Partial Differential Equations with Applications in Industry
 Problem Set 4: Laplace and Poisson's Equations

1. (Gravitational field and potential) Let $\mathbf{g}(\mathbf{x})=\mathbf{x}|\mathbf{x}|^{-3}$ and $\mathfrak{u}(\mathbf{x})=|\mathbf{x}|^{-1}$. Show that

$$
\nabla \cdot \mathbf{g}=0, \quad \mathbf{g}=-\nabla \mathbf{u} \quad \text { for } \mathbf{x} \neq 0
$$

Deduce that $\Delta u=0$ for $\mathbf{x} \neq 0$.
2. (Laplacian in curvilinear coordinates) Find the form of Laplacian in polar and spherical coordinates. If you are a daredevil, find the form of the Laplacian in a general curvilinear coordinate system.
3. Solve the Laplace equation on a square

$$
u_{x x}+u_{y y}=0, \quad(x, y) \in(0,1)^{2}
$$

with the following conditions

$$
\text { a) }\left\{\begin{array}{ll}
u(x, 0)=f(x), & x \in[0,1] ; \\
u(x, 1)=0, & x \in[0,1] ; \\
u(0, y)=0, & y \in[0,1] ; \\
u(1, y)=0, & y \in[0,1],
\end{array} \quad b\right) \quad \begin{cases}u_{y}(x, 0)=g(x), & x \in[0,1] \\
u(x, 1)=0, & x \in[0,1] \\
u(0, y)=0, & y \in[0,1] \\
u(1, y)=0, & y \in[0,1]\end{cases}
$$

How to proceed this problem when nonzero BCs are given on all the sides of the square?
4. Solve the Poisson equation on a square

$$
\begin{cases}u_{x x}+u_{y y}=f, & (x, y) \in(0,1)^{2} \\ u(x, y)=0, & (x, y) \in \partial[0,1]^{2}\end{cases}
$$

Here, operator ∂ denotes the boundary of a set. Hint. You can use the same method as we did in finding a solution of the nonhomogeneous heat equation (eigenfuction method).
5. (Poisson's kernel) Show that

$$
\frac{1}{2}+\sum_{n=1}^{\infty} \cos (n(\phi-\theta)) r^{n}=\frac{1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos (\phi-\theta)}
$$

Hint. One way of summing the above series is to use Euler's formula for expressing trigonometric functions in terms of the exponentials.
6. Use a separation of variables to solve the Laplace equation on the exterior of an unit circle, i.e.

$$
\begin{cases}\frac{1}{\mathrm{r}}\left(\mathrm{ru} \mathrm{u}_{\mathrm{r}}\right)_{\mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \mathfrak{u}_{\theta \theta}=0, & \mathrm{r}>1,-\pi \leq \theta \leq \pi \\ \mathfrak{u}(1, \theta)=\mathrm{f}(\theta), & -\pi \leq \theta \leq \pi\end{cases}
$$

7. (Isotherms)
(a) Solve the Laplace's equation on a unit disc with the following boundary condition

$$
u(1, \theta)=\left\{\begin{array}{ll}
u_{0}, & -\pi \leq \theta<0 ; \\
0, & 0 \leq \theta<\pi .
\end{array} \quad-\pi \leq \theta \leq \pi .\right.
$$

(b) Next, use the fact that

$$
\sum_{n=1}^{\infty} \frac{\sin (n \theta)}{n} r^{n}=\arctan \left(\frac{r \sin \theta}{1-r \cos \theta}\right), \quad 0<r<1, \quad \theta \in[-\pi, \pi]
$$

to express the solution of the above problem in a closed form, i.e. without the series.
(c) Find isotherms of u, that is curves $r=r(\theta)$ for which $u(r, \theta)=T$ for fixed $T>0$. Sketch them.
8. Solve Laplace equation on a quarter of a circle, i.e.

$$
\begin{cases}\frac{1}{r}\left(r u_{r}\right)_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, & 0<r<1,0 \leq \theta \leq \frac{\pi}{2} \\ u_{r}(1, \theta)=f(\theta), & 0 \leq \theta \leq \frac{\pi}{2} \\ u(r, 0)=0, \quad u\left(r, \frac{\pi}{2}\right)=0, & 0 \leq r \leq 1\end{cases}
$$

9. Find a solution of the Laplace equation on an annulus

$$
\begin{cases}\frac{1}{r}\left(r u_{r}\right)_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, & a<r<b,-\pi \leq \theta \leq \pi \\ \mathfrak{u}(a, \theta)=0, \quad u(b, \theta)=f(\theta), & -\pi \leq \theta \leq \pi\end{cases}
$$

How to deal with both nonzero BCs?
10. (Semi-infinite strip) Solve the Laplace equation on a semi-infinite strip

$$
\begin{aligned}
& \Delta u=0, \quad x \in \mathbb{R}_{+}, \quad y \in(0,1) \\
& u(0, y)=f(y), \quad u(x, 0)=u(x, 1)=0 .
\end{aligned}
$$

11. (Solvability condition) Find the solvability condition for the Poisson equation on D with Neumann BC

$$
\Delta \mathrm{u}=\mathrm{f},\left.\quad \nabla \mathrm{u} \cdot \mathbf{n}\right|_{\partial \mathrm{D}}=\mathrm{g}
$$

where \mathbf{n} is the normal vector to D.
Hint. Use the divergence theorem when integrating Laplacian.
12. (Green function for a square)
(a) Write the solution of the Problem 4 as an integral over $[0,1]^{2}$ of a product of function f and some kernel G.
(b) Show that G is indeed the Green function for the problem, i.e. $\Delta G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ and is zero on the $\partial[0,1]^{2}$.
13. (Two-dimensional full-space Green function) Write down the formula for a solution of twodimensional Poisson equation for any bounded region D with inhomogeneous Dirichlet BC. Next, find the Green function for the $D=\mathbb{R}^{2}$ space by mimicking derivation from the lecture.
14. (Symmetry of Green function) Using the Green formula with suitably chosen u and v show that $G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\mathrm{G}\left(\mathbf{x}_{0}, \mathbf{x}\right)$.
15. (A potential for a globular cluster) In astrophysics one is interested in describing the mass distributions of various configurations of stellar objects. One of them is a gravitationally
bound spherical collection of stars - globular cluster. The mass density of such system can be given by the Plummer model

$$
\rho(r)=\frac{3 M}{4 \pi b^{3}}\left(1+\frac{r^{2}}{b^{2}}\right)^{-\frac{5}{2}}
$$

Here, $r=|\mathbf{x}|$ is the distance from the origin. Assuming that u is a spherically symmetric function find the solution of the Poisson's equation

$$
\Delta u=4 \pi \mathrm{G} \rho, \quad u=u(r)
$$

Compare the found solution with the potential for the point mass.
Hint. Use the Laplacian in spherical coordinates from Prob. 2 or look it up in the tables.

