic on several examples. This is the best way of
grasping what is going on in the real-world.

Example. We will start with a simple archetypal algebraic example

εx2 + 2x− 1 = 0, ε� 1. (3.160)

Notice that the ε multiplies the highest order term and when ε → 0 the quadratic
becomes a linear polynomial. We loose one solution. It is helpful to see the problem
graphically as presented on Fig. ??. For any ε > 0 the line −2x + 1 and the quadratic
εx2 have two intersections. One is close to 1/2 and the other escapes to −∞ when
ε→ 0. Indeed, the exact solutions are

x+ =
−1+

√
1+ ε

ε
, x− =

−1−
√
1+ ε

ε
. (3.161)

The positive one is indeed x+ = 1/2− ε/8+O(ε2) and

x− = −
2

ε
−
1

2
+O(ε) as ε→ 0. (3.162)

We can see that the negative solution does not have a standard regular expansion in
terms of ε. But how to find such an expansion? A good procedure is to magnify the
place where the problematic zero occurs and study its behaviour.

In order to do this we introduce a scaling transformation

y =
x

εα
, (3.163)

where α is to be determined in order to focus on the negative zero. Plugging the above
into the quadratic we obtain

ε1+2αy2 + 2εαy− 1 = 0. (3.164)

Now, we have to think about the above as a balance of terms. We would like to have
ε → 0 while keeping y = O(1) in order for the scaling to be effective. Since before
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Figure 17: Agraphical solution of the singular quadratic. Here, the solid line represents
x2, dashed line 0.3x2, and dotted line is the line −2x+ 1.

the scaling we have lost one of the solutions due to vanishing of the leading term in
the equation, we would like to keep it right now. This is why we have to balance the
quadratic term with other ones. If we balance quadratic term with a constant, then

1+ 2α = 0, (3.165)

which gives α = −1/2. This leads to
√
εy2 + 2y−

√
ε = 0, (3.166)

what becomes y = 0 when ε → 0. This is not consistent with our assumption that
y = O(1) andhencewehave to discard this balance. On the other habd, of the quadratic
balances linear term we should have

1+ 2α = α, (3.167)

when ε→ 0+. This gives α = −1 and

y2 + 2y− ε = 0, (3.168)

which gives y2 + 2y = 0 in the limit. Now, this is something more we wanted to have.
We can use the regular perturbation theory in a form

y = y0 + εy1 +O(ε
2), (3.169)

to find out that {
ε0 : y20 + 2y0 = 0,

ε1 : 2y0y1 + 2y1 − 1 = 0.
(3.170)
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From the first equation we have y0 = 0 and y0 = −2. This might be strange a little bit
since it seems that we have obtained three solutions. However, when we go back to
the scaling the y0 = 0 solution is consistent with x+, for xp → x0 = 1/2 when ε → 0

with y0 = εx0. The other solution y0 = −2 is the one we look for. Further, solving the
ε1 equation we arrive at

y = −2−
1

2
ε+O(ε2), (3.171)

when ε→ 0. This is completely consistent with Taylor expansion of x− and constitutes
a main idea of the singular perturbation theory. The most significant is the scaling of
the initial variable to focus on the singular behaviour.

Above introductory example shows the essential features of basic singular pertur-
bation theory: a solution is lost in the limit and we have to rescale the problem to track
it. In more complex examples this is by no means easy or straightforward and we have
to really understand the problem to know how to rescale. Notice that one solution
above has been an order of magnitude (in ε) larger than the other. A even more vivid
example is given by an analysis of a boundary value problem for an ODE.

Example. A classical example of singular perturbation theory is presented by an ODE
when the small parameter multiplies the highest order derivative

εy ′′ + 2y ′ + y = 0. (3.172)

We impose two boundary conditions

y(0) = 0, y(1) = 1. (3.173)

This example can be solved exactly and is chosen to do so in order to learnwhat goes on
when ε→ 0. First, notice that under that limit the equation becomes a first order ODE
which, in general, cannot satisfy two boundary conditions! Suppose that we apply our
regular perturbation theory. Let

y = y0 + εy1 +O(ε
2) as ε→ 0. (3.174)

Then, plugging the above expansion into (3.172) and equating coefficients of ε we
obtain a system 

ε0 : 2y ′0 + y0 = 0,

ε1 : y ′′0 + 2y
′
1 + y1 = 0,

...

(3.175)

The solution of the first one is y0(x) = Ce−x/2. The constant C has to be determined
from the boundary conditions which are

y0(0) = 0, y0(1) = 1. (3.176)

Notice that if we impose the first one we should chooseC = 0 and hence y0 ≡ 0. This is
not what we have expected and, hence, have to choose C = exp(1/2) in order to satisfy
the condition at the right boundary. Therefore,

y0(x) = e
1
2
(1−x). (3.177)
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Similarly, the next equation now becomes

2y ′1 + y1 = −
1

4
e
1
2
(1−x), y1(1) = 0. (3.178)

Note that we have included only the boundary condition at x = 1 in order to be
consistent with the leading order solution. We find that the ε correction is

y1(x) =
1

8
(1− x)e

1
2
(1−x), (3.179)

and our regular perturbation solution is

y(x) = e
1
2
(1−x)

(
1+

ε

8
(1− x) +O(ε2)

)
as ε→ 0. (3.180)

We have succeeded only partially - our solution does not satisfy the condition at
x = 0 and hence, cannot be taken as a uniform approximation. Since the above is
a perturbation expansion away from that boundary we call it outer solution. It is
analogous to the x+ zero of our quadratic example.

To find the solution near x = 0we have to rescale the variable

ξ =
x

εα
, (3.181)

when α > 0 is to be determined. Let us introduce Y(ξ) = y(x(ξ)) as a solution
expressed in new, rescaled, variable. We have

dy

dx
=
dξ

dx

dY

dξ
=
1

εα
dY

dξ
, (3.182)

and similarly for the second derivative. Our ODE (3.172) now becomes

ε1−2αY ′′ + 2ε−αY ′ + Y = 0. (3.183)

Since our aim is to resolve what happens near x = 0we impose only this condition

Y(0) = 0. (3.184)

Notice that the introduced scaling is a stretching transformation that magnifies the vicin-
ity of x = 0. The region around x = 1 escapes to infinity. This is precisely what we
would like to have.

Now, we want to retain the highest order derivative in the limit ε → 0. To this
end we have to balance it with one of the other terms in the equation. If the second
derivative is of the same order as Y then we have to have 1 − 2α = 0 which gives
α = 1/2. The ODE becomes

ε
1
2Y ′′ + 2Y ′ + ε

1
2Y = 0, (3.185)

which in the limit gives Y ′ = 0 with only a trivial solution satisfying Y(0) = 0. There-
fore, we have to reject this balance. We are left with balancing Y ′′ with 2Y ′ and hence
1− 2α = −αwhich implies α = 1. Now,

Y ′′ + 2Y ′ + εY = 0. (3.186)
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We can now in position to proceed with regular perturbation expansion. However, in
order just to illustrate the concept wewill compute only the leading order Y0 by passing
with ε to zero, i.e.

Y ′′0 + 2Y ′0 = 0, Y0(0) = 0. (3.187)
The solution is

Y0(ξ) =
1

2
D
(
1− e−2ξ

)
, (3.188)

with an arbitrary constantD. Now, we are facing with a completely different situation
than before. For everyD the above is a function that is called the inner solution since we
are solving near x = 0 and this region is called the boundary layer. This nomenclature
comes from fluid dynamics where even for flows with a very small viscosity the
behaviour near a wall is completely different than in the free stream.

How do we determine D? One of the best ways to obtain a uniform expansion is
to require that the inner solution becomes the outer one when leaving the boundary
layer. That is, we impose the following condition

lim
ξ→∞ Y(ξ) = lim

x→0+ y(x). (3.189)

The limit of x→ 0 is understandable but why to take ξ→∞? The reason is the scaling,
since for any fixed x ∈ (0, 1] we have

ξ =
x

ε
→∞ as ε→ 0. (3.190)

We leave the boundary layer far to the right. The procedure of determining the constant
of integration by equating inner and outer solutions is called matching. Applying the
matching condition (3.189) to the leading order solutions Y0 and y0 gives

lim
ξ→∞

1

2
D
(
1− e−2ξ

)
= lim

x→0+ e
1
2
(1−x), (3.191)

which is
1

2
D = e

1
2 → D = 2e

1
2 . (3.192)

Therefore, our inner solution matched with the outer is

Y0(ξ) = e
1
2

(
1− e−2ξ

)
. (3.193)

We have completed the perturbation theory for finding matching expansions for both
regions: outer and boundary layer. We have two pieces of the exact solution but,
unfortunately, they work only in each separate region. They agree on a very small
transition region that can be seen on Fig. 18. Our ultimate goal is thus to find a uniform
expansion in ε.

There are several ways of finding approximation that is uniformly valid in the
whole interval x ∈ [0, 1]. The sought solution is called composite. Since the inner and
outer solutions match they have a common part. The basic idea of finding a composite
expansion is to add two solutions and subtract the part on which they are the same, i.e.

yc(x) = Y0

(x
ε

)
+ y0(x) − y0(0), (3.194)
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Figure 18: The common part of inner and outer solutions for ε = 10−4.

since the y0(0) is a constant that comes from the matching condition (3.189). Finally,
we obtain a uniform composite leading order expansion

yc(x) = e
1
2

(
e−

x
2 − e−2

x
ε

)
. (3.195)

On Fig. 19we have collected all information thatwe have obtained concerning the solu-
tion of (3.172). Notice the decent accuracy of the composite expansion even though the
inner and outer solutions are not so good for this value of ε. Note the boundary layer
near x = 0. This is the place where the solution suddenly jumps from y(0) = 0 into
the outer region. This is the most important feature of singular perturbation theory
applied to boundary layers. The meaning of the second derivative is important only
in the close vicinity of x = 0 where the derivative is large and it is possible to impose
a boundary condition. The stretching transformation is an extremely useful technique
to investigate what is happening inside very small regions of the domain. Thanks to
this we are able to recast the problem into a shape that supports regular perturbation
theory.
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Figure 19: A comparison of various solutions of (3.172): exact (solid line), outer y0
(dashed line), inner Y0 (dotted line), and composite yc (dot-dashed line). Here, ε = 0.2.

The overall procedure for many other boundary layer problems can be summarized
as follows.

1. By inspection notice the possible boundary layers.

2. Conduct the regular perturbation expansion to find the outer solution.

3. Rescale the dependent variable to magnify the boundary layer.

4. Choose the scaling parameter according to the consistent balance of terms in the
equation.

5. Conduct the regular perturbation expansion to find the inner solution.

6. Match inner with outer solution.

7. Form a composite approximation.

The singular perturbation theory is not limited to boundary layers. Similar be-
haviour can be also found in initial value problems, in systems of equations, and in
PDEs. There may also exist several boundary layers or other phenomena in which the
solution is strongly dependent on ε. In the above example we have seen that inner
solution was a function of xε while the outer solution depended on x. This makes the
composite solution really a function of two variables: x and ξ. These distinct scales
of the domain are crucial in singular perturbation theory. For example, in analysing
nonlinear oscillations one is usually faced with amplitude changing much slower than
the period of vibrations. This two-timing causes the regular perturbation theory to fail.
Several methods have been developed in order to deal with these problems: strained
time coordinates, averaging, and most general - multiple scales method. They all help
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to learn crucial facts about oscillations where nonlinearities cause certain exotic phe-
nomena. This is a fascinating topic but, however, is out of scope of this lecture.
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4 Kinetics
In this section we will focus on modelling of interactions of various quantities. We
will only focus on kinetics, that is, the overall evolution of the investigated objects. We
will not delve into the gory details of the considered reactions since, frequently, it is
virtually impossible. Rather, we will base our reasoning on empirical laws concerning
rates of reactions. This programme proved to be very successful in chemistry, biology,
and physics. It constitutes the basis of kinetic modelling in these fields.

Example. (Radioactive decay) The simplest example of chemical reaction is the very
well-known radioactive decay. For instance, tritium 3H, the radioactive isotope of
hydrogen, decays into Helium when stroke with cosmic radiation in the atmosphere.
The full reaction is

3H 3He+ e+ ν, (4.1)

where e is the electron, while ν is neutrino. Since the masses of electron and neutrino
ale magnitudes smaller than the mass of elements, we will focus on modelling their
evolution. The main assumption is, of course, that the rate of decay is proportional to
the amount of radioactive isotope. That is, if H = H(t) is the amount of tritium, then

dH

dt
= −kH, t > 0, (4.2)

which we all very well know.

Example. (Predator-Prey) The next typical example is the predator-prey model known
from the ODE course. If P = P(t) is the number of predators, andO = O(t) number of
prey, the simplest Lotka-Volterra equations modelling dynamics are

dP

dt
= −αP + βOP,

dO

dt
= γO− δOP,

(4.3)

with α, β, γ, and δ positive constants. The populations either decay (in case of preda-
tors) or grow (in case of prey) exponentially. The interaction is given by the products
OPwhich say that populations can interact only when their both numbers are positive.
This is sensible since when there would be no prey, the predators would die out of
hunger. In realistic models this interaction term should be limited for larger popula-
tions.

Example. (SIR epidemic model) The most famous model of epidemic dynamics is due
to Kermack-McKendrick. Suppose that the population is divided between three parts:
susceptible for infection S, infected I, and recovered (or dead) R. We assume that an
individual once recovered gains a permanent immunity for the infection. The model
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has the form 

dS

dt
= −αS,

dI

dt
= −βI+ αSI,

dR

dt
= βI.

(4.4)

We see that the infection rate is proportional to the product SI - when susceptibles
interact with infected. Moreover, individuals recover at a constant rate proportional to
their number. Notice that when we add all of the above equations we obtain

dS

dt
+
dI

dt
+
dR

dt
= 0, (4.5)

and hence, the total population number is conserved. This is an example of conserva-
tion law.

4.1 Law of mass action
We can pursue the topic of chemical kinetics further. Suppose we have a reservoir
of various species that are in constant motion, collide, and react with each other and
produce another ones. Symbolically, this can be written

reactants products. (4.6)

For example, if a species A reacts with B to produce Cwe can write

A + B C. (4.7)

The rate of this reaction, in general, depend on concentrations of all reactant, andmore
precisely - their collision rate. In turn, this means that it depends on the concentra-
tions of A and B. By using the same letter, which is common in kinetics, to denote
concentrations we can write 

A ′ = −r(A,B),

B ′ = −r(A,B),

C ′ = r(A,B).

(4.8)

Note that the reaction is not possible if one of the species is absent, therefore we have
r(A, 0) = r(0, B) = 0. Therefore, from Taylor series we know that

r(A,B) = kAB+ ..., (4.9)

where all lower terms vanish due to our observation. This is the reason that the product
is the simplest expression of a reaction rate of two species.

The above example is a specific version of the Law of Mass Action that governs very
general reactions. It is the following.

1. The rate r of reaction is proportional to the product of all reactantswith respective
powers representing number of molecules involved.

69



2. The time change of the concentration of each species, i.e. the temporal derivative,
is the product of the rate and number of its molecules.

3. If there is a system of reactions, their rate add up.

This means that the reaction rate r is defined to be the minus rate of consuming one
molecule reactant (or producing one molecule of the product). For example, suppose
that we have a reaction

nA + mB pC + qD, (4.10)

where n,m, p, and q are number of molecules. According to the Law of Mass Action
we have

r(A,B) = kAnBm, (4.11)

and the evolution of the reaction is given by the system
A ′ = −nkAnBm,

B ′ = −mkAnBm,

C ′ = pkAnBm,

D ′ = qkAnBm.

(4.12)

If we divide each equation by the respective number ofmolecules and add all equations
together we obtain

d

dt

(
1

n
A+

1

m
B+

1

p
C+

1

q
D

)
= 0, (4.13)

which is a conservation law for this reaction. Similarly, we can subtract first two
equations, or add the first and third, and still obtain a certain conservation law. This is
very useful since it allows for reduction of equations. For instance, first two equations
give us

1

n
A−

1

m
B = α, (4.14)

for some constant α dependent on initial conditions. This gives us B = m(α − A/n)
which, plugged into the equation for A, yields

A ′ = −nmmkAn(α−A/n)m, (4.15)

which is a single ODE! Solving it, and substituting into other conservation laws gives
the final solution. From this we immediately can obtain possible steady-states, that is
A = 0 and A = n/α. This is a very important technique.

Example. Suppose that the specie A reacts with itself to produce C

A + A C. (4.16)

Since there are two molecules of Awe have{
A ′ = −2kA2,

C ′ = kA2.
(4.17)
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The conservation law is (A/2+ C) ′ = 0 and hence,

C =
1

2
(A0 −A) + C0, (4.18)

where A0 and C0 are initial concentrations. The ODE for A can easily be solved to give

A(t) =
A0

1+ 2kA0t
, (4.19)

and hence
C(t) =

1

2
A0

(
1−

1

1+ 2kA0t

)
+ C0. (4.20)

Therefore, we see that algebraically A decays to zero while C attains its steady state
A0/2+ C0. Therefore, the amount of C increased by A0/2.

Example. As a more interesting example consider

A C + D,
A + B 2A + C.

(4.21)

The first reaction is reversible, that is A changes into C and D and C + D reacts into
A. Since we have two reactions there are two rates with constants, say, k1 and k2. The
reverse reaction proceeds with k−1. We can write the equations

A ′ = −k1A+ k−1CD− k2AB+ 2k2AB = −k1A+ k−1CD+ k2AB,

B ′ = −k2AB,

C ′ = k1A− k−1CD+ k2AB,

D ′ = k1A− k−1CD.

(4.22)

A possible conservation laws are B + C −D = α and A + 2B + C = β. This can allow
us to reduce the number of equations from four to two and then use the phase plane
analysis to check for critical points and their stability. Note the enormous utility of
conservation laws. Without spotting them, wewould have solved twice as complicated
system.

4.2 Michaelis-Menten kinetics
Many reactions in biochemistry undergo only when a certain enzyme is present. It
acts as a key for the reaction to occur. Usually, only a very small concentration of an
appropriate enzyme can trigger the reaction. The Michaelis-Menten model provides a
useful description of the dynamics of such reaction. We will illustrate the concept on
the following archetypal reaction introduced by Brown in the beginning of XX century
do describe hydrolysis of sucrose. Later, this reaction was studied mathematically by
Michaelis and Menten. It has the form

S + E C
C P + E,

(4.23)
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Figure 20: Numerical solutions of (4.25) with typical parameters. The solid line is S/S0
while dashed C/E0.

where S is the substrate, E the enzyme, C an intermediate complex, and P the product.
The reaction equations are the following

S ′ = −k1SE+ k1C,

E ′ = −k1SE+ (k−1 + k2)C,

C ′ = k1SE− (k−1 + k2)C,

P ′ = −k2C.

(4.24)

Two conservations laws are (E+ C) ′ = 0 and (S+ C+ P) ′ = 0 and hence, using initial
concentrations S(0) = S0, E(0) = E0, and C(0) = D(0) = 0, we can reduce the number
of equations to two {

S ′ = −k1E0S+ (k−1 + k1S)C,

C ′ = k1E0S− (k2 + k−1 + k1S)C.
(4.25)

A typical numerical solution of the above is depicted on Fig. 20. We can see that
the compound C instantaneously jumps from zero initial condition to some positive
concentration. This is precisely the rapid reaction induced by the enzyme. If we
supposed that there are two time-scales: fast on which C jumps, and slower on which
S evolves, the compound would essentially be constant on the latter scale. Therefore,
we would be tempted to set C ′ = 0 in the above system, solve an algebraic equation
for C, and substitute in order to obtain a single ode for S. This premise is the main
idea behind the so-called Quasi Steady-State Assumption (QSSA) that is widely used
in chemical kinetics. We would like to justify that claim on the basis of perturbation
theory.
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We start with scaling of all relevant variables. The scaling for the substrate is simple

S = S0S
∗, (4.26)

where the nondimensional variable is denoted by S∗. Scaling with initial conditions
is usually the correct choice for bounded functions. Next, we cannot use the initial
condition for the compound since it is equal to zero. However, from the conservation
law E+ C = E0 we know that C can be at most E0 and thus

C = E0C
∗, (4.27)

for the new variable. Since no appropriate time-scale is evident, we nondimensionalize
the time with yet unknown scale τ, i.e.

t = τt∗, (4.28)

to be chosen in a moment. Plugging everything into (4.25) and omitting the asterisks,
we obtain 

1

τk1E0
S ′ = −S+ (µ+ S)C,

1

τk1S0
C ′ = S− (ν+ S)C,

µ =
k−1

k1S0
, ν =

k−1 + k1
k1S0

. (4.29)

The equations are indeed simpler. To finish the scaling we have to choose τ. We have
two choices, but only one produces the previously observed phenomenon of rapid
initial change of C. That is, we take τ = 1/(k1E0) and obtain{

S ′ = −S+ (µ+ S)C,

εC ′ = S− (ν+ S)C,
(4.30)

where ε = E0/S0 � 1. The smallness of ε is confirmed in reality - the concentration of
enzyme is always much smaller than the substrate. Since a small parameter multiplies
the derivative, we obtain a singular perturbation problem.

We will perform the leading order asymptotic analysis and retain the same letters
to denote all the variables. First, for the outer solution we set ε = 0 and obtain the
aforementioned QSSA {

S ′ = −S+ (µ+ S)C,

0 = S− (ν+ S)C,
(4.31)

from which
C =

S

ν+ S
, (4.32)

and
S ′ = −

λS

ν+ S
, λ =

k2

k1S0
. (4.33)

This can be integrated to yield

ν lnS+ S = −λt+A, (4.34)
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where A is the integration constant. Now, we move to the boundary (initial) layer by
stretching the time coordinate

T =
t

ε
. (4.35)

Equations become {
s ′ = ε(−s+ (µ+ s)c),

c ′ = s− (ν+ s)c,
(4.36)

The leading order is now {
s ′ = 0,

c ′ = s− (ν+ s)c,
(4.37)

and thus s is constant s(T) ≡ 1 from the initial condition. Further, the equation for the
compound can be solved explicitly

c(T) =
1

1+ ν

(
1− e−(1+ν)T

)
, (4.38)

this is the rapid change of c inside the layer. Finally, we match the inner and outer
solutions by requiring

lim
T→∞ s(T) = lim

t→0 S(t), lim
T→∞ c(T) = lim

t→0 C(t), (4.39)

which gives A = 1. The composite solution is thus

ν lnS(t) + S(t) ∼ −λt+ 1, C(t) ∼
S(t)

ν+ S(t)
−

1

1+ ν
e−(1+ν)t/ε, (4.40)

as ε → 0. Numerical calculations show that the approximation by this leading order
is almost perfect. This shows how perturbation theory is useful in finding vert useful
approximations of complicated problems.
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5 Waves
In this section we will visit the general theory of waves. We can observe then in almost
any circumstance both natural and industrial. There arewaves on the surface of a pond,
in the electromagnetic field that carry our mobile or Wi-Fi signals, in elastic materials
that constitute buildings, acoustic waves that we can hear, optical waves that we can
see, waves in atmospheres of planets or stars, and gravitational waves in spacetime.
Engineers have to be familiar with wave dynamics in order to avoid resonances that
may be fatal fro constructions.

Due to all of these distinct fields it is difficult to rigorously define what a wave is.
There are surely two characteristics of a typical wave motion:

• the energy is transmitted to a regions away from the initial disturbance,

• the medium of propagation is not disturbed.

Mathematically, waves are almost always described by nonlinear partial differential
equations. When displacements are small these can be linearised. And these are the
ones that we will focus the most.

5.1 Kinematics of waves
Linear wave dynamics in homogeneous medium is usually governed by a constant
coefficient linear PDE of the form

L(u) = 0, (5.1)
where L is a linear partial differential operator and u is the sought displacement
such has amplitude of the water surface, departure from the atmospheric pressure
or perturbation of the electromagnetic field. We assume that the wave travels in one
spatial dimension described by the variable x ∈ R (of course, we can generalize this
to higher dimensions). The time is denoted by t > 0. As with ODEs we can seek for
exponential solutions in the form

u(x, t) = Re ei(kx−ωt), (5.2)

where for convenience we use complex variables. This solution is called the plane wave.
Here, ω is the angular frequency of the wave, i.e. the number measuring how many
oscillations there are in a unit of time (times 2π). That is, if T is the period of oscillations,
then

ω =
2π

T
. (5.3)

Moreover, k is the wave number stating how many oscillations are in the unit of length
(times 2π). That is, if λ is the wave length then

k =
2π

λ
. (5.4)

Plugging the above ansatz into the governing PDE produces one of the most important
features of wave motion - the dispersion relation

ω = ω(k), (5.5)
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which says that the frequency depends on the wave number. With these quantities we
can associate the phase speed

c =
ω(k)

k
=

λ

T(k)
. (5.6)

This means that the phase speed is the distance travelled by the disturbance in one
period. When c =const. we say that the wave is nondispersive otherwise it is dispersive.

Now, in reality waves are rarely plane. Usually, due to linearity, they are superpo-
sitions of plane waves of different frequency, that is a general solution of (5.1) can be
written as

u(x, t) = Re
∫∞
−∞A(k)e

i(kx−ω(k)t)dk = Re
∫∞
−∞A(k)e

iθ(k,x,t)tdk. (5.7)

where A is the complex amplitude or weighing factor of various plane waves. The
above integral has to be convergent in order for this solution to have a meaning. There
is a rich and beautiful theory behind that. We have introduced the wave phase

θ(k, x, t) =
kx

t
−ω(k), (5.8)

which brings us to the historical beginning of the Method of Stationary Phase (The-
orem 3). In many circumstances we would like to know the asymptotic form of the
disturbance for large times, i.e. we would like to know the behaviour of the wave far
from the initial time. This means that we look for the t → ∞ limit when x/t is fixed
in order to move with the wave. From the Stationary Phase Method we know that the
behaviour of the integral is governed by the neighbourhood of the stationary point of
the function θ, that is

∂θ

∂k
= 0→ x

t
=
dω

dk
. (5.9)

The quantity dω/dk is called group velocity and plays a fundamental role in the analysis
of wave motion. Since x/t is fixed the above equation may have a solution k = k0.
Because of (3.118) we know that in this case

u(x, t) ∼ Re A(k0)

√
2π

t|ω ′′(k0)|
ei(k0x−ω(k0)t)e−i sgnω

′′(k0)
π
4 as t→∞, x

t
fixed.

(5.10)
We now see that a general solution of our linear PDE (5.1) for large times behaves as a
sinusoidal planewavemovingwith velocityω(k0)/k0where k0 is satisfies the equation
ω ′ = x/t. Moreover, its amplitude decays as 1/

√
t. Further, by some more advanced

methodology it can be shown that the energy of the wave moves with the group veloc-
ity. In relativity, for example, group velocity must always be smaller than the speed of
light even though the phase velocity might exceed it! This phenomenon can happen
in waveguides and other similar materials. This is not a contradiction with relativity
since the compact superposition of waves, called the wave packet, travels at the group
speed as we have seen from the method of stationary phase. Further intuition about
these properties can be gained by analysing a simple situation of wave superposition.
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Example. (Group velocity) Let us consider two plane waves with wave numbers k and
k+∆kwith |∆k|� |k|. For convenience choose a real sinusoidal waves with amplitude
equal to 1. Their superposition is equal to

u(x, t) = cos(kx−ω(k)t) + cos((k+ ∆k)x−ω(k+ ∆k)t). (5.11)

Using the trigonometric formula for a sum of two cosines gives

u(x, t) = 2 cos
((
k+

∆k

2

)
x−

ω(k) +ω(k+ ∆k)

2
t

)
cos
(
∆k

2
x−

ω(k+ ∆k) −ω(k)

2
t

)
.

(5.12)
Now, since ∆k is small the first wave has a wave number close to k and is a short
wave with respect to the other. The other has a very small wave number ∆k/2 which
corresponds to a long wave. We can think about it as wave with a wave number k
which amplitude is modulated with a long wave as can be seen on Fig. 21. The phase
speed of the short wave is

1

2

ω(k) +ω(k+ ∆k)

k+ ∆k
2

=
ω(k)

k
+O(∆k) as ∆k→ 0, (5.13)

which is close to the original phase speed. The long wave, on the other hand, has

1

2

ω(k+ ∆k) −ω(k)
∆k
2

= ω ′(k) +O(∆k) as ∆k→ 0, (5.14)

which is very close to the group velocity of the original wave! We have thus found
that the superposition of two waves is an amplitude modulating long wave that travels
with group velocity. This envelope is then filled with shorter waves travelling at phase
velocity. This is a good intuition that generalizes to arbitrary superpositions. In that
case the group velocity tells us about the overall speed which the most important wave
has.

5.2 Dispersive waves
In this part we will see several important examples showing how the information can
propagate in a dispersive manner. We will meet several partial differential equations
however, the reader is not needed to understand them completely. After seekingwave-
like solutions the mathematics reduces to algebra.

Example. (Traveling wave) Probably the simplest PDE that gives rise to an interesting
wave phenomenon is the travelling wave equation

∂u

∂t
+ c

∂u

∂x
= 0, (5.15)

where u = u(x, t), for example, describes contaminant concentration in river, density
of cars on a highway, displacement of atoms in elastic material or a density of pack of
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Figure 21: A schematic of a superposition of two waves with close wave numbers. A
short wave (solid line) with wave number k+ ∆k/2which amplitude is modulated by
w long wave with wave number ∆k/2 (dashed and dotted lines).

animals. Here, c is constant. We look for travelling waves u(x, t) = exp(i(kx −ωt)).
After substitution we can cancel exponentials and obtain

− iω+ ick = 0→ ω(k) = ck. (5.16)

Therefore, the phase speed is equal to c and the wave is nondispersive. As can easily
we calculated the group speed ω ′(k) = c which is the same as phase speed. Since the
above is a solution for any k ∈ R we can form a superposition

u(x, t) =

∫∞
−∞A(k)e

ik(x−ct)dk. (5.17)

Suppose that the initial disturbance has the shape f = f(x), i.e.

f(x) = u(x, 0) =

∫∞
−∞A(k)e

ikxdk. (5.18)

The integral is the same as the general solution with x replaced by x − ct. Therefore,
our solution is

u(x, t) = f(x− ct). (5.19)
Whence the name of the equation. The initial profile travels to the right for c > 0 and
left for c < 0with velocity c since the above formula is just a translation of the function
f. Note that the wave does not change its shape.
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Example. (Wave equation) Linear waves are very frequently described by the following
second order equation known simply as wave equation

∂2u

∂t2
= c2

∂2u

∂x2
. (5.20)

The examples include elasticity, acoustics, and electromagnetism. Let us look for plane
waves u(x, t) = exp(i(kx−ωt)), that is

ω(k)2 = c2k2, (5.21)

which givesω = ±ck. These twomodes correspond to nondispersive travelling waves
going to the left and right with speed c.

Example. (Korteweg-de Vries equation) In many physical situations the following lin-
earised Korteweg-de Vries equation arises as a description of many wave phenomena

∂u

∂t
+ c

∂u

∂x
= α

∂3u

∂x3
, (5.22)

where c and α are constants. The dispersion relation for this case is

ω(k) = ck+ αk3. (5.23)

Therefore, thewave is dispersivewith phase velocityω(k)/k = c+αk2while the group
velocity is ω ′(k) = c + 3αk2. For example, with α > 0 shorter wavelengths (k large)
move faster than longer ones. Moreover,ω ′′(k) = 6αk. We can now look for stationary
points that is

ω ′(k0) = 0→ k20 = −
c

3α
. (5.24)

Therefore, the phase can be stationary for cα < 0.

Example. (Beam equation) Transversal vibrations of elastic beam are modelled by

∂2u

∂t2
+ γ2

∂4u

∂x4
= 0. (5.25)

The dispersion relation is
ω2 − γ2k4 = 0. (5.26)

There are two modes of vibrations

ω+(k) = γk
2, ω−(k) = −γk2. (5.27)

The phase velocities are ω± = ±γk while group velocities ω ′± = ±2γk. The only
stationary point is this k0 = 0.

Knowing the dispersion relation is fundamental in determining the characteristics
of waves. In the next subsection we will illustrate all of these ideas on concrete and
important examples.
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5.3 Water waves
The most familiar, useful, and interesting waves are these produces on the surface of
a basin of water. We will study them in detail. Deriving water flow equations is a
very educative, however, advanced task and we have to omit some details in this basic
treatment. On the other hand, we would like to justify all formulas that we obtain.

5.3.1 Derivation

Let us start by considering a three dimensional flow o water in the x − y − z space.
That is, by x and y we denote the horizontal orthogonal coordinates, while z is the
vertical (see Fig. 22). As usual, the time is denoted by t > 0. Fluid velocity will be
denoted by a vector u(x, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))where u and v are
horizontal components of the flow velocity while w is the vertical. We have to make
several assumption of the nature of the vector field u.

• The water has constant density.

• The flow is incompressible.

• The flow is irrotational.

The first assumption above can be stated as the vanishing of divergence

ux + vy +wz = 0, (5.28)

where subscripts denote partial derivatives with respect to given variable, i.e. ux =
∂u/∂x. In order to understand that it is needed to utilize some results from multidi-
mensional calculus. However, we will only illustrate this on a one dimensional case.
Choose any interval [a(t), b(t)] that moves with the flow, that is u(a, t) = a ′(t) and
u(b, t) = b ′(t). Then, the length of that interval is

L(t) = b(t) − a(t). (5.29)

Computing the derivative gives L ′(t) = b ′(t) − a ′(t) = u(b(t), t) − u(a(t), t). Now,
since the flow is incompressible the length does not change with time

0 = u(b(t), t) − u(a(t), t) =

∫b(t)
a(t)

ux(x, t)dx, (5.30)

wherewehave usedNewton-Leibniz theorem. Since the above is valid for all arbitrarily
chosen a and b we conclude that ux = 0 which is one-dimensional divergence. The
proof for higher dimensions is similar and utilizes Reynolds transport and divergence
theorems.

The flow is also irrational meaning that its rotation vanishes14, that is

∇× u = 0. (5.31)
14Recall that the rotation of a vector field is defined as ∇× u = (wy − vz, uz −wx, vx − uy) and nabla

operator is ∇ = (∂x, ∂y, ∂z).
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Figure 22: A schematic of the water flow. The y direction is suppressed.

From multidimensional calculus we know that in a simply connected region an irrota-
tional vector field can be written as a gradient of a potential φ

u = φx, v = φy, w = φz. (5.32)

This is very good sincewe can now investigate only one function. The incompressibility
condition (5.28) is now15

∆φ = φxx + φyy + φzz = 0, (5.33)

which is known as Laplace’s equation.
Further, we have to add some dynamics to our flow since, so far, it is purely

kinetic. The fluid has to conserve momentum and the dynamical equations are just
mathematical statements of this principle. We assume that there is only one force
acting on the volume (bulk) of the fluid - namely gravity. Also, let the fluid be inviscid
so that there is no dissipation of energy by internal friction. We are thus left only with
the pressure p representing internal forces. This leads us to

ρ
d

dt
u(x(t), y(t), z(t), t) = −px, ρ

d

dt
v(x(t), y(t), z(t), t) = −py ρ

d

dt
w(x(t), y(t), z(t), t) = −pz−ρg,

(5.34)
which says that the change of the momentum of a particle of the fluid with a trajectory
t 7→ (x(t), y(t), z(t)) is equal to the (minus) gradient of the pressure and gravity (in the
vertical direction). When we use the chain rule to compute the temporal derivative we
obtain16 

ut + uux + vuy +wuz = −
1

ρ
px,

vt + uvx + vvy +wvz = −
1

ρ
py,

wt + uwx + vwy +wwz = −
1

ρ
pz − g.

(5.35)

15Here, we are dealing with the Laplacian ∆ = ∇ · ∇.
16Note that x ′(t) = u(t) etc.
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These are the celebrated Euler equations of fluid dynamics. They are formidable and
very well investigated but still, they pose many different difficulties and challenges.
There are books written on them. Now, Euler equations can be cast into some more
trackable form thanks to our assumption of irrotational (potential) flow. Plugging in
the potential (5.32) into Euler equations yields a vector equation

∇φt +
1

2
∇(φ2x + φ2y + φ2z) = −

1

ρ
∇p−∇(gz). (5.36)

Since everywhere above we have an equality of gradients it follows that there exist a
function H(t) such that17

φt +
1

2
(φ2x + φ

2
y + φ

2
z) +

1

ρ
p+ gz = H(t). (5.37)

This is the important Bernoulli’s Law. Notice that we have obtained a closed system of
equations for twounknowns : Laplace’s equation for the potential (5.33) andBernoulli’s
Law (5.37). By a suitable redefinition of thepotential, i.e. φ = φ̃+

∫
H(t)dtwith∆φ̃ = 0,

we can set the integration constant equal to zero and we will make this choice without
the loss of generality.

5.3.2 Boundary conditions

So far we have devised a system of differential equations that describe a whole gen-
erality of water flow situations. Here, we would like to focus on waves and in order
to pursue this task we have to impose some specific boundary conditions. First, we
assume that the bottom of our basin is flat, that is there is a impenetrable boundary at
z = 0. Second, there is a free boundary on which the pressure (usually atmospheric)
is prescribed. The word free means that we do not know the shape of the surface in
advance and it has to be found as a part of the solution. We denote it by z = η(x, y, t).

In general we have two types of boundary conditions for the fluid flow: kinematic
anddynamic. Kinematic conditionmeans that the fluid cannot penetrate the boundary.
In the case of the flat bottom this means that

w = φz = 0 on z = −H, (5.38)

whereH > 0 is the depth of the basin. That is, there is no vertical velocity component on
the bottom. The kinematic condition on the surface requires a little bit moremore since
we do not know η. Let 0 = F(x(t), y(t), z(t), t) = z(t) − η(x(t), y(t), t), t) denote the
particle trajectory along the boundary of the fluid. Since this surface is impenetrable
we have dF/dt = 0 and hence

w = ηt + uηx + vηy on z = η(x, y, t), (5.39)

which in the language of the potential can be written as

φz = ηt + φxηx + φyηy on z = η(x, y, t). (5.40)
17It is a vector analogue of a scalar equation f ′(x) = 0.
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The dynamic boundary condition is the prescription of the pressure. We give such at
the free surface

p = p0 on z = η(x, y, t). (5.41)

Without the loss of generality we can take p0 = 0. Due to Bernoulli’s Law (5.37) we can
write

φt +
1

2
(φ2x + φ

2
y + φ

2
z) + gη = 0 on z = η(x, y, t), (5.42)

where we have used our remark that we can takeH(t) = 0. Therefore, the potential has
to satisfy two boundary conditions on the free surface (5.40) and (5.42). This seemingly
overdetermination of the system is only apparent - the free surface z = η is not known
and hence we need an additional condition to determine it.

5.3.3 Linearisation

Now, the equations of motion (5.33) and (5.37) with boundary conditions (5.38), (5.40),
and (5.42) are nonlinear and describe a multitude of situations. We would like to focus
on these phenomena in which the displacement of the free surface along with velocity
and its derivatives are small. That is, we would like to linearise the equation. To this
end we use perturbation theory with respect to the basic state of the so-called lake at
rest, that is we investigate small perturbations to the following situation

φ0 = 0, η0 = η0(x, y, t). (5.43)

Denote the magnitude of the perturbation by ε > 0 and consider the expansion

φ = εφ1 + ε
2φ2 +O(ε

3), η = η0 + εη1 + ε
2η2 +O(ε

3), (5.44)

as ε → 0. We would like to find only equations for the leading order perturbations.
First, it is straightforward to see that due to linearity each φk is a solution of the
Laplace’s equation

∆φk = 0. (5.45)

Similarly, the kinetic boundary condition at the bottom (5.38) is

(φk)z = 0 on z = −H. (5.46)

On the other hand, by plugging the perturbation expansion into the dynamic condition
(5.42) and equating like terms gives a system of equations

ε0 : η0 = 0,

ε1 : (φ1)t + gη1 = 0,

ε2 : (φ2)t +
1
2

(
(φ1)

2
x + (φ1)

2
y + (φ1)

2
z

)
+ gη2 = 0,

...

on z = η0. (5.47)

Therefore, the water surface is indeed at rest in the leading order. Andwe can evaluate
the boundary condition at z = 0. This is a great advantage since in the leading order
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the boundary condition is imposed on a fixed value of z and not at the unknown η.
Further, the kinematic boundary condition (5.40) now becomes

ε1 : (φ1)z = (η1)t,

ε2 : (φ2)z = (η2)t + (φ1)x(η1)x + (φ1)y(η1)y,

...

on z = 0, (5.48)

where we have utilized the fact that η0 = 0. We have thus obtained everything we
wanted, that is a complete characterisation of equations for φ1 and η1. Summing up
and denoting the perturbationφ1 byφ and η1 by η (this is an abuse of notation however,
we will not go further in determining subsequent perturbations) we finally obtain the
linearised equations of water flow.

1. Governing equation for the potential

∆φ = 0. (5.49)

2. Surface boundary conditions on z = 0

φt + gη = 0, φz = ηt. (5.50)

By differentiating the first equation with respect to t and using the secondwe can
eliminate η

φtt + gφz = 0 on z = 0. (5.51)

3. Boundary condition at the bottom z = −H

φz = 0. (5.52)

The usual procedure of solving the above is first to solve the Laplace’s equation (5.49)
along with boundary conditions (5.51) and (5.52). Then, solve the first equation in
(5.50) in order to determine the free surface η. Next, the velocity can be found from
the definition of the potential (5.32). Finally, the pressure distribution in the water can
be found from Bernoulli’s Law (5.37)

p = −ρgz− ρφt. (5.53)

Notice that the first term above represents the hydrostatic pressure.
We have thus obtained an enormous simplification of the problem. Equations are

linear, decoupled and the domain is simple. That is to say, we reduced the nonlinear
system of equation with free boundary into a linear single equation for the potential
on the following simple domain

(x, y, z) ∈ R2 × [−H, 0]. (5.54)

The domain is so regular that in order to find the general solutionwe can use separation
of variables or similar technique used in solving linear constant coefficient equations.
In what follows we will only focus on waves.
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5.3.4 Linear water waves

We will look for plane water waves in the x − y direction when their amplitude can
change with the depth. Therefore, we propose the following ansatz

φ(x, y, z, t) = Φ(z)ei(k·x−ωt), (5.55)

where the wave vector k = (kx, ky) is a straightforward generalization of the wave
number while x = (x, y). The dot product is denoted by ·. We also allow for complex
solutions in order to facilitate the reasoning. At the end we can always take the real
part. We now plug the above into (5.49) to obtain an equation forΦ(z)

Φ ′′ − K2Φ = 0, (5.56)

where K2 = k2x + k2y. The boundary conditions are the following

−ω2φ(0) + gφ ′(0) = 0, φ ′(−H) = 0. (5.57)

The solutions of the second order constant coefficient linear ODE are build up from
hyperbolic functions from which only the cosine satisfies the boundary condition at
the bottom. Therefore,

Φ(z) = C coshK(z+H). (5.58)
Now, we plug the boundary condition at the surface to obtain

−ω2 coshKH+ gK sinhKH = 0, (5.59)

That is the dispersion relation for the water waves is

ω = ±
√
gK tanhKH. (5.60)

This is a strongly nonlinear formula for the frequency of oscillations with respect to the
wave number. The waves that we have obtained are called surface gravity waves since
they are generated by the gravity. The phase speed is

ω

K
= ±

√
gH

√
tanhKH
KH

. (5.61)

There are two important limits that have to be considered.
• Deep water waves. These waves arise when the surface is far away from the

bottom to feel its presence. Mathematically speaking, the wave length in this
situation is much smaller than the depth, that is

KH� 1. (5.62)

For these short waves we have tanhKH ≈ 1 and hence

ω ≈ ±
√
gK,

ω

K
≈
√
g

K
,

dω

dK
= ±1

2

√
g

K
. (5.63)

Note that the quantities above do not depend on the depth on the basin. The
waves are dispersive with long waves travelling faster than short ones. The real-
world example of these waves is a throwing a pebble into the pool. First, all
wavelengths are present but after few moments, the longer waves overtake short
ones and reach distant objects before them.
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K

|ω(K)|

Figure 23: The dispersion relation for water waves with H fixed. The solid line repre-
sents the exact formula (5.60) while the dashed line is the deep water approximation
and dotted line is shallow water limit.

• Shallow water waves. When the water is shallow, that is the wavelength is larger
than the depth

KH� 1, (5.64)

we can approximate tanhKH ≈ KH. Then,

ω = ±K
√
gH,

ω

K
= ±

√
gH,

dω

dK
= ±

√
gH. (5.65)

This means that these waves are nondispersive for which the speed is related to
the depth. This approximation is very good for large scale flow in the ocean or
atmosphere. Tides or tsunamis are also neatly modelled by the above relations.

The above limits are summarized on Fig. 23. In practice, it is assumed that shallow
water waves occur for k−1 > 20K while deep water waves have k−1 < 2H. Then, the
relative error thatwemake is smaller than around 5%. These limiting behaviours of the
dispersion relation can explain the common phenomena that ocean waves approach
the beach approximately in parallel while far away into the see they are sloping. Fix a
wavelength λ = 2π/K. Waves on the deep water have speed proportional to

√
λ. On

the other hand, near the beach the water is shallow and hence the speed is a multiple
of
√
H where H is the typical shallow water depth. However H � λ and thus the

fraction of the wave near the coast slows with respect to the remaining open see part.
The wave thus straightens up. This is, of course, an extremely simple explanation of
that phenomenon, however, it is very revealing.

Finally, we would like to find the trajectories of fluid particles carried over along
the gravity waves. For simplicity let us assume that we consider motion only in one
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plane y = 0. Then, according to (5.32) and our solution the velocity has the following
coordinates

u(x, z, t) = −K coshK(z+H) sin(Kx−ω(K)t), w(x, z, t) = K sinhK(z+H) cos(Kx−ω(K)t),
(5.66)

where we have taken the real part of the solution. Note that the velocity vector traces
an ellipse with time, that is(

u

K coshK(z+H)

)2
+

(
w

K sinhK(z+H)

)2
= 1. (5.67)

The horizontal amplitude of the velocity in bounded away from zero, however, the
vertical one decreases exponentially and vanishes at z = −H. The ellipse becomes
squeezed to a line at the bottom.

5.3.5 Gravity-capillary waves

When deriving our equations for water waves we have neglected surface tension σ that
contributes to the capillary pressure. When included the dispersion relation describes
the gravity-capillary waves

ω = ±

√
gK+

K3σ

ρ

√
tanhKH, (5.68)

which we have met in (2.53) as a result of dimensional analysis (in the deep water
approximation). We immediately see that due to the cubic of K the capillary waves are
much more sensitive on the wave length. In particular, for long waves with K � 1,
they are negligible with respect to gravity waves. The typical length of such a wave is
usually smaller than 2 centimetres and they are called ripples. Observe that next time
you visit a lake.

Thephase speedon thegravity-capillarywavesprovides an interestingphenomenon.
For simplicity let us focus on deep water approximation. For then, we have

c(k)2 =
(ω
K

)2
=
g

K
+
Kσ

ρ
. (5.69)

When K → 0+ the above approaches ±
√
gH while for K → ∞ the speed becomes

infinite. The derivative is then
d

dk

(
c(k)2

)
= −

g

K2
+
σ

ρ
. (5.70)

Therefore, the square of the phase speed decreases for small K, attains a minimum

c2m = 2

√
gσ

ρ
for Km =

√
ρg

σ
, (5.71)

and linearly increases to infinity as K → ∞. The remarkable observation is that there
exists aminimumvelocity of a gravity-capillarywave. A numerical values forwater-air
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interface are cm = 0.23 m/s and λm = 2π/Km = 1.7 cm. In principle, a gust of wind
slower than this minimal value will not produce any waves over the water. Similarly,
a fishing line moving in water will not cause any waves when its velocity is smaller
than cm. However, when it is faster than that, a two sets of waves will be excited: one
capillary for K > Kc and one gravity for K < Kc.

5.3.6 Ship waves

Wave theory is, of course, extremely important for all nautical applications starting
with ship construction and exploration and ending on naval warfare. There is a
fascinating universal law that governs all relatively slow swimmers on deep water:
beetles, ducks, boats, and ships. An object moving in water generates a wake of waves
that follow its path (see Fig. 24) It is striking that the spread of that wedge-shaped
wake is independent on the size and velocity of the swimmer! (As long the velocity is
small enough). We will derive this result with a use of our water waves theory.

Consider an ship moving with velocity v in the given direction in deep water and
treat it as a point source. The movement generates waves with wave vector k that
subtends an angle α with the ship (see Fig. 25). In principle the ship produces waves
of arbitrary wavelength and direction. However, almost all of them are dissipated by
viscous forces. Thewave numbers that survive are these that align their crests precisely
with the bow of the ship (not seen on our crude point approximation). In other words,
the waves in the wake have to be stationary with respect to the hull. Therefore, the
phase speed of the wave has to satisfy

ω

K
= v cosα. (5.72)

However, for deep waters we have found thatω/K =
√
gK and hence the the wave that

is created has the number
K =

g

v2 sinα. (5.73)

Of course the above is true to any inclination angle α. Therefore, the ship produces a
whole spectrumof differentwaves. However, many of themwill cancel with each other
leaving only the dominant wave moving with the group speed for which the phase is
stationary. This is precisely the Method of Stationary Phase that we have developed
previously and is usually called the constructive interference.

In order to find the points of stationary phase let P be an arbitrary point riding on a
crest. Let r be the distance of P from the ship and β the angle subtended by the radius
and the ship’s velocity. The phase at that point is

ϕ = k · x = −kr cos(π
2
− (α− β)) = −kr sin(α− β), (5.74)

where the minus sign is because of opposite direction of vectors k = (kx, ky) and
x = −(r cosβ, r sinβ). The phase of such a wave is stationary if ϕ ′ = 0, therefore

0 = ϕ ′(α) = −
gr

b2

(
cos(α− β) sin2 α− 2 sinα cosα sin(α− β)

sin4 α

)
. (5.75)
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Figure 24: A photograph of a ship and duck wakes. Source: Wikipedia
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Figure 25: A schematic of the Kelvin wake creation.

The above is easily solved by

2 tan(α− β) = tanα. (5.76)

Therefore, the waves interfere constructively for this precise relation between angles.
Using the formula for a tangent of a difference we can simplify

2
tanα− tanβ
1+ tanα tanβ = tanα, (5.77)

from which
tanβ =

tanα
2+ tan2 α

. (5.78)

The optimal value of β for a given α is depicted on Fig. 26.
We immediately see that there are two extrema which can be found analytically.

Set β = β(α) and differentiate (5.78) with respect to α to obtain

1

cos2 ββ
′(α) =

1

cosα
2− tan2 α

(2+ tan2 α)2
. (5.79)

Therefore, the extrema are located at such α± for which β ′(αpm) = 0, that is

α± = ± arctan
√
2 ≈ ±54.7◦, (5.80)

and the corresponding extrema are

β± = ± arctan
√
2

4
= ± arcsin 1

3
= ±19.5◦. (5.81)

Note that all the physicalmodel parameters have dropped out andwe are left with only
numerical values that are universal! The only assumption that we have taken is the
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Figure 26: The graph of β = β(α) satisfying (5.78).

dispersion relation (5.63). Observe how this little of information can have tremendous
consequences on large scale behaviour. Henceforth, all points after the ship that are
inclinedwith an angle atmost 19.5◦will undergo a constructive interference to produce
a wake (red line on Fig. 24). From it, the visible portion of waves caused by the passing
ship will have a maximal inclination of 54.7◦ (green lines on Fig. 24). Observe that
when you visit a lake next time and try to find some examples on Google Maps!

The above calculations were first given by Lord Kelvin and the solution is known
to be the Kelvin Wake. However, there is a beautiful geometric reasoning due to Mach
that leads to the same conclusion. The main assumption is that on the deep water the
group velocity is half the phase velocity. Surprisingly, this is only needed to find out
that β± = ±19.5◦.
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6 Calculus of variations and optimisation
Optimisation is one of the cornerstones of applied and industrial mathematics. We
have dealt with simple optimization problems as early as in high school when finding
extrema of functions. These method were later generalized to higher dimensions on
Calculus. Now, we will provide an ultimate generalization that is not only useful in
industrial real-world problems but also is a foundation of many (if not all) physical
theories and provides a beautiful results in pure and applied mathematics. We will
develop the calculus of variations.

The calculus of variations is based on finding stationary points of functionals which
aremappings from a given space of functions into some field such asR. The arguments
of functionals are functions themselves which enlarges the space where to look for this
critical point. This makes calculus of variations much harder than ordinary calcu-
lus. This notion is not purely mathematical. Optimisation of various functionals is
ubiquitous in physics starting with Lagrangian and Hamiltonian mechanics, Fermat’s
principle of least time in optics, "paths of least resistance" in electrostatics, formulating
quantum field theory, and deriving Einstein’s equations of general relativity. In math-
ematics some prominent examples include brachistochrone (curve of fastest descent),
Plateau’s problem (finding a surface ofminimal areawith a given boundary), geodesics
(curves of shortest lengths), eigenvalue problems, and isoperimetric problems (such
as finding optimal curves of a given are). Moreover, many industrial problems can be
modelled by optimal control, that is controlling a given process in order to minimize
the cost. Finally, a paramount numerical methods of solving a large class of PDEs over
realistic geometries - finite element method - is based on variational principles. This
makes the subject very robust, interesting, and important.

Historically, the first variational problems were solved by Newton. He showed his
ingenuity in finding the surface of revolution that experiences the least resistance in
a fluid and solved the brachistochrone problem posed by Jakob Bernoulli. Further
advancements were made by Lagrange who formulated themechanics in the language
of variations and Euler who greatly developed the theory. Calculus of variations has
also focused attention of Jacobi, Gauss, Poisson, Noether, Hilbert, and Lebesgue among
others. It happened to be a very fruitful field.

6.1 Euler-Lagrange equations
Let us start with a general functional J : Cn[a, b]→ R

J(y) =

∫b
a

L(x, y(x), y ′(x), ..., y(n)(x))dx. (6.1)

The kernel of the above functional, that is L, is called Lagrangian. Examples include
area functional for which L(y(x)) = y(x) and arc length with L(y ′(x)) =

√
1+ y ′(x)2.

Themost important functionals often involve derivatives only up to order 1 and, hence,
we will focus on them.

Following our knowledge from calculus we would like to find necessary (and suf-
ficient) conditions for (6.1) to have an extremum. This is a complicated subject for
which a careful and subtle analysis is required. We will follow a physical approach in
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which only the knowledge whether a given function is an stationary or critical point of
the functional J is required (that is, it satisfies the necessary condition). Determining
whether it is actually an extremum is a different matter. For a function f of one variable
a point x0 is stationary if f ′(x0) = 0. This means that f is locally flat. To make this
quantitative we fix ε and use Taylor series

f(x0 + ε) = f(x0) + f
′(x0)ε+

1

2
f ′′(x0)ε

2 +O(ε3), (6.2)

as ε→ 0. Since x0 is critical the derivative vanishes andwe conclude that for sufficiently
small ε the values of f near x0 are either smaller (for f ′′(x0) < 0) or larger (for f ′′(x0) > 0)
than f(x0) (provided that f ′′(x0) 6= 0). We thus have either a local maximum or
minimum.

We would like to generalize the above elementary result for a functional. Assume
that we are considering functions with fixed endpoints

y(a) = y1, y(b) = y2. (6.3)

Fix ε and suppose that yc(x) is a stationary point of the functional J. Wewant to add an
arbitrary increment εh(x) to that function. However, the only admissible increments
are those which do not alter the boundary conditions. That is, we require

h(a) = h(b) = 0. (6.4)

Then, the functional has the form

J(yc + εh) =

∫b
a

L(x, yc(x) + εh(x), y
′
c(x) + εh

′(x))dx. (6.5)

Next, we have to expand the Lagrangian

L(x, yc(x) + εh(x), y
′
c(x) + εh

′(x))

= L(x, yc(x), y
′
c(x)) + Ly(x, yc(x), y

′
c(x))εh(x) + Ly ′(x, yc(x), y

′
c(x))εh

′(x) +O(ε2),

(6.6)

where subscripts denote partial derivatives. When we plug the above into the integral
we obtain

J(yc+εh) = J(yc)+ε

[∫b
a

Ly(x, yc(x), y
′
c(x))h(x)dx+

∫b
a

Ly ′(x, yc(x), y
′
c(x))h

′(x)dx

]
+O(ε2).

(6.7)
Now, the second integral contains a derivative of the perturbation and in order to get
rid of if we integrate by parts obtaining∫b
a

Ly ′(x, yc(x), y
′
c(x))h

′(x)dx = [Ly ′(x, yc(x), y
′
c(x))h(x)]

b

a−

∫b
a

d

dx
Ly ′(x, yc(x), y

′
c(x))h(x)dx.

(6.8)
Due to our boundary conditions (6.4) the term without integral vanishes and we are
left with

J(yc+εh) = J(yc)+ε

[∫b
a

(
Ly(x, yc(x), y

′
c(x)) −

d

dx
Ly ′(x, yc(x), y

′
c(x))

)
h(x)dx

]
+O(ε2).

(6.9)
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Analogously to the one dimensional case we would like to define the stationary point
of J to be such that the ε term above vanishes for all admissible perturbations h. That
is, ∫b

a

(
Ly(x, yc(x), y

′
c(x)) −

d

dx
Ly ′(x, yc(x), y

′
c(x))

)
h(x)dx (6.10)

for all continuous h = h(x) such that (6.4) is satisfied. Since h is arbitrary we conclude
that the integrand has to vanish18 and this happens precisely when

d

dx
Ly ′(x, yc(x), y

′
c(x)) = Ly(x, yc(x), y

′
c(x)). (6.11)

This partial differential equation is the celebrated Euler-Lagrange equation and is a
foundation of calculus of variations. We have thus proved the following theorem.

Theorem 5 (Euler-Lagrange). A necessary condition for yc(x) to be a stationary point of the
functional J defined in (6.1) is that yc satisfies the Euler-Lagrange equation (6.11).

6.2 Examples
As we mentioned before, in physical situations it is usually satisfactory to know only
that yc is just stationary rather than an essential extremum. We will illustrate the
concept with several examples.

Example. (Shortest curve on a plane) We start with probably the simplest variational
problem: find the shortest curve joining two points on a place. Let us focus on the
shortest route between (0, 0) and (1, 1). Of course, we know that the solution will be a
straight line. However, let us see how Euler-Lagrange equations predict this.

Our functional is
J(y) =

∫ 1
0

√
1+ y ′(x)2dx. (6.12)

The partial derivatives of the Lagrangian are

Ly = 0, Ly ′ =
y ′√
1+ y ′2

. (6.13)

Therefore, Euler-Lagrange equations (6.11) become(
y ′√
1+ y ′2

) ′
= 0, (6.14)

that is
y ′√
1+ y ′2

= C, (6.15)

for constant C. By squaring the above can be solved for y ′, that is

y ′2 =
C2

1− C2
= a2, (6.16)

18This is known as du Bois-Reymond’s lemma.
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where we defined another constant of integration. Henceforth, the derivative is con-
stant which means that y is a straight line

y(x) = ax+ b. (6.17)

Plugging in boundary conditions yields b = 0 and a = 1. Our line is then anticipated
y(x) = x.

Example. (Catenary and soap film) A more elaborate example is finding the surface of
revolution that has the smallest area. The generator of the surface is a curve joining
two points: (a, c) and (b, d). Physically, this is equivalent to finding a shape of a soap
film spanned between two circular rings: the surface tension pulls the soap in order to
minimize the area.

For concreteness assume that the generator of evolution joins (−1, 1) with (1, 1).
The area of a surface of revolution is then

J(y) = 2π

∫ 1
0

y
√
1+ y ′(x)2dx. (6.18)

Calculating partial derivatives of the Lagrangian gives

Ly = 2π
√
1+ y ′2, Ly ′ = 2π

yy ′√
1+ y ′2

. (6.19)

And, hence, the Euler-Lagrange equations become(
yy ′√
1+ y ′2

) ′
=
√
1+ y ′2, (6.20)

which might look a little formidable. Fortunately, this is a good place to make a very
useful general remark. In this case the Lagrangian does not depend on x and, in
general, we can write

Ly = (Ly ′)
′ = Lyy ′y

′ + Ly ′y ′y
′′. (6.21)

If we multiply the above by y ′ we have

0 = y ′Ly − Lyy ′y
′2 − Ly ′y ′y

′y ′′ = (L− y ′Ly ′)
′. (6.22)

Therefore, the first integral of the above Euler-Lagrange equation is

L− y ′Ly ′ = C, (6.23)

for some constant C. This is known as Beltrami’s identity. Returning to our case this is

y
√
1+ y ′2 −

yy ′2√
1+ y ′2

= C. (6.24)

With a little manipulation we can get

y ′ =

√
y2 − C2

C2
, (6.25)
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which is a separated ODE. Integrating it we obtain

y(x) = C cosh x+D
C

. (6.26)

The shape of our soap film is then given by a revolution of a hyperbolic cosine known
as catenary. This curve is also the one that dictated the shape of a hanging cable or a
chain - hence the name19. Our boundary conditions y(−1) = y(1) = 1we obtain C = 1
and D = 0which implies

y(x) = (6.27)
This shape is also used frequently in architecture to construct arches since then no
bending moments arise.

Example. (Brachistochrone20) This is the classical problem formulatedby JakobBernoulli.
Wehave to find the curve joining (0, 0) and (−a,−b) onwhich a particlewill slide under
the gravity and without friction in the shortest time.

We will use the conservation of mechanical energy which is

1

2
mv2 +mgy = 0, (6.28)

since initially the potential energy vanishes. Here, v = v(y) is the velocity that can be
expressed

v(y) =
√

−2gy, (6.29)
where, of course, y < 0. Since, from thedefinition of normal velocitywehave v = ds/dt
with ds the arc element. Further, dt = ds/v and the total time of descent is

T =
1√
2g

∫−b
0

√
1+ x ′(y)2

−y
dx. (6.30)

Note that we rather would like to express the sought curve as x = x(y) rather than
usual y = y(x). This makes the computations easier. The Lagrangian L(y, x ′(y)) does
not depend on x and hence Lx = 0which gives Euler-Lagrange equation in the form

x ′2

y(1+ x ′2)
= −

1

2a
, (6.31)

where the form of the constant of integration has been chosen for convenience. Now,
we can transform the above

dx

dy
=

√
−y

2a− y
, (6.32)

which immediately can be separated to yield

x =

∫√
−y

2a− y
dy. (6.33)

19In Latin catena means chain.
20From Ancient Greek - "the shortest path".

96



There are several ways of calculating that integral and, probably, the most educative is
to use a rather remarkable substitution

y(θ) = −a(1− cos θ), (6.34)

for a new variable θ. Then,
x(θ) = a(θ− sin θ), (6.35)

where the integration constant is zero since initially we have to have x = y = 0. The
unknown constant a has to be chosen in order for the curve to pass through (−a,−b).
The parametric formulas we have found define the so-called cycloid which is a curve
drawn by a valve on a moving bicycle wheel.

We can check our findings numerically. Suppose we have four candidates for the
least time curve: straight line (the shortest), parabola, circular arc, and the cycloid
(see Fig. 27). Numerically calculating the time of descent (6.30) we arrive at (setting√
2g = 1)

Tcycl = 2.582, Tpar = 2.587, Tcirc = 2.622, Tline = 2.828. (6.36)

We see that shortest distance does not mean the least time! This is because due to
larger initial slope, the particle can develop larger speed. We can also see that the ime
of sliding on a parabola is very close to the least time corresponding to the cycloid.

Example. (Shortest curve on a sphere) A shortest curve that connects two points on a
general surface is called a geodesic. It is beyond the scope of this lecture to pursue the
topic in general, however, we will see what are the shortest route curves on a sphere.

From multidimensional calculus we know that the length of a curve laying on a
sphere connecting points 1 and 2 is given by

R

∫φ2
φ1

√(
dθ

dφ

)2
+ sin2 θdφ, (6.37)

where R is the radius, θ ∈ [0, π] is the latitude, and φ ∈ [0, 2π] longitude. Our
Lagrangian is now L = L(θ, θ ′) and, hence, it does not depend on the independent
variable φ. We can then use Beltrami’s identity to obtain√

θ ′2 + sin2 θ− θ ′2√
θ ′2 + sin2 θ

= C, (6.38)

for some constant C. After multiplication by the square root we have

sin2 θ = C
√
θ ′2 + sin2 θ, (6.39)

which can be solved for dθ/dφ in a form

dθ

dφ
=
1

C
sin2 θ

√
1−

C2

sin2 θ
. (6.40)
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Figure 27: Various curves of descent: cycloid (solid), line (dashed), parabola (dotted),
and circular arc (dot-dashed).
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This is a separated ODE with an integral

φ = arcsin
(
cot θ
β

)
+ α, (6.41)

which suitably chosen constants of integration α and β. To interpret the above family
of curves we rewrite the equation as

cot θ = β sin(φ− α), (6.42)

and after multiplication by R sinφwe obtain

A(R sin θ sinφ) − B(R sin θ cosφ) = (R cos θ), (6.43)

for A = β cosα and B = β sinα. The terms in the parentheses above are nothing else
as relations between Cartesian and spherical coordinates. That is,

Ay− Bx = z, (6.44)

which is a plane passing through the centre of the sphere! The curves of shortest
path, geodesics, are then great circles - intersections of the sphere with a plane passing
through the centre. Between many uses, they serve as routes in navigation.

Example. (Fermat’s least time principle) We known from high school physics that in
a media with constant refraction coefficient light rays are straight. If the medium
changes the light will bend according to Snell’s law. However, if the coefficient changes
continuously the light beam will not be straight any more.

Fermat’s discovered that light rays always follow a path for which the time of the
travel is the least of all possible routes. Consider a medium with a varying refraction
coefficient n(x, y). If the speed of light is denoted by c then the light ray’s velocity
os given by v = c/n. On the other hand, velocity is just v = ds/dt which states that
in a short time dt light goes a distance ds representing an increment of a trajectory
y = y(x). Then, the total time that is required to travel between two points is

T =

∫
ds

v
=
1

c

∫b
a

n(x, y(x))
√
1+ y ′(x)2dx. (6.45)

Now, the Euler-Lagrange equations give the stationary solution satisfying

ny =

(
ny ′√
1+ y ′2

)
x

. (6.46)

If, for instance, the refractive index only depends on x (a layered material) then

n(x)y ′(x)√
1+ y ′(x)2

= C, (6.47)

for some constant C. From here, we can deduce several important results.
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First, suppose that n is piecewise constant, say n = n1 for x ∈ [0, 1/2] and n = n2
for x ∈ (1/2, 1]. Let θ be the angle subtended between the light ray and the horizontal
direction. Since sin θ = ±y ′/

√
1+ y ′2 we infer from the above formula that the angle

is constant in each interval [0, 1/2] and (1/2, 1]. Therefore, light travels in straight lines.
Moreover,

n1 sin θ1 = n2 sin θ2, (6.48)

which is the Snell’s law.
We can actually integrate the resulting ODE for a general refraction index n = n(x).

That is,
y(x) =

∫
C√

n(x)2 − C2
dx, (6.49)

which gives the formula for the trajectory (the sign has been incorporated into C).

Example. (Lagrangian formulation ofmechanics)Oneof themostprofoundandwidespread
applications of calculus of variations is devising equations modelling various mechan-
ical situations. Many times this is much simpler and straightforward than using
Newton’s equation.

There is a very general physical law known as Hamilton’s principle of least action
which states that the observable trajectory of a physical system is a stationary point of
the following action functional

S =

∫
(T − V)dx, (6.50)

where T is the kinetic energy of the system, while V is the potential. That is, in order to
find the equations of motion for any physical system with potential and kinetic energy
we have to solve Euler-Lagrange equations corresponding to the above. This can be
generalized to higher dimensions and many degrees of freedom and the Lagrangian
formulation is independent of the chosen variables. This makes variational framework
much more pleasant to work with than Newtonian dynamics.

As an example let us choose a point particle with mass m subject to a one dimen-
sional gravitational field. Then, T = mx ′2/2 and V = mgx with x being the height of
the particle. Then, the Lagrangian has the form

L(t, x, x ′) =
1

2
mx ′(t)2 −mgx. (6.51)

Therefore, the Euler-Lagrange equations are

(mx ′)
′
= −mg, (6.52)

which is x ′′ = −g. This is the same as Newton’s equation. Lagrangian formula-
tion is very frequently used in mechanics of systems with many degrees of freedom,
constraints, and curvilinear coordinates. It is much simpler then to obtain a set of
meaningful equations.
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6.3 Optimization with constraints
Frequently there is a need of finding an optimal solution under some constraints:
limited funds for a project, a given length of a hanging cable or finite time of the
process. On multidimensional calculus we have learned about the method of Lagrange
multipliers to find extrema of scalar functions under some conditions. This method can
also be used in variational calculus. There are three important constraints that can be
imposed on the optimal solution.

1. Isoperimetric - an integral of the optimal solution is given.

2. Holonomic - the optimal solution has to satisfy an algebraic (geometric) equation.

3. Optimal control - the optimal solution has to be a solution of differential equation.

We will not go into details of constrained optimization problems, however, we will
illustrate the concept on the isoperimetric problem. For starters, suppose that we want
to find a critical point of f = f(x, y) subject to g(x, y) = 0. Supposewe can parameterise
the constraint g = 0 by x(t) = (x(t), y(t)), then after differentiation we have

0 =
d

dt
g(x(t), y(t)) = ∇g · dx

dt
, (6.53)

and we recover the well-known fact that gradient is orthogonal to level curves. Next,
plug the constraint vector into f and define F(t) = f(x(t), y(t)). The stationary point of
F(t) will be precisely the critical point of f under the condition g = 0 since x(t) holds
us always on the curve defined by g. We thus have

0 = F ′(t) = ∇f · dx
dt
. (6.54)

And we see that the gradient of f is orthogonal to level curves of g. Therefore, there
must exist a constant λ, known as Langrange multiplier, such that

∇f = λ∇g. (6.55)

Therefore, the conditional extremum of f is reduced to finding a local extremum of

L(x, y, λ) = f(x, y) − λg(x, y). (6.56)

Now, suppose we want to find the critical point of the functional

S(y) =

∫b
a

L(x, y(x), y ′(x))dx, (6.57)

under the integral condition

G(y) =

∫b
a

g(x, y(x), y ′(x))dx = 0. (6.58)
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Then, analogously to the previous simple example, we can form an augmented La-
grangian

L(x, y(x), y ′(x), λ) = L(x, y(x), y ′(x)) − λg(x, y(x), y ′(x)), (6.59)

and look for stationary points of

J(y, λ) =

∫b
a

L(x, y(x), y ′(x), λ)dx. (6.60)

This analogy is correct and we will prove it.

Theorem 6. A stationary point of (6.57) under the isoperimetric condition (6.58) is a solution
of Euler-Lagrange equations for the augmented Lagrangian, that is

∂L
∂y

=
d

dx

∂L
∂y ′

. (6.61)

Proof. We will follow the same method as in finding Euler-Lagrange equations for the
unconstrained case. That is, we perturb all unknowns

y = yc + εh(x), λ = λc + εκ, (6.62)

whereyc and λc are stationary points of our functional. Expanding J(yc+εh(x), λc+εκ)
with respect to ε exactly as was done in (6.5), conducting integration by parts, and
requiring that the O(ε) term vanishes leads us to∫b

a

(
∂L

∂y
−
d

dx

∂L

∂y ′
− λc

(
∂g

∂y
−
d

dx

∂g

∂y ′

))
h(x)dx+ κ

∫b
a

g(x, y(x), y ′(x))dx = 0. (6.63)

Since the above must hold for arbitrary perturbations κwe obtain∫b
a

g(x, y(x), y ′(x))dx = 0, (6.64)

which is the isoperimetric constraint. Similarly, the perturbation to the function, that
is h, is also arbitrary and, hence,

∂L

∂y
−
d

dx

∂L

∂y ′
− λc

(
∂g

∂y
−
d

dx

∂g

∂y ′

)
= 0, (6.65)

which is the same as (6.61).

We will illustrate the above result on a classical problem in calculus of variations.

Example. (Classical isoperimetric problem) From all closed curves joining (0, 0) and
(1, 0) with a given length P find the one that maximizes the area underneath it. The
augmented Lagrangian has the form

L(x, y, y ′, λ) = y(x) + λ
(√

1+ y ′(x)2 − P + 1
)
, (6.66)
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where we have accounted for the bottom part of the curve with unit length. Applying
(6.61) we arrive at

λ

(
y ′√
1+ y ′2

) ′
= 1, (6.67)

which can be easily solved subject to y(0) = y(1) = 0 to yield

y(x) =

√
λ2 −

(
x−

1

2

)2
−

√
λ2 −

1

4
. (6.68)

Hence, we have obtained a family of circles. Note that for the above to make sense we
have to assume that λ ≥ 1/2. We can integrate the found solution in order to prescribe
the perimeter

P =

∫ 1
0

√
1+ y ′(x)2dx = 2λ arcsin

(
1

2λ

)
λ ≥ 1

2
. (6.69)

Solving for λ in terms of P gives the final solution. However, since

1

2λ
≤ arcsin 1

2λ
≤ π
2
, (6.70)

we have that the possible perimeters are 1 ≤ P ≤ π/2. For example, when P = π/2

we have λ = 1. Note that by considering a parametrised curve (x(t), y(t)) we would
obtain a greater class of possible curves (no restriction on λ and P). Nevertheless, we
have proved that a circle encloses the largest area with a given perimeter.
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