Continuous images of Bernstein set

Jacek Cichoń, Michał Morayne and Robert Rałowski
Wrocław University of Science and Technology

Winter School in Abstract Analysis Section: Set Theory \& Topology

Hejnice, 28-th January 2019

Question (Alexandr Osipov)

"It is true that for every Bernstein set in real line there are countably many continuous functions for which the union of images of Bernstein set by the family functions is whole real line? "

Very simple observation

[^0]
Very simple observation

Example
Let $[0,1]=A_{0} \cup A_{1}, A_{0}, A_{1}$ - Bernstein sets in $[0,1]$,
Set $f:[0,2] \rightarrow[0,2]$ by $f(x)=2 x(2-x)$ and $A=A_{0} \cup 2-A_{1}$.
But $f(x)=f(2-x), f[A]=[0,2]$

Bernstein vs. Vitali

Theorem

There is a Vitali set which is not Bernstein set.
Proof.
Let $Q=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in \mathbb{Q}\right\} \in \mathscr{M}\left(\mathbb{R}^{2}\right)$.
By Mycielski Theorem is $P \in \operatorname{Perf}(\mathbb{R})$ such that $P \times P \subset Q^{c} \backslash \triangle$
Find $V \subseteq \mathbb{R}$ s.t. $P \subseteq V$ - Vitali set.
Theorem (Beriashvili)
There exists set which is a Bernstein and Vitali set.
M. Beriashvili. On some paradoxical subsets of the real line, Georgian International Journal of Science and

Technotogy 6 (4) (2014)

Bernstein vs. Vitali

Theorem
There is a Vitali set which is not Bernstein set.

M. Beriashvili. On some paradoxical subsets of the real line. Georgian International Journal of Science and

Technology 6 (4) (2014).

Bernstein vs. Vitali

Theorem
There is a Vitali set which is not Bernstein set.
Proof.
Let $Q=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in \mathbb{Q}\right\} \in \mathscr{M}\left(\mathbb{R}^{2}\right)$.
Find $V \subseteq \mathbb{R}$ s.t. $P \subseteq V$ - Vitali set.
Theorem (Beriashvili)
There exists set which is a Bernstein and Vitali set.
M. Beriashvili. On some paradoxical subsets of the real line, Georgian International Journal of Science and

Technology 6 (4) (2014)

Bernstein vs. Vitali

Theorem
There is a Vitali set which is not Bernstein set.
Proof.
Let $Q=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in \mathbb{Q}\right\} \in \mathscr{M}\left(\mathbb{R}^{2}\right)$.
By Mycielski Theorem is $P \in \operatorname{Perf}(\mathbb{R})$ such that $P \times P \subset Q^{c} \backslash \Delta$ Find $V \subseteq \mathbb{R}$ s.t. $P \subseteq V$ - Vitali set.

Theorem (Beriashvili)
There exists set which is a Bernstein and Vitali set.
M. Beriashvili. On some paradoxical subsets of the real line. Georgian International Journal of Science and Technology 6 (4) (2014).

Bernstein vs. Vitali

Theorem

There is a Vitali set which is not Bernstein set.
Proof.
Let $Q=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in \mathbb{Q}\right\} \in \mathscr{M}\left(\mathbb{R}^{2}\right)$.
By Mycielski Theorem is $P \in \operatorname{Perf}(\mathbb{R})$ such that $P \times P \subset Q^{c} \backslash \Delta$ Find $V \subseteq \mathbb{R}$ s.t. $P \subseteq V$ - Vitali set.

Theorem (Beriashvili)

There exists set which is a Bernstein and Vitali set.
M. Beriashvili. On some paradoxical subsets of the real line, Georgian International Journal of Science and

Technology 6 (4) (2014).

Proposition

There exists a Bernstein set $B \subseteq \mathbb{R}$ and countable many continuous functions $f_{n}: B \rightarrow \mathbb{R}$ such that

$$
\bigcup_{n \in \omega} f_{n}[B]=\mathbb{R}
$$

Proposition

There exists a Bernstein set $B \subseteq \mathbb{R}$ and countable many continuous functions $f_{n}: B \rightarrow \mathbb{R}$ such that

$$
\bigcup_{n \in \omega} f_{n}[B]=\mathbb{R} .
$$

Proof.

Consider a Bernstein set which is Vitali set also and $f_{n}(x)=q_{n}+x$ for $\mathbb{Q}=\left\{q_{n}: n \in \omega\right\}$

Proposition

There exists a Bernstein set $B \subseteq \mathbb{R}$ and two continuous functions $f_{0}, f_{1}: B \rightarrow \mathbb{R}$ such that

$$
f_{0}[B] \cup f_{1}[B]=\mathbb{R}
$$

```
Proof.
Let A Bernstein and Vitali set and fo(x)=x, f
Q\cap\mathbb{Q}\cap[0,1], B0}=A+Q+2n\mathbb{Z},\mp@subsup{B}{1}{}=A+Q+(2n+1)\mathbb{Z
    - A\subseteq\mp@subsup{B}{0}{},A+1\subseteq\mp@subsup{B}{1}{}
    - }\mp@subsup{B}{0}{}\cap\mp@subsup{B}{1}{}=\emptyset,\mp@subsup{B}{0}{}\cup\mp@subsup{B}{1}{}=\mathbb{R}\mathrm{ ,
    - 政 = f
\mathbb{R}=\mp@subsup{f}{0}{}[B]\cup\mp@subsup{f}{1}{}[\mp@subsup{B}{0}{}].
```


Proposition

There exists a Bernstein set $B \subseteq \mathbb{R}$ and two continuous functions $f_{0}, f_{1}: B \rightarrow \mathbb{R}$ such that

$$
f_{0}[B] \cup f_{1}[B]=\mathbb{R}
$$

Proof.
Let A Bernstein and Vitali set and $f_{0}(x)=x, f_{1}(x)=x+1$.
$Q \cap \mathbb{Q} \cap[0,1], B_{0}=A+Q+2 n \mathbb{Z}, B_{1}=A+Q+(2 n+1) \mathbb{Z}$

- $A \subseteq B_{0}, A+1 \subseteq B_{1}$,
- $B_{0} \cap B_{1}=\emptyset, B_{0} \cup B_{1}=\mathbb{R}$,
- $B_{1}=f_{1}\left[B_{0}\right]$.
$\mathbb{R}=f_{0}[B] \cup f_{1}\left[B_{0}\right]$.

Proposition

There exists a Bernstein set $B \subseteq \mathbb{R}$ and two continuous functions $f_{0}, f_{1}: B \rightarrow \mathbb{R}$ such that

$$
f_{0}[B] \cup f_{1}[B]=\mathbb{R}
$$

Proof.

Let A Bernstein and Vitali set and $f_{0}(x)=x, f_{1}(x)=x+1$.
$Q \cap \mathbb{Q} \cap[0,1], B_{0}=A+Q+2 n \mathbb{Z}, B_{1}=A+Q+(2 n+1) \mathbb{Z}$

- $A \subseteq B_{0}, A+1 \subseteq B_{1}$,
- $B_{0} \cap B_{1}=\emptyset, B_{0} \cup B_{1}=\mathbb{R}$,
- $B_{1}=f_{1}\left[B_{0}\right]$.

Proposition

There exists a Bernstein set $B \subseteq \mathbb{R}$ and two continuous functions $f_{0}, f_{1}: B \rightarrow \mathbb{R}$ such that

$$
f_{0}[B] \cup f_{1}[B]=\mathbb{R}
$$

Proof.

Let A Bernstein and Vitali set and $f_{0}(x)=x, f_{1}(x)=x+1$.
$Q \cap \mathbb{Q} \cap[0,1], B_{0}=A+Q+2 n \mathbb{Z}, B_{1}=A+Q+(2 n+1) \mathbb{Z}$

- $A \subseteq B_{0}, A+1 \subseteq B_{1}$,
- $B_{0} \cap B_{1}=\emptyset, B_{0} \cup B_{1}=\mathbb{R}$,
- $B_{1}=f_{1}\left[B_{0}\right]$.
$\mathbb{R}=f_{0}[B] \cup f_{1}\left[B_{0}\right]$.

Productable spaces

Topological space X is productible if there are

- a topological space Y of size \mathfrak{c},
- a continuous surjection $f: X \rightarrow X \times Y$.
$[0,1], \mathbb{R}, 2^{\omega}$ and ω^{ω} - productible spaces.

Productable spaces

Topological space X is productible if there are

- a topological space Y of size \mathfrak{c},
- a continuous surjection $f: X \rightarrow X \times Y$.
$[0,1], \mathbb{R}, 2^{\omega}$ and ω^{ω} - productible spaces.

Peano Continuum

X is Peano continuum if is continuous image of 0,1$]$.
Theorem (Hahn-Mazurkiewicz)
Let X - topological Haussdorf space. The X is a Peano continuum
if

- X is second countable,
- X is compact,
- X is connected and locally connected.

Fact
Every Peano continuum is productible.
Proof.
Let $f:[0,1] \rightarrow X$-continuous and onto X,
$g: X \rightarrow[0, \infty)$ as $g(x)=d(f(0), x)$.
Then $g[X]=[a, b]$ for some $a, b \in \mathbb{R}$.
Let

- $h:[a, b] \rightarrow[0,1]$ - continuous bijection and
•T:[0, $] \rightarrow[0,1]^{2}$ - Peano map,
• $[0,1]^{2} \ni(x, y) \mapsto \varphi(x, y)=(f(x), f(y)) \in X \times X$ continuous surjection.
Then $\varphi \circ T \circ h \circ \mathcal{g}: X \rightarrow X \times X$ is required.

Fact

Every Peano continuum is productible.
Proof.
Let $f:[0,1] \rightarrow X$-continuous and onto X, $g: X \rightarrow[0, \infty)$ as $g(x)=d(f(0), x)$.

- $h:[a, b] \rightarrow[0,1]$ - continuous bijection and
- $T:[0,1] \rightarrow[0,1]^{2}$ - Peano map,
- $[0,1]^{2} \ni(x, y) \mapsto \varphi(x, y)=(f(x), f(y)) \in X \times X$ continuous surjection.

Then $\varphi \circ T \circ h \circ \xi: X \rightarrow X \times X$ is required.

Fact

Every Peano continuum is productible.
Proof.
Let $f:[0,1] \rightarrow X$-continuous and onto X, $g: X \rightarrow[0, \infty)$ as $g(x)=d(f(0), x)$.
Then $g[X]=[a, b]$ for some $a, b \in \mathbb{R}$.

- $h:[a, b] \rightarrow[0,1]$ - continuous bijection and
- $T:[0,1] \rightarrow[0,1]^{2}$ - Peano map,
- $[0,1]^{2} \ni(x, y) \mapsto \varphi(x, y)=(f(x), f(y)) \in X \times X$ continuous surjection.
Then $\varphi \circ T \circ h \circ g: X \rightarrow X \times X$ is required.

Fact

Every Peano continuum is productible.
Proof.
Let $f:[0,1] \rightarrow X$-continuous and onto X,
$g: X \rightarrow[0, \infty)$ as $g(x)=d(f(0), x)$.
Then $g[X]=[a, b]$ for some $a, b \in \mathbb{R}$.
Let

- $h:[a, b] \rightarrow[0,1]$ - continuous bijection and
- $T:[0,1] \rightarrow[0,1]^{2}$ - Peano map,
- $[0,1]^{2} \ni(x, y) \mapsto \varphi(x, y)=(f(x), f(y)) \in X \times X$ continuous surjection.
Then $\varphi \circ T \circ h \circ g: X \rightarrow X \times X$ is required.

Fact

Every Peano continuum is productible.
Proof.
Let $f:[0,1] \rightarrow X$-continuous and onto X,
$g: X \rightarrow[0, \infty)$ as $g(x)=d(f(0), x)$.
Then $g[X]=[a, b]$ for some $a, b \in \mathbb{R}$.
Let

- $h:[a, b] \rightarrow[0,1]$ - continuous bijection and
- $T:[0,1] \rightarrow[0,1]^{2}$ - Peano map,
- $[0,1]^{2} \ni(x, y) \mapsto \varphi(x, y)=(f(x), f(y)) \in X \times X$ continuous surjection.
Then $\varphi \circ T \circ h \circ g: X \rightarrow X \times X$ is required.

Fiberable space

Topological space X is fiberable if there is $f \in C(X)$ such that

$$
(\forall y \in X)\left(\left|f^{-1}[\{y\}]\right|=\mathfrak{c}\right)
$$

f - fiberable map.
Proposition
Every productible space is fiberable.

Fiberable space

Topological space X is fiberable if there is $f \in C(X)$ such that

$$
(\forall y \in X)\left(\left|f^{-1}[\{y\}]\right|=\mathfrak{c}\right)
$$

f - fiberable map.
Proposition
Every productible space is fiberable.

Main Theorem

Theorem
Let X - fiberable Polish space, Then there exists $f \in C(X)$ such that for every Bernstein set $B \subset X, f[B]=X$.

Let B-Bernstein set, $f: X \rightarrow X$ - fiberable map and $y \in X$ - any
point.
Then $f^{-1}[\{y\}]$ is a perfect subset of X.
Find $x \in B \cap f^{-1}[\{y\}]$ and then $f(x)=y$. Then $f[B]=X$.

Main Theorem

Theorem
Let X - fiberable Polish space, Then there exists $f \in C(X)$ such that for every Bernstein set $B \subset X, f[B]=X$.

Proof.
Let B-Bernstein set, $f: X \rightarrow X$ - fiberable map and $y \in X$ - any point.
Then $f^{-1}[\{y\}]$ is a perfect subset of X.
Find $x \in B \cap f^{-1}[\{y\}]$ and then $f(x)=y$. Then $f[B]=X$.

Main Theorem

Theorem
Let X - fiberable Polish space, Then there exists $f \in C(X)$ such that for every Bernstein set $B \subset X, f[B]=X$.

Proof.
Let B-Bernstein set, $f: X \rightarrow X$ - fiberable map and $y \in X$ - any point.
Then $f^{-1}[\{y\}]$ is a perfect subset of X.
Find $x \in B \cap f^{-1}[\{y\}]$ and then $f(x)=y$. Then $f[B]=x$.

Main Theorem

Theorem
Let X - fiberable Polish space, Then there exists $f \in C(X)$ such that for every Bernstein set $B \subset X, f[B]=X$.

Proof.
Let B-Bernstein set, $f: X \rightarrow X$ - fiberable map and $y \in X$ - any point.
Then $f^{-1}[\{y\}]$ is a perfect subset of X.
Find $x \in B \cap f^{-1}[\{y\}]$ and then $f(x)=y$. Then $f[B]=X$.

Answer for Osipov question is YES!

Question (Alexandr Osipov)
"It is true that for every Bernstein set in real line there are countably many continuous functions for which the union of images of Bernstein set by the family functions is whole real line?"

Theorem
There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every
Bernstein set $B \subseteq \mathbb{R}, f[B]=\mathbb{R}$.
Moreover
Theorem
For every $A \in \Sigma_{1}^{1}(\mathbb{R})$ there exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$,
such that for every Bernstein set $B \subseteq \mathbb{R}, f[B]=A$.

Answer for Osipov question is YES!

Question (Alexandr Osipov)
"It is true that for every Bernstein set in real line there are countably many continuous functions for which the union of images of Bernstein set by the family functions is whole real line? "

Theorem
There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every Bernstein set $B \subseteq \mathbb{R}, f[B]=\mathbb{R}$.
Moreover
Theorem
For every $A \in \sum_{1}^{1}(\mathbb{R})$ there exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$.
such that for every Bernstein set $B \subseteq \mathbb{R}, f[B]=A$.

Answer for Osipov question is YES!

Question (Alexandr Osipov)
"It is true that for every Bernstein set in real line there are countably many continuous functions for which the union of images of Bernstein set by the family functions is whole real line?"

Theorem
There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every Bernstein set $B \subseteq \mathbb{R}, f[B]=\mathbb{R}$.
Moreover
Theorem
For every $A \in \Sigma_{1}^{1}(\mathbb{R})$ there exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$, such that for every Bernstein set $B \subseteq \mathbb{R}, f[B]=A$.

Theorem
Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that
\square

- $f \subseteq g$,
- g is contiunuous on G.

Then $g[G] \in \Sigma_{1}^{1}$ and $C=f[X]=g[X] \subseteq g[G]$.
Then $g[G] \backslash C$ is countable analytic and then Borel set
if not then $g[G] \backslash C$ would be contain some perfect set P but $g^{-1}[P]$
contain some perfect set thus $X \cap g^{-1}[P] \neq \emptyset$ what is impossible.
Then $C=g[G] \backslash(g[G] \backslash C)$ is also analytic set, contradiction.

Theorem
Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.
Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function

Theorem
Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.

Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that

Theorem
Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.
Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that

- $X \subseteq G$,
- $f \subseteq g$,
- g is contiunuous on G.

Then $g[G] \in \Sigma_{1}^{1}$ and $C=f[X]=g[X] \subseteq g[G]$.
Then $g[G] \backslash C$ is countable analytic and then Borel set
if not then $g[G] \backslash C$ would be contain some perfect set P but $g^{-1}[P]$
contain some perfect set thus $X \cap g^{-1}[P] \neq \emptyset$ what is impossible. Then $C=g[G] \backslash(g[G] \backslash C)$ is also analytic set, contradiction.

Theorem

Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.
Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that

- $X \subseteq G$,
- $f \subseteq g$,
- g is contiunuous on G.

Then $g[G] \in \Sigma_{1}^{1}$ and $C=f[X]=g[X] \subseteq g[G]$.
Then $g[G] \backslash C$ is countable analytic and then Borel set
if not then $g[G] \backslash C$ would be contain some perfect set P but $g^{-1}[P]$
contain some perfect set thus $X \cap g^{-1}[P] \neq \emptyset$ what is impossible. Then $C=g[G] \backslash(g[G]$ $C)$ is also analytic set, contradiction.

Theorem

Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.
Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that

- $X \subseteq G$,
- $f \subseteq g$,
- g is contiunuous on G.

Then $g[G] \in \Sigma_{1}^{1}$ and $C=f[X]=g[X] \subseteq g[G]$. Then $g[G] \backslash C$ is countable analytic and then Borel set

Theorem

Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.
Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that

- $X \subseteq G$,
- $f \subseteq g$,
- g is contiunuous on G.

Then $g[G] \in \Sigma_{1}^{1}$ and $C=f[X]=g[X] \subseteq g[G]$.
Then $g[G] \backslash C$ is countable analytic and then Borel set if not then $g[G] \backslash C$ would be contain some perfect set P but $g^{-1}[P]$ contain some perfect set thus $X \cap g^{-1}[P] \neq \emptyset$ what is impossible.

Theorem

Every proper coanalytic set (i.e. which is not analytic) cannot be continuous image of any Bernstein set.

Proof.
Assume that some $C \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and Bernstein set $X, f: X \rightarrow C$ is continuous and onto map. Then there exists a Borel function $g: \mathbb{R} \rightarrow \mathbb{R}$ and dense G_{δ} set $G \subseteq \mathbb{R}$ such that

- $X \subseteq G$,
- $f \subseteq g$,
- g is contiunuous on G.

Then $g[G] \in \Sigma_{1}^{1}$ and $C=f[X]=g[X] \subseteq g[G]$.
Then $g[G] \backslash C$ is countable analytic and then Borel set if not then $g[G] \backslash C$ would be contain some perfect set P but $g^{-1}[P]$ contain some perfect set thus $X \cap g^{-1}[P] \neq \emptyset$ what is impossible. Then $C=g[G] \backslash(g[G] \backslash C)$ is also analytic set, contradiction.

Banach condition T_{2}

A real function f is T_{2} if

$$
\left\{y \in \mathbb{R}:\left|f^{-1}[\{y\}]\right|=\mathfrak{c}\right\} \in \mathscr{N} .
$$

Every Lipschitz or defferentiable function fulfill T_{2} condition.
Theorem
There is a Bernstein set $B \subseteq \mathbb{R}$ such that for every ctbl family $\mathcal{F} \subseteq T_{C} \cap C(\mathbb{R})$ we have

$$
\bigcup\{f[B]: f \in \mathcal{F}\} \neq \mathbb{R} .
$$

Banach condition T_{2}

A real function f is T_{2} if

$$
\left\{y \in \mathbb{R}:\left|f^{-1}[\{y\}]\right|=\mathfrak{c}\right\} \in \mathscr{N} .
$$

Every Lipschitz or defferentiable function fulfill T_{2} condition.

Banach condition T_{2}

A real function f is T_{2} if

$$
\left\{y \in \mathbb{R}:\left|f^{-1}[\{y\}]\right|=\mathfrak{c}\right\} \in \mathscr{N} .
$$

Every Lipschitz or defferentiable function fulfill T_{2} condition.
Theorem
There is a Bernstein set $B \subseteq \mathbb{R}$ such that for every ctbl family $\mathcal{F} \subseteq T_{c} \cap C(\mathbb{R})$ we have

$$
\bigcup\{f[B]: f \in \mathcal{F}\} \neq \mathbb{R}
$$

Completely nonmeasurable set and its images

Definition

Assume X is Polish space $I \subseteq P(X)$ is σ-ideal with Borel base. A set $A \subseteq X$ is completely I-nonmeasurable if

$$
(\forall B \in \operatorname{Bor} \backslash I)\left(A \cap B \neq \emptyset \wedge A^{c} \cap B \neq \emptyset\right)
$$

A is completely ctbl-nonmeasurble iff A is Bernstein set.
A is completely \mathscr{M}-nonmeasurable then A has no Baire property in
each nonempty open set.
A is completely \mathscr{N}-nonmeasurable then A in not measurable in every positive measure Borel set.

Completely nonmeasurable set and its images

Definition

Assume X is Polish space $I \subseteq P(X)$ is σ-ideal with Borel base. A set $A \subseteq X$ is completely I-nonmeasurable if

$$
(\forall B \in \operatorname{Bor} \backslash I)\left(A \cap B \neq \emptyset \wedge A^{c} \cap B \neq \emptyset\right)
$$

A is completely ctbl-nonmeasurble iff A is Bernstein set.
A is completely \mathscr{M}-nonmeasurable then A has no Baire property in each nonempty open set.
A is completely \mathscr{N}-nonmeasurable then A in not measurable in every positive measure Borel set.

Relative negative answer for completely nonmeasurable sets

Theorem
It is a relatively consistent with ZFC theory that there are two subsets $A, B \subseteq \mathbb{R}$ of the cardinality equal to \mathfrak{c} such that:
B is completely \mathscr{M}-nonmeasurable in \mathbb{R},
2. A is strongly null,
3. for every family $\mathcal{F} \subset \mathbb{R}^{B}$ of countinuous functions on B such
that $|\mathcal{F}|<c$, we have $A \backslash \bigcup\{f[B]: f \in \mathcal{F}\} \neq \emptyset$.

Relative negative answer for completely nonmeasurable sets

Theorem
It is a relatively consistent with ZFC theory that there are two subsets $A, B \subseteq \mathbb{R}$ of the cardinality equal to \mathfrak{c} such that:

1. B is completely \mathscr{M}-nonmeasurable in \mathbb{R},
2. A is strongly null,
3. for every family $\mathcal{F} \subset \mathbb{R}^{B}$ of countinuous functions on B such that $|\mathcal{F}|<\mathfrak{c}$, we have $A \backslash \bigcup\{f[B]: f \in \mathcal{F}\} \neq \emptyset$.

Relative negative answer for completely nonmeasurable sets

Theorem
It is a relatively consistent with ZFC theory that there are two subsets $A, B \subseteq \mathbb{R}$ of the cardinality equal to \mathfrak{c} such that:

1. B is completely \mathscr{M}-nonmeasurable in \mathbb{R},
2. A is strongly null,
3. for every family $\mathcal{F} \subset \mathbb{R}^{B}$ of countinuous functions on B such that $|\mathcal{F}|<\mathfrak{c}$, we have $A \backslash \bigcup\{f[B]$

Relative negative answer for completely nonmeasurable sets

Theorem
It is a relatively consistent with ZFC theory that there are two subsets $A, B \subseteq \mathbb{R}$ of the cardinality equal to \mathfrak{c} such that:

1. B is completely \mathscr{M}-nonmeasurable in \mathbb{R},
2. A is strongly null,
3. for every family $\mathcal{F} \subset \mathbb{R}^{B}$ of countinuous functions on B such that $|\mathcal{F}|<\mathfrak{c}$, we have $A \backslash \bigcup\{f[B]: f \in \mathcal{F}\} \neq \emptyset$.

Thank You

Thank You

[^0]: Example
 Let $[0,1]=A_{0} \cup A_{1}, A_{0}, A_{1}$ - Bernstein sets in $[0,1]$,
 Set $f:[0,2] \rightarrow[0,2]$ by $f(x)=2 x(2-x)$ and $A=A_{0} \cup 2-A_{1}$ But $f(x)=f(2-x), f[A]=[0,2]$

