Partial Differential Equations with Applications in Industry

 Problem Set 3: Heat equation1. (Diffusion equation) Consider a conserved substance described by the concentration $u(\mathbf{x}, \mathrm{t})$. By assuming Fick's Law stating that the diffusive flux (what is that?) is proportional to the gradient of the concentration (give an interpretation) derive the governing equation.
2. (Non-insulating surface) The iron bar looses its heat through the lateral surface according to the Newton's Cooling Law (as a source term). Find equation for its temperature $\mathfrak{u}=\boldsymbol{u}(x, t)$ at time t and point x assuming that any other sources (or sinks) are absent.
3. (Existence and regularity) Prove that the function

$$
u(x, t):=\sum_{n=1}^{\infty} a_{n} e^{-\left(\frac{\alpha n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi}{L} x\right), \quad a_{n}=\frac{2}{L} \int_{0}^{L} \phi(x) \sin \left(\frac{n \pi}{L} x\right) d x,
$$

is a solution of the following problem

$$
\left\{\begin{array}{l}
u_{t}=\alpha^{2} u_{x x}, \quad(x, t) \in(0, L) \times(0, T), \\
u(x, 0)=\phi(x), \quad x \in[0, L] \\
\mathfrak{u}(0, t)=0, \quad u(L, t)=0
\end{array}\right.
$$

where ϕ is continuous. Moreover, show that u defined by the above formula is an infinitely differentiable function. Hint. Follow the hint given during the lecture concerning the uniform convergence of the series. You have to check whether the equation, IC and BCs are satisfied.
4. (Almost steady-state)
(a) Find a temperature distribution of a bar $0 \leq x \leq L$ with insulated surface and initial temperature equal to $\phi(x)$. Both ends of the bar are kept in a zero temperature.
(b) Explicitly solve the case where $\phi(x)=\mathrm{U}_{0}=$ const., i.e. determine the series which constitute the solution. Next, estimate the error of approximating the whole series by its n-th partial sum .
(c) Determine the time T after which the whole series summed from the second term and then divided by the first term will be smaller than ϵ.
5. (Constant boundary conditions) Find an explicit solution (compute the Fourier series) of the heat conduction problem with constant boundary conditions

$$
\begin{cases}u_{t}=\alpha^{2} u_{x x}, & (x, t) \in(0, L) \times(0, T) \\ u(x, 0)=0, & x \in[0, L] \\ u(0, t)=u_{0}, & u(L, t)=u_{1}\end{cases}
$$

Compare the function U with solution of the steady-state equation $u_{x x}=0$.
6. (Neumann boundary conditions) Devise a solution to the problem with Neumann BCs

$$
\left\{\begin{array}{l}
u_{t}=\alpha^{2} u_{x x}, \quad(x, t) \in(0, L) \times(0, T) \\
u(x, 0)=0, \quad x \in[0, L] \\
u_{x}(0, t)=\mu(t), \quad u_{x}(L, t)=v(t)
\end{array}\right.
$$

Next, write an explicit solution for μ and ν constant.
7. (Robin boundary conditions) Solve the following heat conduction problem with Robin boundary condition by reducing it to Dirichlet BC for a nonhomogeneous equation. How to proceed when additionally $u(\mathrm{~L}, \mathrm{t})=-\kappa(u(\mathrm{~L}, \mathrm{t})-\sigma(\mathrm{t}))$?

$$
\left\{\begin{array}{l}
u_{t}=\alpha^{2} u_{x x}, \quad(x, t) \in(0, L) \times(0, T) \\
u(x, 0)=0, \quad x \in[0, L] \\
u_{x}(0, t)=-\lambda(u(0, t)-\theta(t)), \quad u(L, t)=0, \quad t \geq 0
\end{array}\right.
$$

Hint. You can introduce a new function $v(x, t)=e^{\lambda x}(\theta(t)+u(x, t))$.
8. (Nonhomogeneous problems) Reduce given nonhomogeneous heat conduction problem into a collection of homogeneous ones. Then, write its solution in terms of the Green function. Pay particular attention to the choice of the appropriate Green function.

$$
\begin{cases}u_{t}=\alpha^{2} u_{x x}+f, & (x, t) \in(0, L) \times(0, T) \\ u(x, 0)=\phi(x), & x \in[0, L]\end{cases}
$$

a) $u_{x}(0, t)=\mu(t) ; u(L, t)=v(t)$,
b) $u(0, t)=\mu(t) ; u_{x}(L, t)=-\lambda(u(L, t)-\theta(t))$,
c) $u_{x}(0, t)=\mu(t) ; u_{x}(L, t)=-\lambda(u(L, t)-\theta(t))$.
9. Solve the equation derived in Prob. 2.
10. (Practical way of finding self-similar solutions) Usually self-similar solution of many PDEs are found by introducing the following transformation

$$
\mathfrak{u}(x, t)=\mathrm{t}^{\mathrm{a}} \mathrm{u}(z), \quad z=x \mathrm{t}^{\mathrm{b}},
$$

and choosing a and b for the equation to be satisfied. Do so for the heat equation on \mathbb{R}.
11. (Self-similarity and the half-line) Use the self-similar solution technique to solve the heat equation on the half-line with constant u_{0}

$$
\begin{cases}u_{t}=\alpha^{2} u_{x x}, & (x, t) \in \mathbb{R}_{+} \times \mathbb{R}_{+} \\ u(x, 0)=0, & x>0 \\ u(0, t)=u_{0}, & x>0\end{cases}
$$

12. Solve the following problem on the real-line

$$
\left\{\begin{array}{l}
u_{t}=\alpha^{2} u_{x x}, \quad(x, t) \in \mathbb{R} \times(0, \mathrm{~T}), \\
u(x, 0)= \begin{cases}u_{1}, & x<0 \\
u_{2}, & x>0\end{cases}
\end{array}\right.
$$

What is the value of $u(0, t)$?
13. (Heat kernel) Show that

$$
\frac{1}{\sqrt{4 \alpha^{2} \pi}} \int_{-\infty}^{\infty} e^{-\frac{z^{2}}{4 \alpha^{2}}} \mathrm{~d} z=1
$$

14. (Neumann BC on half-line) Utilize the method of reflections to find a solution of the heat equation on the half-line with Neumann boundary condition

$$
\left\{\begin{array}{l}
\mathfrak{u}_{t}=\alpha^{2} u_{x x}, \quad(x, t) \in \mathbb{R}_{+} \times(0, T) \\
u(x, 0)=0 \\
u_{x}(0, t)=\mu(t)
\end{array}\right.
$$

Hint. Odd extension will not necessarily work.
15. Using method of reflections solve the following problem on the half-line for constant u_{0}

$$
\left\{\begin{array}{l}
u_{t}=\alpha^{2} u_{x x}, \quad(x, t) \in \mathbb{R}_{+} \times(0, T) \\
u(x, 0)=u_{0} \\
\mathfrak{u}(0, t)=0
\end{array}\right.
$$

16. (Nonhomogeneous problems on the half-line) Using similar techniques as for the real-line, devise a solution of the following nonhomogeneous problem on \mathbb{R}_{+}

$$
\left\{\begin{array}{l}
u_{t}=\alpha^{2} u_{x x}+f, \quad(x, t) \in \mathbb{R}_{+} \times(0, T) \\
u(x, 0)=\phi(x) \\
u(0, t)=\mu(t)
\end{array}\right.
$$

17. (Wine cellar) We want to build a wine cellar under our garden. The main assumption is to found it on an appropriate depth in order to make the temperature best for our wine. Let $u=u(x, t)$ be the temperature of Earth on depth x and time t.
(a) Justify that the following problem is a sensible model for our case (why the boundary condition is as so?)

$$
\begin{cases}u_{t}=c^{2} u_{x x}, & x>0, \quad t>0, \\ u(0, t)=T_{0}+A \sin (\omega t), & t>0 .\end{cases}
$$

(b) Why the solution of the above problem can be sough in the given ansatz?

$$
u(x, t)=T_{0}+f(x) \sin (\omega t-\delta(x))
$$

Where f and δ are unknown functions.
(c) Find the bounded solution of our winecellar equation. Why we do not need the initial condition? Describe what you got.
(d) The best depth to build a wine cellar is to have the smallest variations of temperature around the whole year. This means that in the Summer we would like to have colder conditions beneath the surface than above it while in the Winter the opposite should hold. Hence, we look for x_{0} such that $\delta\left(x_{0}\right)=\pi$. Find $u\left(x_{0}, t\right)$ and compare with $u(x, t)$.
18. (Porous medium equation) Diffusion in many porous media such as soil or minerals is described by the following nonlinear PDE (it also arises in many other contexts; For instance hydrology, semiconductors or gasdynamics)

$$
u_{t}=\left(u^{m} u_{x}\right)_{x}, \quad m>0
$$

Use the techniques from Problem 10 to find the self-similar solution of the above equation with

$$
u_{x}(0, t)=0, \quad \int_{-\infty}^{\infty} u(x, t) d x=1, \quad x \in \mathbb{R}
$$

This is the celebrated Barenblatt's solution and is associated with modelling a sudden release of energy at $x=0$ (such as in a-bomb).

