Nonmeasurable images in Polish space with respect to σ -ideals with Borel base

Aleksander Cieślak and <u>Robert Rałowski</u> Wrocław University of Science and Technology

> Winter School in Abstract Analysis Section: Set Theory & Topology Hejnice, February 2018

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space

Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. Perf(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal and $\mathscr{F} \subset I$ let

$$cov(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land \bigcup \mathscr{A} = X\}$$
$$cov_h(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$
$$Cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathscr{B})(B \subseteq A)\}$$

 \mathcal{N} σ -ideal of null sets and \mathcal{M} σ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Theorem (Cichoń-Kamburelis-Pawlikowski) If I is c.c.c. σ -ideal with Borel base then cof(I) = Cof(I)

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal and $\mathscr{F} \subset I$ let

$$cov(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land \bigcup \mathscr{A} = X\}$$
$$cov_h(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$
$$Cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathscr{B})(B \subseteq A)\}$$

 $\mathcal{N} \ \sigma$ -ideal of null sets and $\mathcal{M} \ \sigma$ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), \ cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Theorem (Cichoń-Kamburelis-Pawlikowski) If I is c.c.c. σ -ideal with Borel base then cof(I) = Cof(I)

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal and $\mathscr{F} \subset I$ let

$$cov(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land \bigcup \mathscr{A} = X\}$$
$$cov_h(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$
$$Cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathscr{B})(B \subseteq A)\}$$

 $\mathcal{N} \ \sigma$ -ideal of null sets and $\mathcal{M} \ \sigma$ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), \ cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Theorem (Cichoń-Kamburelis-Pawlikowski) If I is c.c.c. σ -ideal with Borel base then cof(I) = Cof(I)

Complete I-nonmeasurability

Definition

Let (X, I) be Polish ideal space. We say that $A \subseteq X$ is completely *I*-nonmeasurable in X iff

$(\forall B \in \mathcal{B}_+(I)) \ A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$

- A ⊆ X is complete [X]^{≤ω}-nonmeasurable iff A is Bernstein subset of X,
- $A \subseteq [0,1]$ is complete \mathscr{N} -nonmeasurable iff $\lambda_*(A) = 0$ and $\lambda^*(B) = 1$,
- $A \subseteq X$ is complete \mathcal{M} -nonmeasurable if $\emptyset \neq U \subseteq X$ then $A \cap U$ does not have Baire property.

Complete I-nonmeasurability

Definition

Let (X, I) be Polish ideal space. We say that $A \subseteq X$ is completely *I*-nonmeasurable in X iff

$$(\forall B \in \mathcal{B}_+(I)) A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$$

- A ⊆ X is complete [X]^{≤ω}-nonmeasurable iff A is Bernstein subset of X,
- $A \subseteq [0,1]$ is complete \mathscr{N} -nonmeasurable iff $\lambda_*(A) = 0$ and $\lambda^*(B) = 1$,
- ▶ $A \subseteq X$ is complete \mathcal{M} -nonmeasurable if $\emptyset \neq U \subseteq X$ then $A \cap U$ does not have Baire property.

Let $X \subseteq X_0$ and $\{Y_{\alpha} : \alpha < \mathfrak{c}\}$ be a Polish subspaces

Assume that c is regular cardinal number.

If $\{f_{\alpha} : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$

1.
$$f_{\alpha}[X] = Y_{\alpha}$$
,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_{\alpha}$ we have $f_{\alpha}^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_{\alpha}[A]$ is a Bernstein set in Y_{α} .

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < \mathfrak{c}\}$ be a Polish subspaces Assume that \mathfrak{c} is regular cardinal number.

If $\{f_{\alpha} : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$

1.
$$f_{\alpha}[X] = Y_{\alpha}$$
,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_{\alpha}$ we have $f_{\alpha}^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_{\alpha}[A]$ is a Bernstein set in Y_{α} .

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < \mathfrak{c}\}$ be a Polish subspaces Assume that \mathfrak{c} is regular cardinal number. If $\{f_\alpha : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$ 1. $f_\alpha[X] = Y_\alpha$,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_{\alpha}$ we have $f_{\alpha}^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_{\alpha}[A]$ is a Bernstein set in Y_{α} .

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < \mathfrak{c}\}$ be a Polish subspaces Assume that \mathfrak{c} is regular cardinal number.

If $\{f_{\alpha} : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$

1.
$$f_{\alpha}[X] = Y_{\alpha}$$
,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_{\alpha}$ we have $f_{\alpha}^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_{\alpha}[A]$ is a Bernstein set in Y_{α} .

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < \mathfrak{c}\}$ be a Polish subspaces Assume that \mathfrak{c} is regular cardinal number. If $\{f_\alpha : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$ 1. $f_\alpha[X] = Y_\alpha$,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_{\alpha}$ we have $f_{\alpha}^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_{\alpha}[A]$ is a Bernstein set in Y_{α} .

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < \mathfrak{c}\}$ be a Polish subspaces Assume that \mathfrak{c} is regular cardinal number. If $\{f_\alpha : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$ 1. $f_\alpha[X] = Y_\alpha$, 2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]^{<\mathfrak{c}}$. Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_\alpha[A]$ is

a Bernstein set in Y_{α} .

There is subset $A \subset S^1$ of the unit circle that for any projection π on real line $I \subseteq \mathbb{R}^2$ on the real plane of the set A is a Bernstein set in $\pi[S^1]$.

Thus we have negative answer for

[asked Aug 3 '11 at 7:51 simon 162] Suppose A is contained in the unit square of R^2 , and the projection of A on any line outside the unit square is not Lebesgue measurable in R. Does that imply that A is not Lebesgue measurable in the plane?

Moreover, our answer is valid for measure and category simultaneously.

There is subset $A \subset S^1$ of the unit circle that for any projection π on real line $I \subseteq \mathbb{R}^2$ on the real plane of the set A is a Bernstein set in $\pi[S^1]$.

Thus we have negative answer for

[asked Aug 3 '11 at 7:51 simon 162] Suppose A is contained in the unit square of R^2 , and the projection of A on any line outside the unit square is not Lebesgue measurable in R. Does that imply that A is not Lebesgue measurable in the plane?

Moreover, our answer is valid for measure and category simultaneously.

There is subset $A \subset S^1$ of the unit circle that for any projection π on real line $I \subseteq \mathbb{R}^2$ on the real plane of the set A is a Bernstein set in $\pi[S^1]$.

Thus we have negative answer for

[asked Aug 3 '11 at 7:51 simon 162] Suppose A is contained in the unit square of R^2 , and the projection of A on any line outside the unit square is not Lebesgue measurable in R. Does that imply that A is not Lebesgue measurable in the plane?

Moreover, our answer is valid for measure and category simultaneously.

Example

Let

• $\mathcal{F} \subseteq P(\omega)$ - Frechet filter,

•
$$X = \omega^{\omega}$$
, $Y_C = \omega^C$ where $C \in \mathcal{F}$,

•
$$\omega^{\omega} \ni x \mapsto f_{\mathcal{C}}(x) = x \upharpoonright \mathcal{C} \in \omega^{\mathcal{C}}.$$

Then by the Theorem there is $A \subset \omega^{\omega}$ such that each image $f_c[A]$ is a Bernstein subset of ω^C .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Let

• $\mathcal{F} \subseteq P(\omega)$ - Frechet filter,

•
$$X = \omega^{\omega}$$
, $Y_C = \omega^C$ where $C \in \mathcal{F}$,

•
$$\omega^{\omega} \ni x \mapsto f_{\mathcal{C}}(x) = x \upharpoonright \mathcal{C} \in \omega^{\mathcal{C}}.$$

Then by the Theorem there is $A \subset \omega^{\omega}$ such that each image $f_c[A]$ is a Bernstein subset of ω^C .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

If we consider any function $f:X\to X_0$ such that f[X] is a Polish space, $A\subseteq X$ Bernstein set then

- if preimage of any singleton of f[X] contains a perfect set then f[A] = f[X],
- 2. if f is continuous then f[A] contains some Bernstein set in f[X] (because any preimage of perfect set in f[X] contains perfect set in X).

Remark

If we consider any function $f:X\to X_0$ such that f[X] is a Polish space, $A\subseteq X$ Bernstein set then

- 1. if preimage of any singleton of f[X] contains a perfect set then f[A] = f[X],
- 2. if f is continuous then f[A] contains some Bernstein set in f[X] (because any preimage of perfect set in f[X] contains perfect set in X).

Remark

If we consider any function $f:X\to X_0$ such that f[X] is a Polish space, $A\subseteq X$ Bernstein set then

- if preimage of any singleton of f[X] contains a perfect set then f[A] = f[X],
- 2. if f is continuous then f[A] contains some Bernstein set in f[X] (because any preimage of perfect set in f[X] contains perfect set in X).

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- (∀f ∈ F)(f : X → X₀ ∧ I_f ⊆ P(f[X]) be σ-ideal with Borel base on f[X]),
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. $\sup\{Cof(I_f): f \in \mathcal{F}\} \leq \min\{|Z|: Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z]: h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- (∀f ∈ F)(f : X → X₀ ∧ I_f ⊆ P(f[X]) be σ-ideal with Borel base on f[X]),
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. $\sup\{Cof(I_f): f \in \mathcal{F}\} \leq \min\{|Z|: Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z]: h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- (∀f ∈ F)(f : X → X₀ ∧ I_f ⊆ P(f[X]) be σ-ideal with Borel base on f[X]),
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. $\sup\{Cof(I_f): f \in \mathcal{F}\} \leq \min\{|Z|: Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z]: h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- 2. $(\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),$
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. $\sup\{Cof(I_f): f \in \mathcal{F}\} \leq \min\{|Z|: Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z]: h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- 2. $(\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),$
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. sup{ $Cof(I_f) : f \in \mathcal{F}$ } $\leq min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup \{h^{-1}[Z] : h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- 2. $(\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),$
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. $\sup\{Cof(I_f): f \in \mathcal{F}\} \leq \min\{|Z|: Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z]: h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

- 1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),$
- 2. $(\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),$
- 3. $|\mathcal{F}| \leq \sup\{Cof(I_f) : f \in \mathcal{F}\},\$
- 4. $\sup\{Cof(I_f): f \in \mathcal{F}\} \leq \min\{|Z|: Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in Bor(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z]: h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasrable in f[X].

Assume that (X_0, I) is Polish ideal soace and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family of functions such that

- 1. for every $f \in \mathcal{F}$ the image f[X] is Borel subset of X_0 and $I_f \subseteq P([f[X]])$ is σ -ideal with Borel base in f[X],
- 2. $|\mathcal{F}| \leq \max\{Cof(I), \sup\{Cof(I_f) : f \in \mathcal{F}\}\},\$
- 3. there is set $Z \in I$ such that $Cof(I) \leq cov(\{f^{-1}[\{d\}]: f \in \mathcal{F} \land d \in X_0 \setminus Z\}, I),$
- 4. max{Cof(I), sup{Cof(I_f) : f \in F}} $\leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in F) (\exists B \in Bor(f[X]) \setminus I_f) (\exists F_0 \subseteq F) (|F_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup \{h^{-1}[Z] : h \in F_0\})\}.$

Then there exists $A \subseteq X$ which is completely I-nonmeasurable in X such that for every $f \in \mathcal{F}$ the image f[A] is completely I_f -nonmeasurable in f[X].

Assume MA. If $I \in \{\mathcal{N}, \mathcal{M}\}$ is a σ -ideal defined on Cantor space and $X \subset 2^{\omega}$ be a Borel I-positive. If \mathcal{F} with at most size equal to \mathfrak{c} and for any $f \in \mathcal{F}$ rng(f) is Borel and $I_f \in \{\mathcal{N}, \mathcal{M}\}$ then the above two Theorems are true.

In the Mathoverflow webpage [2] the user Gowers gives positive answer for the following question

[Gerald Edgar Aug 3 '11 at 13:57] (a) All projections but two are non-measurable? Or: (b) Projections in uncountably many directions measurable and projections in uncountably many other directions non-measurable?

The user of Mathoverflow asked:

[answered Aug 3 '11 at 14:47 gowers] I don't know what happens if we ask for continuum many measurable projections and continuum many non-measurable projections ...

Let c be regular, X, Y be Polish spaces and

- $\{Y_{\alpha} : \alpha \in Y\}$ be a familly of Polish spaces,
- {f_α : α ∈ Y} be a family functions such that for all distinct α, β ∈ Y
 - $\triangleright \ \forall y \in Y_{\alpha} \ |f_{\alpha}^{-1}[y]| = \mathfrak{c}$
 - ▶ $\forall y \in Y_{\alpha} \text{ and } y' \in Y_{\beta} |f_{\alpha}[y] \cap f_{\beta}[y']| < \mathfrak{c}.$

Then there exists a subset $A \subseteq X$ and disjoint Bernstein sets $F, G \subseteq Y$ such that $Y = F \cup G$ and

$$F = \{ \alpha \in Y : f_{\alpha}[A] = Y_A \}$$

 $G = \{ \alpha \in Y : f_{\alpha}[A] \text{ is Bernstein in } Y_{\alpha} \}.$

Let c be regular, X, Y be Polish spaces and

- $\{Y_{\alpha} : \alpha \in Y\}$ be a familly of Polish spaces,
- {f_α : α ∈ Y} be a family functions such that for all distinct α, β ∈ Y

•
$$\forall y \in Y_{\alpha} |f_{\alpha}^{-1}[y]| = \mathfrak{c}$$

• $\forall y \in Y_{\alpha} \text{ and } y' \in Y_{\beta} |f_{\alpha}[y] \cap f_{\beta}[y']| < \mathfrak{c}.$

Then there exists a subset $A \subseteq X$ and disjoint Bernstein sets $F, G \subseteq Y$ such that $Y = F \cup G$ and

$$F = \{ \alpha \in Y : f_{\alpha}[A] = Y_A \}$$

 $G = \{ \alpha \in Y : f_{\alpha}[A] \text{ is Bernstein in } Y_{\alpha} \}.$

Let c be regular, X, Y be Polish spaces and

- $\{Y_{\alpha} : \alpha \in Y\}$ be a familly of Polish spaces,
- {f_α : α ∈ Y} be a family functions such that for all distinct α, β ∈ Y

$$\flat \ \forall y \in Y_{\alpha} \ |f_{\alpha}^{-1}[y]| = \mathfrak{c}$$

• $\forall y \in Y_{\alpha} \text{ and } y' \in Y_{\beta} |f_{\alpha}[y] \cap f_{\beta}[y']| < \mathfrak{c}.$

Then there exists a subset $A \subseteq X$ and disjoint Bernstein sets $F, G \subseteq Y$ such that $Y = F \cup G$ and

$$F = \{ \alpha \in Y : f_{\alpha}[A] = Y_A \}$$

 $G = \{ \alpha \in Y : f_{\alpha}[A] \text{ is Bernstein in } Y_{\alpha} \}.$

Fact

Let $n \ge 2$ be a fixed integer then every projection π of the Lusin set $A \subseteq B(0,1) \subset \mathbb{R}^n$ into tangent hyperplane I to B(0,1) is Lusin set in $\pi[B(0,1)]$. The same result is true if we replace Lusin set by Sierpiński set.

Fact

It is relatively consistent with ZFC theory that $\neg CH$ and for every integer $n \ge 2$ there exists Baire nonmeasurable subset A of the cardinality less than c of the unit ball $B \subseteq \mathbb{R}^n$ such that projection $\pi[A]$ into any tangent to B hyperplane has not Baire property. The same result is true in the case of Lebesgue measure.

Fact

It is relatively consistent with ZFC theory that $\neg CH$ and for every integer $n \ge 2$ there exists Baire nonmeasurable subset A of the cardinality less than c of the unit ball $B \subseteq \mathbb{R}^n$ such that projection $\pi[A]$ into any tangent to B hyperplane has not Baire property. The same result is true in the case of Lebesgue measure.

Let X be a compact Polish space and $G \subseteq \mathscr{H}(X)$ be uncountable G_{δ} subset of $\mathscr{H}(X)$. Let $B \subseteq X$ be a comeager subset of X. Then there are perfect subsets $P \subseteq X$ and $Q \subseteq G$ such that for every homeomorphism $f \in Q$ of X we have $P \subseteq f[B]$.

Let $D \subseteq \mathbb{R}^2$ be a unit disc with center in origin coordinates and $B \subseteq D$ a comeager (or $D \setminus B$ is null) set in D. Then there are perfect set of directions R on bd(D) and $P, Q \subseteq [-1, 1]$ such that

 $(\forall \alpha \in R) (r_{\alpha}[P \times Q] \subseteq B),$

where r_{α} is rotation by α over origin of the real plane \mathbb{R}^2 .

Theorem

Let $n \ge 2$ and $B_n \subseteq \mathbb{R}^n$ be a n-dimensional unit ball. Let us assume that $E \subseteq B$ a comeager (or $B_n \setminus E$ is null) set in B_n . Then there are perfect set R in $D = bd(B_n)$, non-meager (non-null) $P \subseteq B_{n-1}$ and $Q \subseteq [-1,1]$ such that

$(\forall \alpha \in R) (r_{\alpha}[P \times Q] \subseteq B_n),$

where r_{α} is rotation of α to the vector $(1, 0, ..., 0) \in \mathbb{R}^n$ over origin of the euclidean space \mathbb{R}^n .

Let $D \subseteq \mathbb{R}^2$ be a unit disc with center in origin coordinates and $B \subseteq D$ a comeager (or $D \setminus B$ is null) set in D. Then there are perfect set of directions R on bd(D) and $P, Q \subseteq [-1, 1]$ such that

 $(\forall \alpha \in R) (r_{\alpha}[P \times Q] \subseteq B),$

where r_{α} is rotation by α over origin of the real plane \mathbb{R}^2 .

Theorem

Let $n \ge 2$ and $B_n \subseteq \mathbb{R}^n$ be a n-dimensional unit ball. Let us assume that $E \subseteq B$ a comeager (or $B_n \setminus E$ is null) set in B_n . Then there are perfect set R in $D = bd(B_n)$, non-meager (non-null) $P \subseteq B_{n-1}$ and $Q \subseteq [-1, 1]$ such that

$$(\forall \alpha \in R) (r_{\alpha}[P \times Q] \subseteq B_n),$$

where r_{α} is rotation of α to the vector $(1, 0, ..., 0) \in \mathbb{R}^n$ over origin of the euclidean space \mathbb{R}^n .

Thank You

◆□ → < @ → < E → < E → ○ < ♡ < ♡</p>

J. Cichoń, A. Kamburelis, J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 84 (1985), pp. 142-146.

Mathoverflow: mathoverflow.net/questions/71976/lebesguenon-measurability-in-the-plane

Thank You

◆□ → < @ → < E → < E → ○ < ♡ < ♡</p>