Partial Differential Equations
Problem Set 1: First order equations and shock waves

. Find all solutions u = u(x, t) to the following PDEs

an
a) i, =0, b) 3w +uy =0, c)a—X::O,nEN, d) ey +u=0, e) iy =0.

. Which of the following operators are linear?

a)lu=u +xy, b)lu=u+uw, c)lu=uw+u+1, dLu=ui+u)—1.

. (Geometrical method of solution) The quantity au, + bu, is the directional derivative of u in
the direction of a vector v = (a, b) € R? with a’ 4+ b% # 0. Hence, the equation

au, + bu, =0,

tells us that u does not change in the direction of v. We will show how to solve the above by
using only geometrical means.

(a) Argue that if u is constant on lines generated by v then it should change on any line
perpendicular to this vector. Draw everything on the x — y plane and prove that the
solution of the above equation is given by u(x,y) = f(bx — ay) for some differentiable
f.

(b) We can find the same solution as before in a more systematic way. The idea is to rotate
the coordinate plane. Let the new coordinates (x’,y’) be defined by x’ = ax + by and
Yy’ = bx — ay. By the chain rule calculate u, and u, in terms of u,» and .. Show that
if u is a solution of the above PDE then u,, = 0 which is easy to solve.

. Solve the following equations using the Problem 3

a) 4uy, —3uy =0 with u(0,y) =y°, b) 2u;+3u, =0 with u(x,0) =sinx.

. Use the rotation of coordinates as in Problem 3 to solve the following equation

au, + bu, +cu =0.

. (Conservation) Let u = u(x,t) denote the density per unit length of some substance, which
satisfies the conservation law without any sources. Show that, provided the flux q vanishes
at infinity and u is x-integrable, the total amount of u in space is constant in time. Hint. The
total amount of u is defined by some integral. Which one?

. (Method of characteristics) Solve the following problems. Draw their characteristics on the x —t
plane and sketch the solution u(x, t) for several times.

){ut+1OuX:O, t>0, xcR; ){ut+2tuxz—u, t>0, xeR;

ux0) = x€R, u(x,0) =e™, xeR.

){ut—xzuxzsinu, t>0, x>0 ){ut+2tuxzxtu, t>0, xeR;

u(x,0) = 2arctanx, x>0, u(x,0) =%, x€eR.

. (Signaling problem) Suppose that a lighthouse is located at x = 0 and constantly sends its
signals with the intensity {(t).



(@) Asyou know, light travels through any medium with a constant speed c. Let u = u(x, t)
denote the light intensity at (x, t). Find u(x,t) for x > 0 and t € R (lighthouse has been
sending its signals for ever).

(b) Solve the above problem but now assume that the light is absorbed by clouds and other
aerosols with a rate proportional to its intensity.

9. (Initial-boundary value problems) Sometimes we have to solve a problem where both the initial
and boundary data is given. Consider the following equations.

u(x,0) = dp(x), x>0 u(x,0) =%, x>0

w+ecu, =0, t>0, x>0, c¢>0 w+tu, = —u? t>0, x>0
a) b)
U(O,t) = 1P(t), t> O) d)(O) = 1P(O) = 0) u(o)t) =sint, t> O)

What conditions have to be satisfied for the a) case to have a solution with ¢ < 0?

10. (Quasi-linear equations) Solve the following problems and sketch the characteristics.

) wH+huu, =0, t>0, xR b) wH+u =u?, teR, x>0
u(x,0) =¢€*, x€eR, u(o,t) =P(t), teR.

) w+uu, =0, t>0, xeER; Q) wHulu, =0, t>0, x>0
u(x,0) =%, x>0, u(x,0) = 11?, x > 0.
11. Solve the following full quasi-linear problem.

) w4+uuw,=—u, t>0 xeR; b) w+uu,=2t, t>0, xeR;
u(x,0) =%, xeR. u(x,0) =%, x€R.

12. (Shock waves) Find the solutions of given problems. Draw the characteristics and a shock
wave trajectory.

w+utu, =0, t>0, xeR; w+2uu, =0, t>0, xeR;
) ]2, x<G; ) 3, x<G;
w0 =94 550, w60 =912 xso.

13. (Shock fitting) Analyse the following shock-fitting problems. Draw the solution u(x,t) for
several times.

w+uuw, =0, t>0, xekR, (w +uu, =0, t>0, xR

a) 1, x<0; b) 1, x < 0;
ux,0)=<¢ =1, 0<x< 1, ux,0)=<¢ 1—x%x, 0<x<T;

L 0, x>1, L 0, x> 1.

( (

w+uwu, =0, t>0, xcR; w+uwu, =0, t>0, xcR;

o) 0, x < 0; d) 0, x<0
ux,0)=<¢ 1—x%x, 0<x<1, ux,0)=<¢ x, 0<x<1,
L 0, x> 1. { 0, x>1.

14. (Paint) The paint flows down the wall and has a thickness u(x,t). As can be shown, the
governing equation has the form

w+uu, =0, t>0, x€eR.

Solve the paint flow problem with the given initial profile
|0, x<Oorx>1;
u(x,O)_{ 1, 0<x< 1.
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15. (Car traffic) Let u = u(x, t) be a density of cars per unit length on a road at time t. Define the
traffic flux q(x, t) as the number of cars per unit time passing through a fixed x at time t.

(a) Argue that the conservation of cars leads to the equation
ut + qx — O.

(b) Define the car velocity as v = q/u (as in the example with convection). A simple model
of velocity distribution assumes that there exists a critical density at which cars stop

(traffic jam)
v(u) =vn (1 — i) .
Uc

From this, find q and plug it in the conversation of cars to obtain the governing equation.

(c) (Red light turns green) Solve the car flow problem for a case where the red light at x = 0
turns green att =0, i.e.

U, x<O0;
“(X’O):{ 0, x>0

(d) (Green light turns red) Now, a red light suddenly turns on and the traffic with a density
up suddenly have to stop at x = 0.

u(x,0) =uwy <u, x<0, u0,t)=u, t>0.
Consider only the domain x < 0.
16. (Continuation of the discontinuity) Solve the following equation
w+uu, =0, t>0, xeR,

for each of the two initial conditions

1, x<0; 0, x<0
a) u(x,0) = Oq(x) := -3, 0<x<eg blux,0)=0x) =4 %, 0<x<e¢
0, x>e¢, 1, x>e

In both cases examine the limit € — 0.

17. (Flood hydrograph) Imagine a long and narrow river. We can introduce a curvilinear variable
x which denotes the position measured along its bed. Moreover, let A = A(x) be the wetted
cross-section at x. Conservation of mass along with Manning’s Law states that

At—i—AmAx:O) m>0.
Assume also that A(x,0) = Ay(x).

(a) Find a solution of the above equation given in an implicit form.

(b) A flood can arise as a result of a sudden rainfall at some point x. To model this situation
assume that Ay(x) = 6(x), where § is the Dirac delta'. Draw the characteristics.

(c) Find the shock wave. You do not have to solve the equation in order to do that.

(d) A flood hydrograph is a graph of the flux at some fixed point x,. Hydrologists use this
tool a lot. Draw the hydrograph by yourself.

!If you do not feel comfortable with distributions, think about some narrow and high spike of unit mass such as
%x(,e/z‘e/z) (x) or %(p(x/e), where ¢ is any integrable positive function with [ |p|dx = 1.
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18. (Blow-up time) For a general initial condition it is not usually straightforward to determine
the shock wave development. It is, however, possible to find the first time of a blow-up.

Consider
{ w+cuwu, =0, t>0, xeR,

u(x,0) = ¢(x) ’
where ¢ > 0 and ¢ > 0 have an opposite monotonicity (say, ¢’ > 0 and ¢’ < 0).
(a) Pick any characteristic X = X(t) and define P(t) := u,(X(t),t). Compute P’ in terms of
u and its derivatives.

(b) Use the differential equation for u in order to get rid of the second derivatives in the
expression for P’.

(c) Solve the obtained equation for P and whence, for u,.
(d) Define F(¢) := c(d(&)) and show that the first time t;, for which u, becomes infinite is
1
b= o e
maxg [F/(&)]

19. Find the first time of a blow-up for the following problems.

w+uu, =0, t>0, x€eR; w+uuw, =0, t>0, xek,
) 2 b) _
u(x,0) =

U—(X,O) =e coshx?*
u’t—’_uuxzo, t>0, XER’ ut+uLLX:0) t>0) XER,
c) 2—x% x<T; d) 1, x <0
U(X) O) = ) ) LL(X,O) = COS X, 0<x < E)
1’ X > 1. - 2
O) X > 3.
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