Mycielski among trees Nonstandard proofs of Mycielski and Egglestone like Theorems

Marcin Michalski, Szymon Żeberski and <u>Robert Rałowski</u> Wrocław University of Science and Technology

Kosice, 9-th September 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Jan Mycielski - 2D case) If $I = \mathcal{M}, \mathcal{N}$ then for every $B \subseteq [0, 1]^2$ such that $B^c \in I$ then there is perfect set $P \subseteq [0, 1]$ such that

 $P \times P \subseteq B \cup \Delta$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\Delta = \{(x, x) : x \in [0, 1]\}.$

Slalom tree

Let $T \subseteq \omega^{<\omega}$ be a tree. Then T is a <u>slalom</u> <u>tree</u> iff $(\forall m \in \omega)(\forall s \in \omega^m)(\exists k \in \omega)(\forall x \in [T])(\forall i \in m)x(k+i) = s(i).$

Theorem

If $G \subseteq \omega^{\omega} \times \omega^{\omega}$ is dense G_{δ} then there is a slalom tree $T \subseteq \omega^{<\omega}$ such that $[T] \times [T] \subseteq G \cup \Delta$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strategy of proof

- fix V as the any ZFC transitive universe,
- prove the required theorem φ in some generic extension V[G],
- check the complexity of proved formula φ ,
- if our formula φ is Σ¹₂ or ∏¹₂ or simpler then use Schoenfield Theorem,

• and we are getting $V \models \varphi$.

Absolutness

Let $M \subseteq N$ - transitive models of ZF theory, $\varphi \in \mathscr{L}(\epsilon)$ set theory formula with *n* free variables. Then φ is absolute between *M*, *N* if for every parameters $a_0, \ldots, a_{n-1} \in M$

$$M \models \varphi(a_0, \ldots, a_{n-1})$$
 iff $N \models \varphi(a_0, \ldots, a_{n-1})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Σ_2^1 sentence

X canonical Polish space if is a countable product of $2^{\omega}, \omega^{\omega}, \mathbb{R}, [0, 1]$ and $Perf(\mathbb{R})$ as space of perfect sets. φ is Σ_2^1 sentence if for some canonical spaces X, Y and Borel set $B \subseteq X \times Y \varphi$ is

 $(\exists x \in X) (\forall y \in Y) (x, y) \in B.$

(X, Y, b) are parameters where $b \in \omega^{\omega}$ is a Borel code for B.

Σ_2^1 sentence

X canonical Polish space if is a countable product of $2^{\omega}, \omega^{\omega}, \mathbb{R}, [0, 1]$ and $Perf(\mathbb{R})$ as space of perfect sets. φ is Σ_2^1 sentence if for some canonical spaces X, Y and Borel set $B \subseteq X \times Y \varphi$ is

$$(\exists x \in X)(\forall y \in Y) (x, y) \in B.$$

(X, Y, b) are parameters where $b \in \omega^{\omega}$ is a Borel code for B.

Schoenfield Absolutness Theorem

Theorem

Let $M \subseteq N$ be a standard transitive models of ZFC and $\omega_1^N \subseteq M$. Let φ be a Σ_2^1 formula with parameters from M then

$$M \models \varphi \text{ iff } N \models \varphi.$$

If N is a generic extension of M then $Ord^M = Ord^N$ and $\omega_1^N \subseteq M$.

Schoenfield Absolutness Theorem

Theorem

Let $M \subseteq N$ be a standard transitive models of ZFC and $\omega_1^N \subseteq M$. Let φ be a Σ_2^1 formula with parameters from M then

$$M \models \varphi \text{ iff } N \models \varphi.$$

If N is a generic extension of M then $Ord^M = Ord^N$ and $\omega_1^N \subseteq M$.

Let $\mathcal{T} \subseteq \omega^{\omega}$ - tree then define

$$\mathsf{leaves}(\mathsf{T}) = \{ \sigma \in \mathsf{T} : \ \neg(\exists \tau \in \mathsf{T}) \ \sigma \subseteq \tau \land \tau \neq \sigma \}$$

For any $\sigma \in T$ define

$$rank_T(\sigma) = \sup\{rank_T(\tau) + 1 : \tau \in T \land \sigma \subsetneq \tau\}$$

 $ht(T) = rank_T(\emptyset).$ $T \subseteq \omega^{<\omega}$ is a nice cutted tree if

$$(\exists n \in \omega)ht(T) = n \land leaves(T) \subseteq \omega^n.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Forcing notion

Define (\mathscr{C}, \leq) as follows

- ▶ $\mathscr{C} = \{ p \subseteq \omega^{<\omega} : p \text{ is nice cutted tree and is finite} \},\$
- ► $(\forall p, q \in \mathscr{C})$ $(p \leq q \text{ iff } q \subseteq p \land p \cap \omega^{ht(q)} = leaves(q)),$ (p is stronger than q).

Our (𝒞, ≤) is nonatomic and countable then is isomorphic to a forcing which adds one Cohen real.

Forcing notion

Define (\mathscr{C}, \leq) as follows

- ▶ $\mathscr{C} = \{ p \subseteq \omega^{<\omega} : p \text{ is nice cutted tree and is finite} \},\$
- ► $(\forall p, q \in \mathscr{C})$ $(p \leq q \text{ iff } q \subseteq p \land p \cap \omega^{ht(q)} = leaves(q)),$ (p is stronger than q).

Our (\mathscr{C}, \leq) is nonatomic and countable then is isomorphic to a forcing which adds one Cohen real.

Theorem in one Cohen real extension

Theorem

After adding one Cohen real there is a perfect slalom tree T such that $[T] \times [T] \subseteq W \cup \Delta$ for every dense G_{δ} set $W \subseteq \omega^{\omega} \times \omega^{\omega}$ from the ground model.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sketch of Proof

Lemma

For every open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ a finite open sets $(V_k : k \in n)$ in ω^{ω} : there is sequence $\{\sigma_k : k \in n\}$ of sequences such that for any $k, l \in n$

- $[\sigma_k] \subseteq V_k,$
- $\blacktriangleright |\sigma_k| = |\sigma_l|,$
- $k \neq I \rightarrow [\sigma_k] \times [\sigma_l] \cup [\sigma_l] \times [\sigma_k] \subseteq U.$

Claim If $G \subseteq \mathscr{C}$ is generic filter over V and $T_G = \bigcup G$ then

- 1. T_G is slalom perfect tree,
- 2. for every dense open set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ coded in ground model and any $n \in \omega$ the set $D_{n,U}$

 $\{p \in \mathscr{C}: \ (\forall s, t \in \mathit{leaves}(p))(n \leq |t|, |s| \land t \neq s) \rightarrow [t] \times [s] \subseteq U\}$

is dense in (\mathscr{C}, \leq) .

3. Fix $\dot{x} \in V^{\mathscr{C}}$ and $p, q \in G$. Assume that

 $p \Vdash \dot{x} \in [T_G] \land q \Vdash \dot{x} \upharpoonright n \subseteq s$

for $n \leq ht(q)$ and $s \in q$. Then there is $r \in G$ and $m \geq n$ such that $r \leq p, q$ and $r \Vdash \dot{x} \upharpoonright m \in leaves(q)$.

Claim

If $G \subseteq \mathscr{C}$ is generic filter over V and $T_G = \bigcup G$ then

- 1. T_G is slalom perfect tree,
- 2. for every dense open set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ coded in ground model and any $n \in \omega$ the set $D_{n,U}$

 $\{p \in \mathscr{C}: \ (\forall s, t \in \mathit{leaves}(p))(n \leq |t|, |s| \land t \neq s) \rightarrow [t] \times [s] \subseteq U\}$

is dense in (\mathscr{C}, \leq) .

3. Fix $\dot{x} \in V^{\mathscr{C}}$ and $p, q \in G$. Assume that

 $p \Vdash \dot{x} \in [T_G] \land q \Vdash \dot{x} \upharpoonright n \subseteq s$

for $n \leq ht(q)$ and $s \in q$. Then there is $r \in G$ and $m \geq n$ such that $r \leq p, q$ and $r \Vdash \dot{x} \upharpoonright m \in leaves(q)$.

Claim

If $G \subseteq \mathscr{C}$ is generic filter over V and $T_G = \bigcup G$ then

- 1. T_G is slalom perfect tree,
- 2. for every dense open set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ coded in ground model and any $n \in \omega$ the set $D_{n,U}$

 $\{p \in \mathscr{C}: \ (\forall s, t \in \mathit{leaves}(p))(n \leq |t|, |s| \land t \neq s) \rightarrow [t] \times [s] \subseteq U\}$

is dense in (\mathscr{C}, \leq) .

3. Fix $\dot{x} \in V^{\mathscr{C}}$ and $p, q \in G$. Assume that

 $p \Vdash \dot{x} \in [T_G] \land q \Vdash \dot{x} \upharpoonright n \subseteq s$

for $n \leq ht(q)$ and $s \in q$. Then there is $r \in G$ and $m \geq n$ such that $r \leq p, q$ and $r \Vdash \dot{x} \upharpoonright m \in leaves(q)$.

Claim

If $G \subseteq \mathscr{C}$ is generic filter over V and $T_G = \bigcup G$ then

- 1. T_G is slalom perfect tree,
- 2. for every dense open set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ coded in ground model and any $n \in \omega$ the set $D_{n,U}$

$$\{p \in \mathscr{C}: \ (\forall s, t \in \mathit{leaves}(p))(n \leq |t|, |s| \land t \neq s) \rightarrow [t] \times [s] \subseteq U\}$$

is dense in (\mathscr{C}, \leq) .

3. Fix $\dot{x} \in V^{\mathscr{C}}$ and $p, q \in G$. Assume that

$$p \Vdash \dot{x} \in [T_G] \land q \Vdash \dot{x} \upharpoonright n \subseteq s$$

for $n \leq ht(q)$ and $s \in q$. Then there is $r \in G$ and $m \geq n$ such that $r \leq p, q$ and $r \Vdash \dot{x} \upharpoonright m \in leaves(q)$.

By first condition T_G is slalom perfect tree.

Let $\dot{x}, \dot{y} \in V^{\mathscr{C}}$ and $p \in G$ such $p \Vdash \dot{x}, \dot{y} \in [\dot{T}_G] \land \dot{x} \upharpoonright n_{x,y} \neq y \upharpoonright \dot{n}_{x,y}$. By the Claim 2) there is $q \in G$ such that $q \leq p$ and for any $s, t \in leaves(q)$ if $t \neq s \rightarrow [t] \times [s] \subseteq U$. Then by the Claim 3) there is $r \in G$ stronger than q and there is $m > n_{x,y}$ such that

 $r \Vdash \dot{x} \upharpoonright m \in leaves(q) \land \dot{y} \upharpoonright m \in leaves(q)$

Then we have for $r \in G$

 $r \Vdash (\dot{x}, \dot{y}) \in [\dot{x} \upharpoonright m] \times [\dot{y} \upharpoonright m] \subseteq U.$

By first condition T_G is slalom perfect tree. Let $\dot{x}, \dot{y} \in V^{\mathscr{C}}$ and $p \in G$ such $p \Vdash \dot{x}, \dot{y} \in [T_G] \land \dot{x} \upharpoonright n_{x,y} \neq y \upharpoonright \dot{n}_{x,y}$. By the Claim 2) there is $q \in G$ such that $q \leq p$ and for any $s, t \in leaves(q)$ if $t \neq s \rightarrow [t] \times [s] \subseteq U$. Then by the Claim 3) there is $r \in G$ stronger than q and there is $m > n_{x,y}$ such that

 $r \Vdash \dot{x} \upharpoonright m \in leaves(q) \land \dot{y} \upharpoonright m \in leaves(q)$

Then we have for $r \in G$

 $r \Vdash (\dot{x}, \dot{y}) \in [\dot{x} \upharpoonright m] \times [\dot{y} \upharpoonright m] \subseteq U.$

By first condition T_G is slalom perfect tree. Let $\dot{x}, \dot{y} \in V^{\mathscr{C}}$ and $p \in G$ such $p \Vdash \dot{x}, \dot{y} \in [\dot{T}_G] \land \dot{x} \upharpoonright n_{x,y} \neq y \upharpoonright \dot{n}_{x,y}$. By the Claim 2) there is $q \in G$ such that $q \leq p$ and for any $s, t \in leaves(q)$ if $t \neq s \rightarrow [t] \times [s] \subseteq U$. Then by the Claim 3) there is $r \in G$ stronger than q and there is $m > n_{x,y}$ such that

 $r \Vdash \dot{x} \upharpoonright m \in leaves(q) \land \dot{y} \upharpoonright m \in leaves(q)$

Then we have for $r \in G$

 $r \Vdash (\dot{x}, \dot{y}) \in [\dot{x} \upharpoonright m] \times [\dot{y} \upharpoonright m] \subseteq U.$

By first condition T_G is slalom perfect tree. Let $\dot{x}, \dot{y} \in V^{\mathscr{C}}$ and $p \in G$ such $p \Vdash \dot{x}, \dot{y} \in [\dot{T}_G] \land \dot{x} \upharpoonright n_{x,y} \neq y \upharpoonright \dot{n}_{x,y}$. By the Claim 2) there is $q \in G$ such that $q \leq p$ and for any $s, t \in leaves(q)$ if $t \neq s \rightarrow [t] \times [s] \subseteq U$. Then by the Claim 3) there is $r \in G$ stronger than q and there is $m > n_{x,y}$ such that

$$r \Vdash \dot{x} \upharpoonright m \in leaves(q) \land \dot{y} \upharpoonright m \in leaves(q)$$

Then we have for $r \in G$

 $r \Vdash (\dot{x}, \dot{y}) \in [\dot{x} \upharpoonright m] \times [\dot{y} \upharpoonright m] \subseteq U.$

By first condition T_G is slalom perfect tree. Let $\dot{x}, \dot{y} \in V^{\mathscr{C}}$ and $p \in G$ such $p \Vdash \dot{x}, \dot{y} \in [\dot{T}_G] \land \dot{x} \upharpoonright n_{x,y} \neq y \upharpoonright \dot{n}_{x,y}$. By the Claim 2) there is $q \in G$ such that $q \leq p$ and for any $s, t \in leaves(q)$ if $t \neq s \rightarrow [t] \times [s] \subseteq U$. Then by the Claim 3) there is $r \in G$ stronger than q and there is $m > n_{x,y}$ such that

$$r \Vdash \dot{x} \upharpoonright m \in leaves(q) \land \dot{y} \upharpoonright m \in leaves(q)$$

Then we have for $r \in G$

$$r \Vdash (\dot{x}, \dot{y}) \in [\dot{x} \upharpoonright m] \times [\dot{y} \upharpoonright m] \subseteq U.$$

For every $G \in G_{\delta}$ dense subset of $\omega^{\omega} \times \omega^{\omega}$ there exists slalom perfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq G \cup \Delta$.

Proof.

Let assume

- V ZFC ground model,
- $W \in V$ dense G_{δ} in $\omega^{\omega} \times \omega^{\omega}$,
- $G \subseteq \mathscr{C}$ generic filter over V.

Then by previous Theorem, in V[G] there is a generic tree T_G such that $[T_G] \times [T_G] \subseteq W \cup \Delta$.But

 $\varphi = (\exists P \in Perf(\omega^{\omega}))(\forall x, y \in P)(x \neq y \to (x, y) \in W)$

is Σ_2^1 sentence with parameters in V.Then by the Schoenfield Absolutness Theorem $V \vDash \varphi$.

For every $G \in G_{\delta}$ dense subset of $\omega^{\omega} \times \omega^{\omega}$ there exists slalom perfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq G \cup \Delta$.

Proof.

Let assume

- V ZFC ground model,
- $W \in V$ dense G_{δ} in $\omega^{\omega} \times \omega^{\omega}$,
- $G \subseteq \mathscr{C}$ generic filter over V.

Then by previous Theorem, in V[G] there is a generic tree T_G such that $[T_G] \times [T_G] \subseteq W \cup \Delta$.But

 $\varphi = (\exists P \in Perf(\omega^{\omega}))(\forall x, y \in P)(x \neq y \rightarrow (x, y) \in W)$

is Σ_2^1 sentence with parameters in V.Then by the Schoenfield Absolutness Theorem $V \vDash \varphi$.

For every $G \in G_{\delta}$ dense subset of $\omega^{\omega} \times \omega^{\omega}$ there exists slalom perfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq G \cup \Delta$.

Proof.

Let assume

- V ZFC ground model,
- $W \in V$ dense G_{δ} in $\omega^{\omega} \times \omega^{\omega}$,
- $G \subseteq \mathscr{C}$ generic filter over V.

Then by previous Theorem, in V[G] there is a generic tree T_G such that $[T_G] \times [T_G] \subseteq W \cup \Delta$.But

 $\varphi = (\exists P \in Perf(\omega^{\omega}))(\forall x, y \in P)(x \neq y \to (x, y) \in W)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is Σ_2^1 sentence with parameters in V.Then by the Schoenfield Absolutness Theorem $V \vDash \varphi$.

For every $G \in G_{\delta}$ dense subset of $\omega^{\omega} \times \omega^{\omega}$ there exists slalom perfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq G \cup \Delta$.

Proof.

Let assume

- V ZFC ground model,
- $W \in V$ dense G_{δ} in $\omega^{\omega} \times \omega^{\omega}$,
- $G \subseteq \mathscr{C}$ generic filter over V.

Then by previous Theorem, in V[G] there is a generic tree T_G such that $[T_G] \times [T_G] \subseteq W \cup \Delta$.But

$$\varphi = (\exists P \in Perf(\omega^{\omega}))(\forall x, y \in P)(x \neq y \rightarrow (x, y) \in W)$$

is Σ_2^1 sentence with parameters in V.Then by the Schoenfield Absolutness Theorem $V \models \varphi$.

For every $G \in G_{\delta}$ dense subset of $\omega^{\omega} \times \omega^{\omega}$ there exists slalom perfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq G \cup \Delta$.

Proof.

Let assume

- V ZFC ground model,
- $W \in V$ dense G_{δ} in $\omega^{\omega} \times \omega^{\omega}$,

• $G \subseteq \mathscr{C}$ - generic filter over V.

Then by previous Theorem, in V[G] there is a generic tree T_G such that $[T_G] \times [T_G] \subseteq W \cup \Delta$.But

$$\varphi = (\exists P \in Perf(\omega^{\omega}))(\forall x, y \in P)(x \neq y \rightarrow (x, y) \in W)$$

is Σ_2^1 sentence with parameters in *V*.Then by the Schoenfield Absolutness Theorem $V \vDash \varphi$.

Egglestone like Theorem

Theorem

Let $I = \mathcal{M}, \mathcal{N} - \sigma$ -ideal on \mathbb{R} and $G \subseteq \mathbb{R}^2$ be a Borel set such that $G^c \in I(\mathbb{R}^2)$ Then there are $B, P \subseteq \mathbb{R}$ such that P - perfect and $B^c \in I$ such that $P \times B \subseteq G$.

Sz. Żeberski, Nonstandard proofs of Egglestone like theorems, Proceedings of the Ninth Topological Symposium, 2001, 353-357.

Let V' - extension of ZFC model V and $V' \models \aleph_2 < add(I) \le \mathfrak{c}$. Let $G \in V$ and $b \in \omega^{\omega}$ a borel code for G. Set $G^* = \#b^{V'}$ In V' define $Z = \{x \in \mathbb{R} : G_x^{*c} \in I\}$. By Fubini (or Kuratowski - Ulam) theorem $Z^c \in I$ so $|Z| = \mathfrak{c} > \aleph_2$. Choose $T \subseteq Z$ with $T = \aleph_2$. Then $(\bigcap_{t \in T} G_t^*)^c \in I$. Let $B \in Bor(\mathbb{R})$ s.t. $B^c \in I$ and $B \subseteq \bigcap_{t \in T} G_t^*$. Observe that

$$A = \{x \in \mathbb{R} : B \subseteq G_x^*\}$$
 is coanalytic.

Let V' - extension of ZFC model V and $V' \models \aleph_2 < add(I) \leq \mathfrak{c}$. Let $G \in V$ and $b \in \omega^{\omega}$ a borel code for G. Set $G^* = \#b^{V'}$ In V' define $Z = \{x \in \mathbb{R} : G_x^* \in I\}$.

By Fubini (or Kuratowski - Ulam) theorem $Z^c \in I$ so $|Z| = \mathfrak{c} > \aleph_2$. Choose $T \subseteq Z$ with $T = \aleph_2$. Then $(\bigcap_{t \in T} G_t^*)^c \in I$. Let $B \in Bor(\mathbb{R})$ s.t. $B^c \in I$ and $B \subseteq \bigcap_{t \in T} G_t^*$. Observe that

$$A = \{x \in \mathbb{R} : B \subseteq G_x^*\}$$
 is coanalytic.

Let V' - extension of ZFC model V and $V' \models \aleph_2 < add(I) \le \mathfrak{c}$. Let $G \in V$ and $b \in \omega^{\omega}$ a borel code for G. Set $G^* = \#b^{V'}$ In V' define $Z = \{x \in \mathbb{R} : G_x^{*c} \in I\}$. By Fubini (or Kuratowski - Ulam) theorem $Z^c \in I$ so $|Z| = \mathfrak{c} > \aleph_2$. Choose $T \subseteq Z$ with $T = \aleph_2$. Then $(\bigcap_{t \in T} G_t^*)^c \in I$. Let $B \in Bor(\mathbb{R})$ s.t. $B^c \in I$ and $B \subseteq \bigcap_{t \in T} G_t^*$. Observe that

$$A = \{x \in \mathbb{R} : B \subseteq G_x^*\}$$
 is coanalytic.

Let V' - extension of ZFC model V and $V' \models \aleph_2 < add(I) \le \mathfrak{c}$. Let $G \in V$ and $b \in \omega^{\omega}$ a borel code for G. Set $G^* = \#b^{V'}$ In V' define $Z = \{x \in \mathbb{R} : G_x^{*c} \in I\}$. By Fubini (or Kuratowski - Ulam) theorem $Z^c \in I$ so $|Z| = \mathfrak{c} > \aleph_2$. Choose $T \subseteq Z$ with $T = \aleph_2$. Then $(\bigcap_{t \in T} G_t^*)^c \in I$. Let $B \in Bor(\mathbb{R})$ s.t. $B^c \in I$ and $B \subseteq \bigcap_{t \in T} G_t^*$. Observe that

$$A = \{x \in \mathbb{R} : B \subseteq G_x^*\}$$
 is coanalytic.

Let V' - extension of ZFC model V and $V' \models \aleph_2 < add(I) \le \mathfrak{c}$. Let $G \in V$ and $b \in \omega^{\omega}$ a borel code for G. Set $G^* = \#b^{V'}$ In V' define $Z = \{x \in \mathbb{R} : G_x^{*c} \in I\}$. By Fubini (or Kuratowski - Ulam) theorem $Z^c \in I$ so $|Z| = \mathfrak{c} > \aleph_2$. Choose $T \subseteq Z$ with $T = \aleph_2$. Then $(\bigcap_{t \in T} G_t^*)^c \in I$. Let $B \in Bor(\mathbb{R})$ s.t. $B^c \in I$ and $B \subseteq \bigcap_{t \in T} G_t^*$. Observe that

$${\it A}=\{x\in \mathbb{R}:\;B\subseteq {\it G}_{\!x}^*\}$$
 is coanalytic.

Then in V' we have

 $(\exists B \in Bor(\mathbb{R}))(\exists P \in Perf(\mathbb{R}))(\forall x, y \in \mathbb{R})(x, y) \in P \times B \rightarrow (x, y) \in G^*$

which is Σ_2^1 .

In category case the set *B* can be dense G_{δ} which can by written as arithmetical formula which is absolute between *V* and *V'* (analogoulsy in measure case). By Schoenfield's Absolutness Theorem the proof is finished

Then in V' we have

 $(\exists B \in Bor(\mathbb{R}))(\exists P \in Perf(\mathbb{R}))(\forall x, y \in \mathbb{R})(x, y) \in P \times B \rightarrow (x, y) \in G^*$

which is Σ_2^1 .

In category case the set B can be dense G_{δ} which can by written as arithmetical formula which is absolute between V and V'(analogoulsy in measure case).

By Schoenfield's Absolutness Theorem the proof is finished.

Then in V' we have

 $(\exists B \in Bor(\mathbb{R}))(\exists P \in Perf(\mathbb{R}))(\forall x, y \in \mathbb{R})(x, y) \in P \times B \rightarrow (x, y) \in G^*$

which is Σ_2^1 .

In category case the set *B* can be dense G_{δ} which can by written as arithmetical formula which is absolute between *V* and *V'* (analogoulsy in measure case).

By Schoenfield's Absolutness Theorem the proof is finished.

Thank You

◆□ → < @ → < E → < E → ○ < ♡ < ♡</p>