
Partial Differential Equations with Applications in Industry
Problem Set 3: Heat equation

1. (Diffusion equation) Consider a conserved substance described by the concentration u(x, t).
By assuming Fick’s Law stating that the diffusive flux (what is that?) is proportional to the
gradient of the concentration (give an interpretation) derive the governing equation.

2. (Non-insulating surface) The iron bar looses its heat through the lateral surface according to
the Newton’s Cooling Law (as a source term). Find equation for its temperature u = u(x, t)
at time t and point x assuming that any other sources (or sinks) are absent.

3. (Existence and regularity) Prove that the function
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is a solution of the following problem
ut = α2uxx, (x, t) ∈ (0, L)× (0, T),
u(x, 0) = ϕ(x), x ∈ [0, L]
u(0, t) = 0, u(L, t) = 0,

where ϕ is continuous. Moreover, show that u defined by the above formula is an infinitely
differentiable function. Hint. Follow the hint given during the lecture concerning the
uniform convergence of the series. You have to check whether the equation, IC and BCs are
satisfied.

4. (Almost steady-state)

(a) Find a temperature distribution of a bar 0 ≤ x ≤ L with insulated surface and initial
temperature equal to ϕ(x). Both ends of the bar are kept in a zero temperature.

(b) Explicitly solve the case where ϕ(x) = U0 = const., i.e. determine the series which
constitute the solution. Next, estimate the error of approximating the whole series by
its n−th partial sum .

(c) Determine the time T after which the whole series summed from the second term and
then divided by the first term will be smaller than ϵ.

5. (Constant boundary conditions) Find an explicit solution (compute the Fourier series) of the
heat conduction problem with constant boundary conditions

ut = α2uxx, (x, t) ∈ (0, L)× (0, T),
u(x, 0) = 0, x ∈ [0, L]
u(0, t) = u0, u(L, t) = u1.

Compare the function U with solution of the steady-state equation uxx = 0.

6. (Neumann boundary conditions) Devise a solution to the problem with Neumann BCs
ut = α2uxx, (x, t) ∈ (0, L)× (0, T),
u(x, 0) = 0, x ∈ [0, L]
ux(0, t) = µ(t), ux(L, t) = ν(t).

Next, write an explicit solution for µ and ν constant.
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7. (Robin boundary conditions) Solve the following heat conduction problem with Robin bound-
ary condition by reducing it to Dirichlet BC for a nonhomogeneous equation. How to
proceed when additionally u(L, t) = −κ(u(L, t) − σ(t))?

ut = α2uxx, (x, t) ∈ (0, L)× (0, T),
u(x, 0) = 0, x ∈ [0, L]
ux(0, t) = −λ(u(0, t) − θ(t)), u(L, t) = 0, t ≥ 0.

Hint. You can introduce a new function v(x, t) = eλx (θ(t) + u(x, t)).

8. (Nonhomogeneous problems) Reduce given nonhomogeneous heat conduction problem into a
collection of homogeneous ones. Then, write its solution in terms of the Green function. Pay
particular attention to the choice of the appropriate Green function.{

ut = α2uxx + f, (x, t) ∈ (0, L)× (0, T),
u(x, 0) = ϕ(x), x ∈ [0, L],

a) ux(0, t) = µ(t); u(L, t) = ν(t), b) u(0, t) = µ(t); ux(L, t) = −λ(u(L, t) − θ(t)),
c) ux(0, t) = µ(t); ux(L, t) = −λ(u(L, t) − θ(t)).

9. Solve the equation derived in Prob. 2.

10. (Practical way of finding self-similar solutions) Usually self-similar solution of many PDEs are
found by introducing the following transformation

u(x, t) = taU(z), z = xtb,

and choosing a and b for the equation to be satisfied. Do so for the heat equation on R.

11. (Self-similarity and the half-line) Use the self-similar solution technique to solve the heat
equation on the half-line with constant u0

ut = α2uxx, (x, t) ∈ R+ × R+,

u(x, 0) = 0, x > 0,

u(0, t) = u0, x > 0.

12. Solve the following problem on the real-line
ut = α2uxx, (x, t) ∈ R× (0, T),

u(x, 0) =

{
u1, x < 0;
u2, x > 0

,

What is the value of u(0, t)?

13. (Heat kernel) Show that
1√
4α2π

∫∞
−∞ e−

z2

4α2 dz = 1.

14. (Neumann BC on half-line) Utilize the method of reflections to find a solution of the heat
equation on the half-line with Neumann boundary condition

ut = α2uxx, (x, t) ∈ R+ × (0, T),
u(x, 0) = 0,

ux(0, t) = µ(t).

Hint. Odd extension will not necessarily work.

2



15. Using method of reflections solve the following problem on the half-line for constant u0
ut = α2uxx, (x, t) ∈ R+ × (0, T),
u(x, 0) = u0,

u(0, t) = 0.

16. (Nonhomogeneous problems on the half-line) Using similar techniques as for the real-line, devise
a solution of the following nonhomogeneous problem on R+

ut = α2uxx + f, (x, t) ∈ R+ × (0, T),
u(x, 0) = ϕ(x),
u(0, t) = µ(t).

17. (Wine cellar) We want to build a wine cellar under our garden. The main assumption is to
found it on an appropriate depth in order to make the temperature best for our wine. Let
u = u(x, t) be the temperature of Earth on depth x and time t.

(a) Justify that the following problem is a sensible model for our case (why the boundary
condition is as so?) {

ut = c2uxx, x > 0, t > 0,

u(0, t) = T0 +A sin(ωt), t > 0.

(b) Why the solution of the above problem can be sough in the given ansatz?

u(x, t) = T0 + f(x) sin (ωt− δ(x)) ,

Where f and δ are unknown functions.
(c) Find the bounded solution of our winecellar equation. Why we do not need the initial

condition? Describe what you got.
(d) The best depth to build a wine cellar is to have the smallest variations of temperature

around the whole year. This means that in the Summer we would like to have colder
conditions beneath the surface than above it while in the Winter the opposite should
hold. Hence, we look for x0 such that δ(x0) = π. Find u(x0, t) and compare with u(x, t).

18. (Porous medium equation) Diffusion in many porous media such as soil or minerals is described
by the following nonlinear PDE (it also arises in many other contexts; For instance hydrology,
semiconductors or gasdynamics)

ut = (umux)x , m > 0.

Use the techniques from Problem 10 to find the self-similar solution of the above equation
with

ux(0, t) = 0,

∫∞
−∞ u(x, t)dx = 1, x ∈ R.

This is the celebrated Barenblatt’s solution and is associated with modelling a sudden release
of energy at x = 0 (such as in a-bomb).

Łukasz Płociniczak
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