On generalised Lusin sets with respect to two ideals

Robert Rałowski and Szymon Żeberski

Frontiers of Selection Principles
1-st September 2017, Warsaw

Definition (Cardinal coefficients)
For any $I \subset \mathscr{P}(X)$ let

$$
\begin{gathered}
\operatorname{non}(I)=\min \{|A|: A \subset X \wedge A \notin I\} \\
\operatorname{cov}(I)=\min \{|\mathscr{A}|: \mathscr{A} \subset I \wedge \bigcup \mathscr{A}=X\} \\
\operatorname{cof}(I)=\min \{|\mathscr{A}|: \mathscr{A} \subset I \wedge \mathscr{A}-\text { Borel base of } I\}
\end{gathered}
$$

$\mathbb{K}-\sigma$ ideal of meager sets
$\mathbb{L}-\sigma$ ideal of null sets

Definition

Let $I, J \subset \mathscr{P}(X)$ are σ - ideals on Polish space X, I has Borel base. We say that $L \subset X$ is a (I, J) - Luzin set if

- $L \notin I$
- $(\forall B \in I) B \cap L \in J$

If in addition the set L has cardinality κ then L is (κ, I, J) - Luzin set.

Definition
An ideals I and J are orthogonal in Polish space X if

$$
\exists A \in \mathscr{P}(X) A \in I \wedge A^{c} \in J
$$

and then we write $I \perp J$.

Fact

Assume that $I \perp J$.

1. There exist a $(I, J)-$ Luzin set.
2. If L is a (I, J) - Luzin set then L is not (J, I) - Luzin set.

If $\mathbb{R}=M \cup N$ is Marczewski decomposition then N is (\mathbb{K}, \mathbb{L})-Lusin set which has Baire property and is measurable.

Fact

Assume that I $\perp \mathrm{J}$.

1. There exist a $(I, J)-$ Luzin set.
2. If L is a (I, J) - Luzin set then L is not (J, I) - Luzin set.

If $\mathbb{R}=M \cup N$ is Marczewski decomposition then N is (\mathbb{K}, \mathbb{L})-Lusin set which has Baire property and is measurable.

Definition (Tall σ-ideal)
We say that I is tall σ-ideal on Polish space when

- has Borel base,
- For any $B \in B o r \backslash I$ there is $P \in \operatorname{Perf} \cap I$ such that $P \subseteq B$.

Definition
We say that σ-ideal J is perfectly small if any perfect set is not member of J.

Definition (Tall σ-ideal)
We say that I is tall σ-ideal on Polish space when

- has Borel base,
- For any $B \in B$ or $\backslash I$ there is $P \in \operatorname{Perf} \cap I$ such that $P \subseteq B$.

Definition

We say that σ-ideal J is perfectly small if any perfect set is not member of J.

Lemma

If I, J are σ-ideals on Polish space X such that

1. I is tall ideal,
2. J is perfectly small,
then every (I, J)-Lusin set is not I measurable set in X.

Let A be I measurable (I, J)-Lusin set. Then for some $B \in B o r \backslash I$
$B \subseteq A$.
Find $P \in$ Perf $\cap I$ such that $P \subseteq B$.
what is immposiible by perfectly smallnes of J.

Lemma

If I, J are σ-ideals on Polish space X such that

1. I is tall ideal,
2. J is perfectly small,
then every (I, J)-Lusin set is not I measurable set in X.
Proof.
Let A be I measurable (I, J)-Lusin set. Then for some $B \in B o r \backslash I$ $B \subseteq A$.
Find $P \in P$ rf $\cap I$ such that $P \subseteq B$.

$$
P=P \cap A \in J
$$

what is immposiible by perfectly smallnes of J.

Menger set

Let X be a Polish space and $A \subseteq X$.
We say that A is Menger set in X iff for every sequence $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A there is $\left(\mathcal{F}_{n}\right)_{n \in \omega}$ such that

- $\mathcal{F} \in\left[\mathscr{U}_{n}\right]^{<\omega}$, for each $n \in \omega$,
- $\bigcup_{n \in \omega} \mathcal{F}_{n}$ is open cover of A.

Theorem
Let X be a Polish space then every $\left(\mathbb{K},[X]^{\triangleright}\right)$-Lusin set is Menger.

Menger set

Let X be a Polish space and $A \subseteq X$.
We say that A is Menger set in X iff for every sequence $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A there is $\left(\mathcal{F}_{n}\right)_{n \in \omega}$ such that

- $\mathcal{F} \in\left[\mathscr{U}_{n}\right]^{<\omega}$, for each $n \in \omega$,
- $\bigcup_{n \in \omega} \mathcal{F}_{n}$ is open cover of A.

Theorem
Let X be a Polish space then every $\left(\mathbb{K},[X]^{\mathfrak{D}}\right)$-Lusin set is Menger.

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathfrak{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

$$
\begin{gathered}
A \backslash \bigcup_{n \in \omega} U_{n} \subseteq \bar{A} \backslash \bigcup_{n \in \omega} U_{n} \in \mathbb{K} \\
A \backslash \bigcup_{n \in \omega} U_{n}=\left(A \backslash \bigcup_{n \in \omega} U_{n}\right) \cap A \in[X]^{0}
\end{gathered}
$$

Then $A \backslash \bigcup_{n \in \omega} U_{n}$ is Menger.

any $n \in \omega$.

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathbb{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

Then $A \backslash \bigcup_{n \in \omega} U_{n}$ is Mender. Find $\mathcal{F}_{n} \in\left[\mathscr{U}_{n}\right]^{<\omega}$ such that $\bigcup_{n \in w} \mathcal{F}_{n}$ is open cover of
 any $n \in \omega$.

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathrm{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathrm{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

$$
A \backslash \bigcup_{n \in \omega} U_{n} \subseteq \bar{A} \backslash \bigcup_{n \in \omega} U_{n} \in \mathbb{K}
$$

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathrm{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

$$
\begin{gathered}
A \backslash \bigcup_{n \in \omega} U_{n} \subseteq \bar{A} \backslash \bigcup_{n \in \omega} U_{n} \in \mathbb{K} \\
A \backslash \bigcup_{n \in \omega} U_{n}=\left(A \backslash \bigcup_{n \in \omega} U_{n}\right) \cap A \in[X]^{\mathbb{0}}
\end{gathered}
$$

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathfrak{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

$$
\begin{gathered}
A \backslash \bigcup_{n \in \omega} U_{n} \subseteq \bar{A} \backslash \bigcup_{n \in \omega} U_{n} \in \mathbb{K} \\
A \backslash \bigcup_{n \in \omega} U_{n}=\left(A \backslash \bigcup_{n \in \omega} U_{n}\right) \cap A \in[X]^{\mathbb{0}}
\end{gathered}
$$

Then $A \backslash \bigcup_{n \in \omega} U_{n}$ is Menger.

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathrm{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

$$
\begin{gathered}
A \backslash \bigcup_{n \in \omega} U_{n} \subseteq \bar{A} \backslash \bigcup_{n \in \omega} U_{n} \in \mathbb{K} \\
A \backslash \bigcup_{n \in \omega} U_{n}=\left(A \backslash \bigcup_{n \in \omega} U_{n}\right) \cap A \in[X]^{0}
\end{gathered}
$$

Then $A \backslash \bigcup_{n \in \omega} U_{n}$ is Menger.
Find $\mathcal{F}_{n} \in\left[\mathscr{U}_{n}\right]^{<\omega}$ such that $\bigcup_{n \in \omega} \mathcal{F}_{n}$ is open cover of $A \backslash \bigcup_{n \in \omega} U_{n}$.

Proof.

Let A is $\left(\mathbb{K},[X]^{\mathfrak{D}}\right)$-Lusin set and $D \in[A]^{\omega}$ is dense in A and $D=\left\{r_{n}: n \in \omega\right\}$.
Consider arbitrary $\left(\mathscr{U}_{n}\right)_{n \in \omega}$ of open covers of A
Find $\left(U_{n}\right)_{n \in \omega}$ such that $r_{n} \in U_{n} \in \mathscr{U}_{n}$ for every $n \in \omega$.

$$
\begin{gathered}
A \backslash \bigcup_{n \in \omega} U_{n} \subseteq \bar{A} \backslash \bigcup_{n \in \omega} U_{n} \in \mathbb{K} \\
A \backslash \bigcup_{n \in \omega} U_{n}=\left(A \backslash \bigcup_{n \in \omega} U_{n}\right) \cap A \in[X]^{\mathbb{0}}
\end{gathered}
$$

Then $A \backslash \bigcup_{n \in \omega} U_{n}$ is Menger.
Find $\mathcal{F}_{n} \in\left[\mathscr{U}_{n}\right]^{<\omega}$ such that $\bigcup_{n \in \omega} \mathcal{F}_{n}$ is open cover of $A \backslash \bigcup_{n \in \omega} U_{n}$.
$\bigcup_{n \in \omega}\left(\mathcal{F}_{n} \cup\left\{U_{n}\right\}\right)$ is open cover of A and $\mathcal{F}_{n} \cup\left\{U_{n}\right\} \in\left[\mathscr{U}_{n}\right]^{<\omega}$ for any $n \in \omega$.

Theorem (Bukovsky)
If κ is uncountable regular cardinal and there are $\left(\kappa, \mathbb{K},[\mathbb{R}]^{<\kappa}\right)$ and $\left(\lambda, \mathbb{L},[\mathbb{R}]^{<\lambda}\right)$ - Luzin sets then

$$
\kappa=\operatorname{cov}(\mathbb{K})=\operatorname{non}(\mathbb{K})=\operatorname{non}(\mathbb{L})=\operatorname{cov}(\mathbb{L})=\lambda
$$

Theorem (Bukovsky)
If $\kappa=\operatorname{cov}(\mathbb{K})=\operatorname{cof}(\mathbb{K})$ then there exists $\left(\kappa, \mathbb{K},[\mathbb{R}]^{<\kappa}\right)$ - Luzin set.

Theorem (Bukovsky)
If κ is uncountable regular cardinal and there are $\left(\kappa, \mathbb{K},[\mathbb{R}]^{<\kappa}\right)$ and $\left(\lambda, \mathbb{L},[\mathbb{R}]^{<\lambda}\right)$ - Luzin sets then

$$
\kappa=\operatorname{cov}(\mathbb{K})=\operatorname{non}(\mathbb{K})=\operatorname{non}(\mathbb{L})=\operatorname{cov}(\mathbb{L})=\lambda
$$

Theorem (Bukovsky)
If $\kappa=\operatorname{cov}(\mathbb{K})=\operatorname{cof}(\mathbb{K})$ then there exists $\left(\kappa, \mathbb{K},[\mathbb{R}]^{<\kappa}\right)$ - Luzin set.

Definition
Let $\mathscr{F} \subset X^{X}$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent with respect to \mathscr{F} if

$$
(\exists f, g \in \mathscr{F})(B=f[A] \wedge A=g[B])
$$

Definition
We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent
with respect to the family of all Borel functions.

Definition

Let $\mathscr{F} \subset X^{X}$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent with respect to \mathscr{F} if

$$
(\exists f, g \in \mathscr{F})(B=f[A] \wedge A=g[B])
$$

Definition

We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent with respect to the family of all Borel functions.

Theorem

Assume that X be a Polish space I, J are σ-ideals with Borel base. Let $\kappa=\operatorname{cov}(I)=\operatorname{cof}(I) \leq \operatorname{non}(J)$. Let \mathcal{F} be a family of functions from X to X. Assume that $|\mathcal{F}| \leq \kappa$. Then we can find a sequence $\left(L_{\alpha}\right)_{\alpha<\kappa}$ such that

1. L_{α} is (κ, I, J) - Luzin set,
2. for $\alpha \neq \beta, L_{\alpha}$ is not equivalent to L_{β} with respect to the family \mathcal{F}.

Theorem

Assume that X be a Polish space I, J are σ-ideals with Borel base. Let $\kappa=\operatorname{cov}(I)=\operatorname{cof}(I) \leq \operatorname{non}(J)$. Let \mathcal{F} be a family of functions from X to X. Assume that $|\mathcal{F}| \leq \kappa$. Then we can find a sequence $\left(L_{\alpha}\right)_{\alpha<\kappa}$ such that

1. L_{α} is (κ, I, J) - Luzin set,
2. for $\alpha \neq \beta, L_{\alpha}$ is not equivalent to L_{β} with respect to the family \mathcal{F}.

Corollary

If $2^{\omega}=\operatorname{cov}(I)=\operatorname{non}(J)$ then there exists continuum many different (I, J) - Luzin sets which aren't equivalent with respect to all I-measurable functions.

Definition
We say that σ-ideal I has Fubini property iff for every Borel set $A \subset X \times X \quad\left\{x \in X: A_{x} \notin I\right\} \in I \Longrightarrow\left\{y \in X: A^{y} \notin I\right\} \in I$

Lemma (folklore)
Let I be σ-ideal on 2^{ω} with conditions:

- $\mathbb{P}_{I}=\operatorname{Bor}\left(2^{\omega}\right) \backslash I$ be a proper,
- I has Fubini property.

Assume that $B \in \operatorname{Bor}\left(2^{\omega}\right) \cap I$ be a Borel set in $V[G]$. Then there exists $D \in V$ s.t.

$$
B \cap\left(2^{\omega}\right)^{V} \subset D \in 1
$$

For Cohen and Solovay reals, see Solovay, Cichoń and Pawlikowski, see $[2,4,8]$

Definition

We say that σ-ideal I has Fubini property iff for every Borel set $A \subset X \times X \quad\left\{x \in X: A_{x} \notin I\right\} \in I \Longrightarrow\left\{y \in X: A^{y} \notin I\right\} \in I$

Lemma (folklore)
Let I be σ-ideal on 2^{ω} with conditions:

- $\mathbb{P}_{I}=\operatorname{Bor}\left(2^{\omega}\right) \backslash I$ be a proper,
- I has Fubini property.

Assume that $B \in \operatorname{Bor}\left(2^{\omega}\right) \cap I$ be a Borel set in $V[G]$. Then there exists $D \in V$ s.t.

$$
B \cap\left(2^{\omega}\right)^{v} \subset D \in I
$$

For Cohen and Solovay reals, see Solovay, Cichoń and Pawlikowski, see $[2,4,8]$

Definition

Let $M \subseteq N$ be standard transitive models of ZF. Coding Borel sets from the ideal I is absolute iff

$$
\left(\forall x \in M \cap \omega^{\omega}\right) M \vDash \# x \in I \leftrightarrow N \vDash \# x \in I .
$$

Theorem
Let $\omega<\kappa$ and I, J be σ-ideals with Borel base on 2^{ω},

- $\mathbb{P}_{I}=\operatorname{Bor}\left(2^{\omega}\right) \backslash I$ be a proper forcing notion,
- I has Fubini property,
- Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_{I}=\operatorname{Bor}\left(2^{\omega}\right) \backslash I$ - is preserving (I, J) - Luzin set porperty.

Proof

Let G is \mathbb{P}_{I} generic over V and $L-(\kappa, I, J)$ - Luzin set in the ground model V.
In $V[G]$ take any $B \in I$ then $L \cap B \cap V=L \cap B$
By Lemma we can find $b \in 2^{\omega} \cap V$ - Borel code s.t.
$B \cap V \subset \# b \in I \cap V$
But L is (I, J)-Luzin set then $L \cap \# b \in J \cap V$,
Let $c \in 2^{\omega} \cap V$ be a Borel code s.t. $L \cap \# b \subset \# c \in J \cap V$ then by
absolutness $\# c \in J$ in $V[G]$
Finally we have in $V[G]$

$$
L \cap B=L \cap B \cap V \subset L \cap \# b \subseteq \# c \in J \text { in } V[G] .
$$

Proof

Let G is \mathbb{P}_{I} generic over V and $L-(\kappa, I, J)$ - Luzin set in the ground model V.
In $V[G]$ take any $B \in I$ then $L \cap B \cap V=L \cap B$
By Lemma we can find $b \in 2^{\omega} \cap V$ - Borel code s.t.
$B \cap V \subset \# b \in I \cap V$
But L is (I, J)-Luzin set then $L \cap \# b \in J \cap V$,
Let $c \in 2^{\omega} \cap V$ be a Borel code s.t. $L \cap \# b \subset \# c \in J \cap V$ then by
absolutness $\# c \in J$ in $V[G]$
Finally we have in $V[G]$

$$
L \cap B=L \cap B \cap V \subset L \cap \# b \subseteq \# c \in J \text { in } V[G] .
$$

Proof

Let G is \mathbb{P}_{I} generic over V and $L-(\kappa, I, J)$ - Luzin set in the ground model V.
In $V[G]$ take any $B \in I$ then $L \cap B \cap V=L \cap B$
By Lemma we can find $b \in 2^{\omega} \cap V$ - Borel code s.t.
$B \cap V \subset \# b \in I \cap V$
But L is (I, J)-Luzin set then $L \cap \# b \in J \cap V$,
Let $c \in 2^{\omega} \cap V$ be a Borel code s.t. $L \cap \# b \subset \# c \in J \cap V$ then by absolutness $\# c \in J$ in $V[G]$
Finally we have in $V[G]$

$$
L \cap B=L \cap B \cap V \subset L \cap \# b \subseteq \# c \in J \text { in } V[G] .
$$

Proof

Let G is \mathbb{P}_{I} generic over V and $L-(\kappa, I, J)$ - Luzin set in the ground model V.
In $V[G]$ take any $B \in I$ then $L \cap B \cap V=L \cap B$
By Lemma we can find $b \in 2^{\omega} \cap V$ - Borel code s.t.
$B \cap V \subset \# b \in I \cap V$
But L is (I, J)-Luzin set then $L \cap \# b \in J \cap V$,
Let $c \in 2^{\omega} \cap V$ be a Borel code s.t. $L \cap \# b \subset \# c \in J \cap V$ then by absolutness $\# c \in J$ in $V[G]$
Finally we have in $V[G]$

$$
L \cap B=L \cap B \cap V \subset L \cap \# b \subseteq \# c \in J \text { in } V[G] .
$$

Theorem
Let (\mathbb{P}, \leq) be a forcing notion such that

$$
\{B: B \in I \cap \operatorname{Borel}(\mathscr{X}), B \text { is coded in } V\}
$$

is a base for I in $V^{\mathbb{P}}[G]$. Assume that Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve being (I, J) - Luzin sets.

Corollary
Let (\mathbb{P}, \leq) be any forcing notion which does not change the reals i. e. $\left(\omega^{\omega}\right)^{V}=\left(\omega^{\omega}\right)^{V^{\mathbb{P}}[G]}$. Assume that Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve being (I, J) - Luzin sets.

Corollary
Assume that (\mathbb{P}, \leq) is a σ-closed forcing and Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Corollary

Let (\mathbb{P}, \leq) be any forcing notion which does not change the reals i. e. $\left(\omega^{\omega}\right)^{V}=\left(\omega^{\omega}\right)^{V^{\mathbb{P}}[G]}$. Assume that Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve being (I, J) - Luzin sets.

Corollary

Assume that (\mathbb{P}, \leq) is a σ-closed forcing and Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Measure case

Let Ω is a family of clopen sets of Cantor space 2^{ω} and

$$
C^{\text {random }}=\left\{f \in \Omega^{\omega}:(\forall n \in \omega) \mu(f(n))<2^{-n}\right\}
$$

Let us define $\sqsubseteq=\bigcup_{n \in \omega} \sqsubseteq_{n}$ where

$$
\left(\forall f \in C^{r a n d o m}\right)\left(\forall g \in 2^{\omega}\right)\left(f \sqsubseteq_{n} g \leftrightarrow(\forall k \geq n) g \notin f(k)\right) .
$$

g covers N if for any $f \in C^{\text {random }} \cap N f \sqsubseteq g$. We write $N \sqsupseteq g$.

Definition (almost preserving)
We say that forcing notion P almost preserving relation $\sqsubseteq^{\text {random }}$ if for any countable large enough elementary submodel $N \prec H_{\kappa}$ (for large enough κ)
If $N \sqsubseteq g$ and $p \in P \cap N$ then there exists stronger condition $q \in P$ which is (N, P) generic s.t. $q \Vdash{ }^{\prime \prime} N[G] \sqsubseteq g "$.
Definition of the notion of preservation of relation $\sqsubseteq^{\text {random }}$ by forcing notion (\mathbb{P}, \leq) can be found in paper $[5]$. Let us focus on the following consequence of that definition.

Definition (almost preserving)
We say that forcing notion P almost preserving relation $\sqsubseteq^{\text {random }}$ if for any countable large enough elementary submodel $N \prec H_{\kappa}$ (for large enough κ)
If $N \sqsubseteq g$ and $p \in P \cap N$ then there exists stronger condition $q \in P$
which is (N, P) generic s.t. $q \Vdash{ }^{\prime \prime} N[G] \sqsubseteq g "$.
Definition of the notion of preservation of relation ■random by
forcing notion (\mathbb{P}, \leq) can be found in paper [5]. Let us focus on the following consequence of that definition.

Definition (almost preserving)
We say that forcing notion P almost preserving relation $\sqsubseteq^{\text {random }}$ if for any countable large enough elementary submodel $N \prec H_{\kappa}$ (for large enough κ)
If $N \sqsubseteq g$ and $p \in P \cap N$ then there exists stronger condition $q \in P$ which is (N, P) generic s.t. $q \Vdash " N[G] \sqsubseteq g "$.
Definition of the notion of preservation of relation $\sqsubseteq^{\text {random }}$ by
forcing notion (\mathbb{P}, \leq) can be found in paper [5]. Let us focus on
the following consequence of that definition.

Definition (almost preserving)

We say that forcing notion P almost preserving relation $\sqsubseteq^{\text {random }}$ if for any countable large enough elementary submodel $N \prec H_{\kappa}$ (for large enough κ)
If $N \sqsubseteq g$ and $p \in P \cap N$ then there exists stronger condition $q \in P$ which is (N, P) generic s.t. $q \Vdash " N[G] \sqsubseteq g "$.
Definition of the notion of preservation of relation $\sqsubseteq^{\text {random }}$ by forcing notion (\mathbb{P}, \leq) can be found in paper $[5]$. Let us focus on the following consequence of that definition.

Theorem (Goldstern)
If (\mathbb{P}, \leq) preserves $\sqsubseteq^{\text {random }}$ then $\mathbb{P} \Vdash \mu^{*}\left(2^{\omega} \cap V\right)=1$.
Now we say that forcing notion \mathbb{P} is preserving outer measure iff \mathbb{P} preserve $\sqsubseteq^{\text {random }}$.
Theorem (Goldstern, Judah, Shelah)
Random forcing and Laver forcing preserves outer measure.

Theorem (Goldstern)
Let $\mathbb{P}_{\lambda}=\left(\left(P_{\alpha}, Q_{\alpha}\right): \alpha<\gamma\right)$ be any countable support iteration such that

$$
(\forall \alpha<\gamma) P_{\alpha} \Vdash Q_{\alpha} \text { preserves } \sqsubseteq^{\text {random }}
$$

then \mathbb{P}_{γ} preserves the relation $\sqsubseteq^{\text {random }}$.
Theorem
Assume that \mathbb{P} is a forcing notion which preserves $\sqsubseteq^{\text {random } \text {. Then }}$ \mathbb{P} preserves being (\mathbb{L}, \mathbb{K})-Luzin set.

Theorem (Goldstern)
Let $\mathbb{P}_{\lambda}=\left(\left(P_{\alpha}, Q_{\alpha}\right): \alpha<\gamma\right)$ be any countable support iteration such that

$$
(\forall \alpha<\gamma) P_{\alpha} \Vdash Q_{\alpha} \text { preserves } \sqsubseteq^{\text {random }}
$$

then \mathbb{P}_{γ} preserves the relation $\sqsubseteq^{\text {random }}$.
Theorem
Assume that \mathbb{P} is a forcing notion which preserves $\sqsubseteq^{\text {random } \text {. Then }}$
\mathbb{P} preserves being (\mathbb{L}, \mathbb{K})-Luzin set.

Thank You for your attention

T．Bartoszynski，H．Judah，S．Shelah，The Cichon Diagram，J． Symbolic Logic vol． 58 （2）（1993），pp．401－423，

䡒 J．Cichoń，On two－cardinal properties of ideals，Trans．Am． Math．Soc．vol 314，no． 2 （1989），pp 693－708，

嗇 J．Cichoń，J．Pawlikowski，On ideals of subsets of the plane and on Cohen reals，J．Symbolic Logic vol．51，no． 1 （1986）， pp 560－569

嗇 J．Pawlikowski，Why Solovay real produces Cohen real，J． Symbolic Logic vol． 51 no． 4 （1986），pp 957－968，

國 M．Goldstern，Tools for your forcing construction，Israel Mathematical Conference Proceedings，vol． 06 （1992）， pp．307－362，

國 H．Judah，S．Shelah，The Kunnen Miller chart，Journal of Symbolic Logic，（1990）．

R R．Rałowski，Sz．Żeberski，Generalised Lusin sets，Houston Journal of Mathematics，electronic edition vol．39，no． 3 ， 2013．pd．983－993

