Partial Differential Equations
 Problem Set 1: First order equations and shock waves

1. Find all solutions $u=u(x, t)$ to the following PDEs
a) $u_{x}=0$,
b) $3 u_{t}+u_{x t}=0$,
c) $\frac{\partial^{n} u}{\partial x^{n}}=0, n \in \mathbb{N}$,
d) $u_{x x}+u=0$,
e) $u_{x t}=0$.
2. Which of the following operators are linear?
a) $L u=u_{x}+x u_{t}$,
b) $L u=u_{x}+u u_{t}$,
c) $L u=u_{t}+u_{x}+1$,
d) $L u=u_{x}^{2}+u_{y}^{2}-1$.
3. (Geometrical method of solution) The quantity $a u_{x}+b u_{y}$ is the directional derivative of u in the direction of a vector $\mathbf{v}=(a, b) \in \mathbb{R}^{2}$ with $a^{2}+b^{2} \neq 0$. Hence, the equation

$$
a u_{x}+b u_{y}=0
$$

tells us that u does not change in the direction of \mathbf{v}. We will show how to solve the above by using only geometrical means.
(a) Argue that if u is constant on lines generated by \mathbf{v} then it should change on any line perpendicular to this vector. Draw everything on the $x-y$ plane and prove that the solution of the above equation is given by $u(x, y)=f(b x-a y)$ for some differentiable f.
(b) We can find the same solution as before in a more systematic way. The idea is to rotate the coordinate plane. Let the new coordinates $\left(x^{\prime}, y^{\prime}\right)$ be defined by $x^{\prime}=a x+b y$ and $y^{\prime}=b x-a y$. By the chain rule calculate u_{x} and u_{y} in terms of $u_{x^{\prime}}$ and $u_{y^{\prime}}$. Show that if u is a solution of the above PDE then $u_{x^{\prime}}=0$ which is easy to solve.
4. Solve the following equations using the Problem 3

$$
\text { a) } 4 u_{x}-3 u_{y}=0 \text { with } u(0, y)=y^{3}, \quad \text { b) } 2 u_{t}+3 u_{x}=0 \text { with } u(x, 0)=\sin x .
$$

5. Use the rotation of coordinates as in Problem 3 to solve the following equation

$$
a u_{x}+b u_{y}+c u=0
$$

6. (Conservation) Let $\mathfrak{u}=\mathfrak{u}(x, t)$ denote the density per unit length of some substance, which satisfies the conservation law without any sources. Show that, provided the flux q vanishes at infinity and u is x-integrable, the total amount of u in space is constant in time. Hint. The total amount of u is defined by some integral. Which one?
7. (Method of characteristics) Solve the following problems. Draw their characteristics on the $x-t$ plane and sketch the solution $u(x, t)$ for several times.
a) $\left\{\begin{array}{l}u_{t}+10 u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=\frac{1}{1+x^{2}} \quad x \in \mathbb{R},\end{array}\right.$
b) $\left\{\begin{array}{l}u_{t}+2 t u_{x}=-u, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=e^{-x^{2}}, \quad x \in \mathbb{R} .\end{array}\right.$
c) $\left\{\begin{array}{l}u_{t}-x^{2} u_{x}=\sin u, \quad t>0, \quad x>0 ; \\ u(x, 0)=2 \arctan x, \quad x \geq 0,\end{array}\right.$
d) $\left\{\begin{array}{l}u_{t}+2 t u_{x}=x t u, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=x, \quad x \in \mathbb{R} .\end{array}\right.$
8. (Signaling problem) Suppose that a lighthouse is located at $x=0$ and constantly sends its signals with the intensity $\psi(t)$.
(a) As you know, light travels through any medium with a constant speed c. Let $u=u(x, t)$ denote the light intensity at (x, t). Find $u(x, t)$ for $x>0$ and $t \in \mathbb{R}$ (lighthouse has been sending its signals for ever).
(b) Solve the above problem but now assume that the light is absorbed by clouds and other aerosols with a rate proportional to its intensity.
9. (Initial-boundary value problems) Sometimes we have to solve a problem where both the initial and boundary data is given. Consider the following equations.

What conditions have to be satisfied for the a) case to have a solution with $\mathrm{c}<0$?
10. (Quasi-linear equations) Solve the following problems and sketch the characteristics.
a) $\left\{\begin{array}{l}u_{t}+\ln u u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=e^{x}, \quad x \in \mathbb{R},\end{array}\right.$
b) $\left\{\begin{array}{l}u_{t}+u_{x}=u^{2}, \quad t \in \mathbb{R}, \quad x>0 ; \\ u(0, t)=\psi(t), \quad t \in \mathbb{R} .\end{array}\right.$
c) $\left\{\begin{array}{l}u_{t}+u^{2} u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=x, \quad x \geq 0,\end{array}\right.$
d) $\left\{\begin{array}{l}u_{t}+u^{-1} u_{x}=0, \quad t>0, \quad x \geq 0 ; \\ u(x, 0)=\frac{1}{1+x}, \quad x \geq 0 .\end{array}\right.$
11. Solve the following full quasi-linear problem.
a) $\left\{\begin{array}{l}u_{t}+u u_{x}=-u, \quad t>0, \quad x \in \mathbb{R} ; \\ \mathfrak{u}(x, 0)=x, \quad x \in \mathbb{R} .\end{array}\right.$
b) $\left\{\begin{array}{l}u_{t}+u u_{x}=2 t, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=x, \quad x \in \mathbb{R} .\end{array}\right.$
12. (Shock waves) Find the solutions of given problems. Draw the characteristics and a shock wave trajectory.
13. (Shock fitting) Analyse the following shock-fitting problems. Draw the solution $u(x, t)$ for several times.

$$
\begin{aligned}
& \text { a) }\left\{\begin{array}{l}
u_{t}+u u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\
u(x, 0)= \begin{cases}1, & x<0 ; \\
-1, & 0<x<1 ; \\
0, & x>1,\end{cases}
\end{array}\right. \\
& \text { b) }\left\{\begin{array}{l}
u_{t}+u u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\
u(x, 0)= \begin{cases}1, & x<0 ; \\
1-x, & 0<x<1 ; \\
0, & x>1 .\end{cases}
\end{array}\right. \\
& \text { c) }\left\{\begin{array}{l}
u_{t}+u^{2} u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\
u(x, 0)= \begin{cases}0, & x<0 ; \\
1-x, & 0<x<1 ; \\
0, & x>1 .\end{cases}
\end{array}\right. \\
& \text { d) }\left\{\begin{array}{l}
u_{t}+u^{2} u_{x}=0, \\
u(x, 0)= \begin{cases}0, & x<0 ; \\
x, & 0<x<1 ; \\
0, & x>1 .\end{cases}
\end{array}\right.
\end{aligned}
$$

14. (Paint) The paint flows down the wall and has a thickness $u(x, t)$. As can be shown, the governing equation has the form

$$
u_{t}+u^{2} u_{x}=0, \quad t>0, \quad x \in \mathbb{R}
$$

Solve the paint flow problem with the given initial profile

$$
u(x, 0)= \begin{cases}0, & x<0 \text { or } x>1 \\ 1, & 0<x<1\end{cases}
$$

15. (Car traffic) Let $u=u(x, t)$ be a density of cars per unit length on a road at time t. Define the traffic flux $\mathrm{q}(\mathrm{x}, \mathrm{t})$ as the number of cars per unit time passing through a fixed x at time t .
(a) Argue that the conservation of cars leads to the equation

$$
u_{t}+q_{x}=0
$$

(b) Define the car velocity as $v=\mathrm{q} / \mathrm{u}$ (as in the example with convection). A simple model of velocity distribution assumes that there exists a critical density at which cars stop (traffic jam)

$$
v(\mathrm{u})=v_{\mathrm{m}}\left(1-\frac{\mathrm{u}}{\mathrm{u}_{\mathrm{c}}}\right) .
$$

From this, find q and plug it in the conversation of cars to obtain the governing equation.
(c) (Red light turns green) Solve the car flow problem for a case where the red light at $x=0$ turns green at $t=0$, i.e.

$$
u(x, 0)= \begin{cases}u_{c}, & x<0 ; \\ 0, & x>0 .\end{cases}
$$

(d) (Green light turns red) Now, a red light suddenly turns on and the traffic with a density u_{0} suddenly have to stop at $x=0$.

$$
u(x, 0)=u_{0}<u_{c}, \quad x \leq 0, \quad u(0, t)=u_{c}, \quad t>0
$$

Consider only the domain $x \leq 0$.
16. (Continuation of the discontinuity) Solve the following equation

$$
u_{t}+u u_{x}=0, \quad t>0, \quad x \in \mathbb{R},
$$

for each of the two initial conditions

$$
\text { a) } u(x, 0)=\Phi_{1}(x):=\left\{\begin{array}{cl}
1, & x \leq 0 ; \\
1-\frac{x}{\epsilon}, & 0<x<\epsilon ; \\
0, & x \geq \epsilon,
\end{array} \quad \text { b) } u(x, 0)=\Phi_{2}(x):= \begin{cases}0, & x \leq 0 ; \\
\frac{x}{\epsilon}, & 0<x<\epsilon ; \\
1, & x \geq \epsilon\end{cases}\right.
$$

In both cases examine the limit $\epsilon \rightarrow 0$.
17. (Flood hydrograph) Imagine a long and narrow river. We can introduce a curvilinear variable x which denotes the position measured along its bed. Moreover, let $A=A(x)$ be the wetted cross-section at x. Conservation of mass along with Manning's Law states that

$$
A_{t}+A^{m} A_{x}=0, \quad m>0
$$

Assume also that $A(x, 0)=A_{0}(x)$.
(a) Find a solution of the above equation given in an implicit form.
(b) A flood can arise as a result of a sudden rainfall at some point x. To model this situation assume that $A_{0}(x)=\delta(x)$, where δ is the Dirac delta ${ }^{1}$. Draw the characteristics.
(c) Find the shock wave. You do not have to solve the equation in order to do that.
(d) A flood hydrograph is a graph of the flux at some fixed point x_{0}. Hydrologists use this tool a lot. Draw the hydrograph by yourself.

[^0]18. (Blow-up time) For a general initial condition it is not usually straightforward to determine the shock wave development. It is, however, possible to find the first time of a blow-up. Consider
\[

\left\{$$
\begin{array}{l}
u_{t}+c(u) u_{x}=0, \quad t>0, \quad x \in \mathbb{R} \\
u(x, 0)=\phi(x)
\end{array}
$$\right.
\]

where $\mathrm{c}>0$ and $\phi>0$ have an opposite monotonicity (say, $\mathrm{c}^{\prime}>0$ and $\phi^{\prime}<0$).
(a) Pick any characteristic $X=X(t)$ and define $P(t):=u_{x}(X(t), t)$. Compute P^{\prime} in terms of u and its derivatives.
(b) Use the differential equation for u in order to get rid of the second derivatives in the expression for P^{\prime}.
(c) Solve the obtained equation for P and whence, for u_{x}.
(d) Define $F(\xi):=c(\phi(\xi))$ and show that the first time t_{b} for which u_{x} becomes infinite is

$$
t_{\mathrm{b}}=\frac{1}{\max _{\xi}\left|F^{\prime}(\xi)\right|} .
$$

19. Find the first time of a blow-up for the following problems.
a) $\begin{cases}u_{t}+u u_{x}=0, & t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=e^{-x^{2}}\end{cases}$
b) $\left\{\begin{array}{l}u_{t}+u u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)=\frac{1}{\cosh x^{2}} .\end{array}\right.$
c) $\left\{\begin{array}{l}u_{t}+u u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)= \begin{cases}2-x^{2}, & x<1 ; \\ 1, & x>1 .\end{cases} \end{array}\right.$
d) $\left\{\begin{array}{l}u_{t}+u u_{x}=0, \quad t>0, \quad x \in \mathbb{R} ; \\ u(x, 0)= \begin{cases}1, & x \leq 0 ; \\ \cos x, & 0<x \leq \frac{\pi}{2} ; \\ 0, & x>\frac{\pi}{2} .\end{cases} \end{array}\right.$

[^0]: ${ }^{1}$ If you do not feel comfortable with distributions, think about some narrow and high spike of unit mass such as $\frac{1}{\epsilon} \chi_{(-\epsilon / 2, \epsilon / 2)}(x)$ or $\frac{1}{\epsilon} \varphi(x / \epsilon)$, where φ is any integrable positive function with $\int|\varphi| d x=1$.

