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Theorem (Jan Mycielski - 2D case)

If I = M ,N then for every B ⊆ [0, 1]2 such that Bc ∈ I then
there is perfect set P ⊆ [0, 1] such that

P × P ⊆ B ∪∆,

where ∆ = {(x , x) : x ∈ [0, 1]}.



Slalom tree

Let T ⊆ ω<ω be a tree. Then T is a slalom tree iff

(∀m ∈ ω)(∀s ∈ ωm)(∃k ∈ ω)(∀x ∈ [T ])(∀i ∈ m)x(k + i) = s(i).

Theorem
If G ⊆ ωω × ωω is dense Gδ then there is a slalom tree T ⊆ ω<ω
such that [T ]× [T ] ⊆ G ∪∆.



Strategy of proof

I fix V as the any ZFC transitive universe,

I prove the required theorem ϕ in some generic extension V [G ],

I check the complexity of proved formula ϕ,

I if our formula ϕ is Σ1
2 or

∏1
2 or simpler then use Schoenfield

Theorem,

I and we are getting V |= ϕ.



Absolutness

Let M ⊆ N - transitive models of ZF theory, ϕ ∈ L (ε) set theory
formula with n free variables. Then ϕ is absolute between M,N if
for every parameters a0, . . . , an−1 ∈ M

M |= ϕ(a0, . . . , an−1) iff N |= ϕ(a0, . . . , an−1).



Σ1
2 sentence

X canonical Polish space if is a countable product of
2ω, ωω,R, [0, 1] and Perf (R) as space of perfect sets.
ϕ is Σ1

2 sentence if for some canonical spaces X ,Y and Borel set
B ⊆ X × Y ϕ is

(∃x ∈ X )(∀y ∈ Y ) (x , y) ∈ B.

(X ,Y , b) are parameters where b ∈ ωω is a Borel code for B.
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Schoenfield Absolutness Theorem

Theorem
Let M ⊆ N be a standard transitive models of ZFC and ωN

1 ⊆ M.
Let ϕ be a Σ1

2 formula with parameters from M then

M |= ϕ iff N |= ϕ.

If N is a generic extension of M then OrdM = OrdN and ωN
1 ⊆ M.
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Let T ⊆ ωω - tree then define

leaves(T ) = {σ ∈ T : ¬(∃τ ∈ T ) σ ⊆ τ ∧ τ 6= σ}

For any σ ∈ T define

rankT (σ) = sup{rankT (τ) + 1 : τ ∈ T ∧ σ ( τ}

ht(T ) = rankT (∅).
T ⊆ ω<ω is a nice cutted tree if

(∃n ∈ ω)ht(T ) = n ∧ leaves(T ) ⊆ ωn.



Forcing notion

Define (C ,≤) as follows

I C = {p ⊆ ω<ω : p is nice cutted tree and is finite},
I (∀p, q ∈ C ) (p ≤ q iff q ⊆ p ∧ p ∩ ωht(q) = leaves(q)),

(p is stronger than q).

Our (C ,≤) is nonatomic and countable then is isomorphic to a
forcing which adds one Cohen real.
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Theorem in one Cohen real extension

Theorem
After adding one Cohen real there is a perfect slalom tree T such
that [T ]× [T ] ⊆W ∪∆ for every dense Gδ set W ⊆ ωω × ωω
from the ground model.



Sketch of Proof

Lemma
For every open dense set U ⊆ ωω × ωω a finite open sets
(Vk : k ∈ n) in ωω : there is sequence { σk : k ∈ n} of sequences
such that for any k , l ∈ n

I [σk ] ⊆ Vk ,

I |σk | = |σl |,
I k 6= l → [σk ]× [σl ] ∪ [σl ]× [σk ] ⊆ U.



Claim
If G ⊆ C is generic filter over V and TG =

⋃
G then

1. TG is slalom perfect tree,

2. for every dense open set U ⊆ ωω × ωω coded in ground model
and any n ∈ ω the set Dn,U

{p ∈ C : (∀s, t ∈ leaves(p))(n ≤ |t|, |s|∧t 6= s)→ [t]×[s] ⊆ U}

is dense in (C ,≤).

3. Fix ẋ ∈ V C and p, q ∈ G . Assume that

p  ẋ ∈ [TG ] ∧ q  ẋ � n ⊆ s

for n ≤ ht(q) and s ∈ q. Then there is r ∈ G and m ≥ n such
that r ≤ p, q and r  ẋ � m ∈ leaves(q).
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continuation of the proof

By first condition TG is slalom perfect tree.
Let ẋ , ẏ ∈ V C and p ∈ G such
p  ẋ , ẏ ∈ [ṪG ] ∧ ẋ � nx ,y 6= ˙y � nx ,y .
By the Claim 2) there is q ∈ G such that q ≤ p and for any
s, t ∈ leaves(q) if t 6= s → [t]× [s] ⊆ U.
Then by the Claim 3) there is r ∈ G stronger than q and there is
m > nx ,y such that

r  ẋ � m ∈ leaves(q) ∧ ẏ � m ∈ leaves(q)

Then we have for r ∈ G

r  (ẋ , ẏ) ∈ [ẋ � m]× [ẏ � m] ⊆ U.
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Theorem
For every G ∈ Gδ dense subset of ωω × ωω there exists slalom
perfect set P ⊆ ωω such that P × P ⊆ G ∪∆.

Proof.
Let assume

I V - ZFC ground model,

I W ∈ V dense Gδ in ωω × ωω,
I G ⊆ C - generic filter over V .

Then by previous Theorem, in V [G ] there is a generic tree TG

such that [TG ]× [TG ] ⊆W ∪∆.But

ϕ = (∃P ∈ Perf (ωω))(∀x , y ∈ P)(x 6= y → (x , y) ∈W )

is Σ1
2 sentence with parameters in V .Then by the Schoenfield

Absolutness Theorem V � ϕ.
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Egglestone like Theorem

Theorem
Let I = M ,N - σ-ideal on R and G ⊆ R2 be a Borel set such
that G c ∈ I (R2) Then there are B,P ⊆ R such that P - perfect
and Bc ∈ I such that P × B ⊆ G .

Sz. Żeberski, Nonstandard proofs of Egglestone like theorems, Proceedings of the Ninth Topological Symposium,

2001, 353-357.



Proof

Let V ′ - extension of ZFC model V and V ′ |= ℵ2 < add(I ) ≤ c.
Let G ∈ V and b ∈ ωω a borel code for G . Set G ∗ = #bV

′

In V ′ define Z = {x ∈ R : G ∗x
c ∈ I}.

By Fubini (or Kuratowski - Ulam) theorem Z c ∈ I so |Z | = c > ℵ2.
Choose T ⊆ Z with T = ℵ2. Then (

⋂
t∈T G ∗t )c ∈ I .

Let B ∈ Bor(R) s.t. Bc ∈ I and B ⊆
⋂

t∈T G ∗t . Observe that

A = {x ∈ R : B ⊆ G ∗x } is coanalytic.

and T ⊆ A then A contain perfect P.
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continuation of the proof

Then in V ′ we have

(∃B ∈ Bor(R))(∃P ∈ Perf (R))(∀x , y ∈ R)(x , y) ∈ P×B → (x , y) ∈ G ∗

which is Σ1
2.

In category case the set B can be dense Gδ which can by written
as arithmetical formula which is absolute between V and V ′

(analogoulsy in measure case).
By Schoenfield’s Absolutness Theorem the proof is finished.
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