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Abstract. For a Polish space X and a σ-ideal I of subsets of X which has a
Borel base we consider families A of sets in I with the union

S
A not in I. We

determine several conditions on A which imply the existence of a subfamily
A′ of A whose union

S
A′ is not in the σ-field generated by the Borel sets on

X and I. Main examples are X = R and I being the ideal of sets of Lebesgue

measure zero or the ideal of sets of the first category.

1. Introduction

It is known that for a partition A of the real line consisting of sets of Lebesgue
measure zero, the union of some of these sets is Lebesgue nonmeasurable. Analogous
result is known for the sets of the first category (the Lebesgue measurability is then
replaced by having the Baire property). Actually, this result remains true, if, in
the above statement, the real line is replaced by any Polish space, the σ-ideals of
sets of Lebesgue measure zero, or of sets of the first category, are replaced by any
σ-ideal I with a Borel base, and, instead of assuming that the family A of sets of
an ideal is a partition of the space, we assume that A is point finite and its union is
not in I. The conclusion says now that there exists a subfamily A′ of A such that
the union of its sets is not in the σ-algebra generated by the σ-algebra of Borel sets
and I ([3],[4],[10]; compare also [13],[14]; the proof in [4] is probably the shortest
and the simplest).

It is known that within ZFC is not possible to replace the assumption that the
family A is point finite even by the one saying that A is point-countable (see [11]).

Thus we always have to enrich our hypothesis to get the same conclusion with-
out point-finiteness of A.

One way is set-theoretic. It is known that under some assumptions on I, which
are independent of ZFC, in the case of both ideals of sets of Lebesgue measure zero
and of sets of the first category, one can obtain the conclusion of the above theorem
assuming about A only that it is a subfamily of I and that its union is not in I.
In Section 3 of this article, under set-theoretic assumptions, two theorems stating
the existence of a subfamily of A with a (strongly) nonmeasurable union are given
(Theorems 3.1 and 3.2).
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If we want to stay within ZFC to get the same conclusion about the existence
of a subfamily of A having the union that is not in the σ-algebra generated by
the σ-algebra of Borel sets and I we must assume some regularity of A (of course,
point-finiteness is one example of such an assumption) or/and some regularity of
the sets in A. In Section 4 we consider the case where A is point countable and the
sets which are elements of A are countable. We prove in this case the existence of
a subfamily of A having a non-measurable union (Theorem 4.1). We also consider
the case where the elements of A are countable closed sets of uniformly bounded
Cantor-Bendixson rank (thus, in particular, the case where all sets in A are finite is
covered). Then, with no additional assumption about A, the conclusion regarding
the existence of a subfamily of A with nonmeasurable union also holds.

Another special family of sets of both Lebesgue measure zero and of the first
category on the real line is considered in Section 5. Namely, we consider translates
of the elements of the standard ternary Cantor set C. It is a well known (and easy
to prove) fact that the algebraic sum C+C is equal to [0, 2]. One can view C+C as
a union of some translates of C, actually those determined by C itself. It turns out
that in this case we are able to derive again the conclusion on the existence of A ⊆ C
such that A + C is nonmeasurable (Theorem 5.9, Corollary 5.10, Remark 5.11). It
seems very interesting how far this theorem can be generalized, as the methods we
use seem not to allow for any substantial generalization and very general conjectures
can be made here.

Some of the results of this paper state, actually, more than nonmeasurability
of the union of a subfamily of A. They say that the intersection of this union with
any measurable set that is not in I is nonmeasurable (recall, the measurability is
understood here in the sense of belonging to the σ-algebra generated by the family
of Borel sets and I). It turns out that the same strong conclusion can be obtained
for the ideal of the first Baire category sets under the assumption that A is a
partition, but without assuming anything about the regularity of the elements of
A. This is the result of Section 6. We do not know if the point-finiteness is also
sufficient to get this conclusion in the case of the ideal of sets of the first Baire
category. We also do not know if the analogous theorem holds for the ideal of the
Lebesgue measure zero sets on the real line.

2. Definitions and notations

The cardinality of a set A is denoted by |A|. Cardinal numbers will usually be
denoted by κ and λ.

The symbols [A]≤κ and [A]<κ denote the families of all subsets of A of car-
dinality not bigger than κ and smaller than κ, respectively. The sets of posi-
tive integers, rational numbers and the set of real numbers are denoted by N,
Q and R, respectively. If R is a binary relation then R[X] denotes then set
{y : (∃x ∈ X)((x, y) ∈ R)}. An ideal of subsets of a set X is a family of subsets of
X which is closed under finite unions and taking subsets and such that [X]<ω ⊆ I.
A family of sets is a σ-ideal if it is an ideal and is closed under countable unions.

For a topological space T , by BT we denote the family of Borel subsets of T . If
I is an ideal of subsets of a set X and S is a field of subsets of X, then by S(I) we
denote the field generated by S ∪ I. If I is a σ-ideal and S is a σ-field then S(I) is
a σ-field, too. The σ-ideal of Lebesgue measure zero subsets of R will be denoted
by L and the σ-ideal of sets of the first Baire category in R will be denoted by K.
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Then BR(L) is the σ-field of Lebesgue measurable subsets of R and BR(K) is the
σ-field of subsets of R with the Baire property.

Definition 2.1. Suppose that I is an ideal of sets. Then

(1) add(I) = min{|A| : A ⊆ I ∧
⋃
A /∈ I},

(2) cov(I) = min{|A| : A ⊆ I ∧
⋃
A =

⋃
I},

(3) non(I) = min{|X| : X ⊆
⋃

I ∧X /∈ I}.
(4) cof(I) = min{|X | : X ⊆ I ∧ (∀X ∈ I)(∃Y ∈ X )(X ⊆ Y )}.

The following inequalities hold for every ideal: add(I) ≤ non(I) ≤ cof(I) and
add(I) ≤ cov(I) ≤ cof(I). If the Continuum Hypothesis or Martin’s Axiom holds,
then add(L) = add(K) = 2ℵ0 (see [15]). The theory ZFC∪{ℵ1 = non(L), cov(L) =
ℵ2 = 2ℵ0} is relatively consistent, too (see [2], compare also [1]).

If I is an ideal of subsets of a topological space T then we say that the ideal
I has a Borel base if for each set X ∈ I there exists a set Y ∈ BT ∩ I such that
X ⊆ Y . The two classical ideals K and L have Borel bases. If an ideal I on a Polish
topological space has a Borel base then cof(I) ≤ 2ℵ0 .

Definition 2.2. A pair (T, I) is a Polish ideal space if P is an uncountable
Polish topological space and I is a σ- ideal of subsets of T with a Borel base.

The pairs (R, K), (R, L) and (R, [R]≤ω) are examples of Polish ideal spaces. If S
is a field of subsets of a set X, then by S− we denote the family {A ∈ P (X) : P (A) ⊆
S} and by S+ we denote the family S \ S−. The family S− is an ideal. If S is a
σ-field then S− is a σ-ideal. If a σ-ideal I of subsets of a Polish space has a Borel
base then (BT (I))− = I (see [6]). In particular, the equality (BT )− = [T ]≤ω holds
for any Polish space T .

Definition 2.3. Let (T, I) be a Polish ideal space. Then we put

covH(I) = min{|A| : A ⊆ I ∧
⋃
A ∈ (BT (I))+}

and

cof(T, I) = min{|A| : A ⊆ (BT (I))+ ∧ (∀X ∈ (BT (I))+)(∃Y ∈ A)(Y ⊆ X)}.

It is worth to remark that the following equalities hold: cov(L) = covH(L),
cov(K) = covH(K). It is proved in [7] that if the quotient boolean algebra BT (I)/I
satisfies c.c.c. then cof(I) = cof(T, I). Therefore we have cof(R, L) = cof(L) and
cof(R, K) = cof(K).

Definition 2.4. Let S be a field of subsets of a set X. A subset B of X is an
S-Bernstein set if for all A ∈ S+ both sets A ∩B and A \B are nonempty.

If T is a Polish space then the notion of BT -Bernstein set coincides with the
classical notion of Bernstein set. If B is an S-Bernstein set, A ∈ S and A ⊆ B
or A ∩ B = ∅ then A ∈ S−. Thus, in the case when S = BR(L), the notion of
S-Bernstein set coincides with the notion of ”saturated nonmeasurable set”. The
following property of the notion of ”S-Bernstein” follows immediately from the
definition.

Lemma 2.5. Suppose that S is a field of subsets of a set X and that A ⊆ B ⊆ X
are two S-Bernstein sets. If A ⊆ C ⊆ B then C is an S-Bernstein set, too.
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Lemma 2.6. Suppose that S is a σ-algebra of subsets of a set T and R ⊆ T ×T
is a reflexive and symmetric relation such that

(2.1) (∀A ∈ S+)(∀X ⊆ T )(|X| < cof(S+,S−) → A \R[X] 6= ∅).
Then there exists a set P ⊆ T such that both sets P and R[P ] are S-Bernstein.

Proof. Let κ = cof(S+,S−) and let (Lα)α<κ ⊆ S+ be a family of sets such
that for each A ∈ S+ there exists an α < κ such that Lα ⊆ A. Using a transfinite
recursion of length κ we build two sequences {pα : α < κ} and {qα : α < κ} such
that

(1) pα ∈ Lα \R[{pβ : β < α} ∪ {qβ : β < α}],
(2) qα ∈ Lα \R[{pβ : β ≤ α} ∪ {qβ : β < α}].

Let P = {pα : α < κ} and Q = {qα : α < κ}. Then P ∩Q = ∅ and for each A ∈ S+

the sets P ∩A and Q∩A are nonempty. This implies that P is an S-Bernstein set.
We claim that R[P ] ∩ Q = ∅. Suppose this is not the case. Let α, β < κ be

ordinals such that qα ∈ R[{pβ}]. From condition (2) we deduce that α < β. By
symmetry of the relation R we get pβ ∈ R[{qα}], and this contradicts condition
(1). �

3. Summable families of sets

Suppose that N is a Lebesgue nonmeasurable subset of the real line. Then
there exists a BR(L)-Bernstein set of the same cardinality as the cardinality of the
set N . Therefore the least cardinality of a BR(L)-Bernstein set coincides with the
least cardinality of a Lebesgue nonmeasurable set. The same observation holds for
the ideal K and the σ-field of sets with the Baire property.

Theorem 3.1. Suppose that (T, I) is a Polish ideal space and that there exists a
BT (I)-Bernstein set of cardinality strictly less than covH(I). If A ⊆ I and

⋃
A = T

then there exists a subfamily B ⊆ A such that
⋃
B is a BT (I)-Bernstein set.

Proof. Let B be a BT (I)-Bernstein set of cardinality strictly less than the
number covH(I). For each b ∈ B we choose a set Ab ∈ A such that b ∈ Ab and we
put B = {Ab : b ∈ B}. If S ∈ BT (I) and S ∩

⋃
B = ∅ then S ∩B = ∅, so S ∈ I. On

the other hand, if S ∈ BT (I) \ I and S ⊆
⋃
B then S =

⋃
{S ∩ Ab : b ∈ B}, which

is impossible, since |B| < covH(I). Therefore
⋃
B is a BT (I)- Bernstein set. �

Suppose that A and S are two families of sets. We say (see [6]) that the family
A is S-summable if for everyA′ ⊆ A we have

⋃
A′ ∈ S. From Theorem 3.1 we easily

deduce that if (T, I) is a Polish ideal space such that there exists a BT (I)-Bernstein
set of cardinality strictly less than covH(I) and A ⊆ I is a BT (I)-summable family
then

⋃
A ∈ I.

Theorem 3.2. Suppose that (T, I) is a Polish ideal space and that covH(I) =
cof(T, I). Assume that A ⊆ I,

⋃
A = T and

⋃
{A ∈ A : t ∈ A} ∈ I for each t ∈ T .

Then there exists a subfamily C ⊆ A such
⋃
C is a BT (I)-Bernstein set.

Proof. Let
R = {(x, y) : (∃A ∈ A)({x, y} ⊆ A)}.

The relation R is reflexive and symmetric. For each X ⊂ T we have R[X] =⋃
{A ∈ A : (∃t ∈ X)(t ∈ A)}. Therefore if |X| < cof(T, I) and A ∈ (BT (I))+ then

A \R[X] 6= ∅. Hence we may apply Lemma 2.6 and we get a set P such that both



ON NONMEASURABLE UNIONS 5

sets P and R[P ] are BT (I)-Bernstein sets. For each p ∈ P we choose a set Ap ∈ A
such that p ∈ Ap and we put C = {Ap : p ∈ P}. Lemma 2.5 implies that

⋃
C is a

BT (I)-Bernstein set. �

4. Families of countable sets

We say that a family of sets A is point-countable if for every x the set
{A ∈ A : x ∈ A} is countable.

Theorem 4.1. Suppose that T is an uncountable Polish topological space, A ⊆
[T ]≤ω is point-countable and

⋃
A = T . Then there exists a subfamily B ⊆ A such⋃

B is a Bernstein subset of T .

Proof. Let A ⊆ [T ]≤ω be point countable. We define

R = {(x, y) : (∃A ∈ A)({x, y} ⊆ A)}.
Then the relation R is reflexive and symmetric. For every X ⊆ T such that |X| <
|T | = 2ℵ0 we have

|R[X]| = |
⋃
t∈X

{A ∈ A : t ∈ A}| ≤ |X| · ℵ0 < 2ℵ0 ,

hence we can apply Lemma 2.6 to the ideal I = [T ]≤ω. We obtain a set P such
that P and R[P ] are Bernstein sets. For each p ∈ P we choose a set Ap ∈ A such
that p ∈ Ap and we put C = {Ap : p ∈ P}. Then P ⊆

⋃
C ⊆ R[P ], so by Lemma

2.5, the set
⋃
C is a Bernstein set, too. �

For a subset X of a topological space T by X ′ we denote the set of accumulation
points of X. Using transfinite induction on ordinal numbers we define X(α+1) =
(X(α))′ and X(λ) =

⋂
{X(α) : α < λ} for limit ordinals λ. If X is a closed subset of

a Polish space then the sequence (X(α)) is decreasing and there exists an α < ω1

such that X(α) = X(α+1). The least such α is called the Cantor-Bendixson rank
of X. If X(α) = X(α+1) then X(α) is a closed set without isolated points. Therefore,
if X is a countable compact subset of a Polish space and α is its Cantor-Bendixson
rank, then X(α) = ∅.

Lemma 4.2. Suppose that (T, I) is a Polish ideal space and C = {Cj : j ∈ J} is
a BT (I)-summable family. Let D = {Dj : j ∈ J} be a family of subsets of T such
that

(∀j ∈ J)((Cj)′ ⊆ Dj ⊆ Cj ∧ |Cj \Dj | ≤ 1).
Then

⋃
C \

⋃
D ∈ I and D is a BT (I)-summable family.

Proof. Let {Bn : n ∈ N} be an open base of the topological space T . For each
n ∈ N we put

Jn = {j ∈ J : Cj ∩Bn = Cj \Dj}.
Then

⋃
j∈Jn

Cj ∩Bn ∈ I since otherwise there would exist a set Z ⊆ Jn such that⋃
j∈Z Cj ∩Bn /∈ BT (I). Hence

⋃
j∈Jn

Cj \
⋃

j∈Jn
Dj ∈ I. Moreover J =

⋃
{Jn : n ∈

N}. Therefore ⋃
j∈J

Cj \
⋃
j∈J

Dj ⊆
⋃
n

(
⋃

j∈Jn

Cj \
⋃

j∈Jn

Dj) ∈ I.

The family {Dj : j ∈ J} is BT (I)-summable because for each Z ⊆ J we have⋃
j∈Z Cj \

⋃
j∈Z Dj ∈ I. �
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Lemma 4.3. Suppose that (T, I) is a Polish ideal space and that C = {Cj : j ∈
J} is a BT (I)-summable family of closed sets. Then

⋃
{Cj : j ∈ J} \

⋃
{(Cj)′ : j ∈

J} ∈ I and {(Cj)′ : j ∈ J} is a BT (I)-summable family.

Proof. Let us fix j ∈ J . The set Cj is closed, hence (Cj)′ ⊆ Cj . The set
Cj \ (Cj)′ is countable. Let us fix an enumeration (pj,n)n<nj

of Cj \ (Cj)′ where
nj ≤ ω. Let Cj,n = Cj \ {pj,k : k < n ∧ k < nj}. For each n ∈ ω we put
Cn = {Cj,n : j ∈ J}. Then (

⋃
Cn)n<ω is a decreasing sequence of sets. Lemma

4.2 implies that
⋃
Cn \

⋃
Cn+1 ∈ I for each n < ω. Therefore

⋃
{Cj : j ∈ J} \⋃

{(Cj)′ : j ∈ J} ∈ I. From this we obtain the summability of {(Cj)′ : j ∈ J}. �

Theorem 4.4. Let (T, I) be a Polish ideal space. Suppose that A is a BT (I)-
summable family of closed countable subsets of T such that (∃α < ω1)(∀A ∈
A)(A(α) = ∅). Then

⋃
A ∈ I.

Proof. Let C =
⋃
A. We put A(β) = {A(β) : A ∈ A} for β ≤ α. By induction

on β ≤ α, using Lemma 4.3, we prove that C \
⋃
A(β) ∈ I and that A(β) is a

BT (I)-summable family of sets. But A(α) = ∅, hence C ∈ I. �

Corollary 4.5. Let (T, I) be a Polish ideal space. Suppose that A is a
BT (I)-summable family of closed countable subsets of T . Moreover, suppose that
covH(I) > ω1. Then

⋃
A ∈ I.

Proof. For each α < ω1 we put Aα = {A ∈ A : A(α) = ∅}. Then Aα is a
BT (I)-summable family of sets and, thus, Theorem 4.4 implies that

⋃
Aα ∈ I for

each α < ω1. Since
⋃
A =

⋃
α<ω1

⋃
Aα,

⋃
A ∈ BT (I) and covH(I) > ω1, we

deduce that
⋃
A ∈ I. �

5. Translations of Cantor set

If A and B are subsets of a group (G, +), then by A+B we denote the algebraic
sum {a + b : a ∈ A ∧ b ∈ B}. The standard ternary Cantor subset of the interval
[0, 1] is the set

C = {
∑
i∈N

ai

3i
: a ∈ {0, 2}N}.

It is well known that C + C = [0, 2]. G. Gruenhage showed that for each X ⊆ R, if
|X| < 2ℵ0 , then C + X 6= R. A generalization of this result was proved in [8]. An
easy modification of the proof from [8] shows, that if X ⊆ R, |X| < 2ℵ0 and A ⊆ R
is a set of positive Lebesgue measure, then A \ (C + X) 6= ∅.

Definition 5.1. Let S be a field of subsets of a group (G, +). We say that a
set B ⊂ G is a Gruenhage set for S if B ∈ S− and

(∀A ∈ S+)(∀X ⊂ G)(|X| < |G| → A \ (B + X) 6= ∅).

If I is an ideal of subsets of a group (G, +), then we say that I is invariant if
for each A ∈ I and x ∈ G the set A + x also belongs to I. For a set A ⊆ G we put
−A = {−a : a ∈ A}.

Theorem 5.2. Suppose that I is an invariant ideal with a Borel base of subsets
of an abelian Polish group (G, +). Let C ⊆ G be such that C ∪−C is a Gruenhage
set for BG(I). Then there exists a set P ⊆ G such that the algebraic sum C + P is
a BG(I)-Bernstein set.
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Proof. Since I is an invariant ideal, we may assume that the neutral element
of the group (G, +) belongs to the set C. Let

R = {(x, y) ∈ G2 : y ∈ C + x ∨ x ∈ C + y}.
Then R[x] = (C ∪ (−C)) + x and R is reflexive and symmetric, so the condition
(2.1) of the Lemma 2.6 holds. Therefore there exists a set P such that P and R[P ]
are BG(I)-Bernstein sets. Note that P ⊆ P + C ⊆ R[P ], so by Lemma 2.5, the set
C + P is also a BG(I)-Bernstein set. �

For a ∈ {0, 1, 2}N, we put

s(a) =
∑
n∈N

an

3n
.

Let Γ be the set of all those s(a) where a ∈ {0, 1, 2}N and a has only zeros from
some point on. Of course, Γ is a countable dense subset of [0, 1).

Let us consider the group S = ([0, 1),⊕), where ⊕ stands for the addition
modulo 1. For each x ∈ [0, 1) we fix a sequence ax ∈ {0, 1, 2}N such that x = s(ax).

Definition 5.3. Let σ, η ∈ {0, 1, 2}2. For each x ∈ [0, 1) we define

Tσ,η(x) = s(b),

where

(b2k−1, b2k) =


σ if (ax

2k−1, a
x
2k) = η,

η if (ax
2k−1, a

x
2k) = σ,

(ax
2k−1, a

x
2k) otherwise.

For σ ∈ {0, 1, 2}2, σ1 denotes the first element of σ and σ2 denotes the second
element of σ, i.e. σ = (σ1, σ2). The first three lemmas have standard and immediate
proofs. We omit these proofs.

Lemma 5.4. Suppose that A is a Lebesgue measurable subset of [0, 1) and σ, η ∈
{0, 1, 2}2. Then λ(Tσ,η(A)) = λ(A).

Lemma 5.5. Suppose that E ⊆ [0, 1), D is a dense subset of [0, 1) and E⊕D ⊆
E. Then λ(E) = 0 or λ∗(E) = 1.

Definition 5.6. Let U be an ultrafilter of subsets of N and let σ ∈ {0, 1, 2}2.
Then

AU
σ = {s(a) : a ∈ {0, 1, 2}N ∧ {k ∈ N : a2k−1 = σ1 ∧ a2k = σ2} ∈ U}.

Lemma 5.7. Suppose that U is a non-principal ultrafilter of subsets of N and
that σ ∈ {0, 1, 2}2. Then Γ⊕AU

σ ⊆ AU
σ .

Lemma 5.8. Let U be a non-principal ultrafilter of subsets of N and let σ ∈
{0, 1, 2}2. Then the set AU

σ is nonmeasurable and λ∗(AU
σ ) = 1.

Proof. The maximality of the filter U implies that

[0, 1) =
⋃
{AU

σ : σ ∈ {0, 1, 2}2}.

Moreover, if σ, η ∈ {0, 1, 2}2 and σ 6= η, then AU
σ ∩ AU

η ⊆ Γ (where the only case
when AU

σ ∩ AU
η 6= ∅ is σ = (0, 0) and η = (2, 2) or conversely) and |Tσ,η(AU

σ ) M
AU

η | ≤ ℵ0 (where Tσ,η(AU
σ ) 6= AU

η may happen only when σ = (0, 0) or σ = (2, 2)).
Therefore if there exists σ such that AU

σ is measurable, then, by Lemma 5.4, for
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each η ∈ {0, 1, 2}2 the set AU
η is measurable. But this, by Lemmas 5.5 and 5.7,

implies that λ(AU
η ) = 0 for each η ∈ {0, 1, 2}2, which is impossible. �

Note that in the group S the role of the standard ternary Cantor set C is
played by the set C = C \ {1}. The inspiration for our proof of the next theorem
was Sierpiński’s classical result about nonmeasurability of ultrafilters (see [16]).

Theorem 5.9. There exists a set A ⊆ C such that A ⊕ C is a Lebesgue non-
measurable subset of [0, 1).

Proof. Let us recall that C = {s(a) : a ∈ {0, 2}N} \ {1}. Let us fix a non-
principal ultrafilter U of subsets of the set N. Let A = AU

(0,0) ∩ C. Let D1 = AU
(0,0)

and
D7 =

⋃
{AU

σ : σ ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 1), (2, 2)}}.
We claim that D1 ⊆ A⊕ C ⊆ D7.

First we shall prove the inclusion D1 ⊆ A⊕C. Thus suppose that x ∈ D1. Let
a ∈ {0, 1, 2}N be a sequence such that s(a) = x and I = {k ∈ N : a2k−1 = a2k =
0} ∈ U . Since C⊕ C = [0, 1) there are b, c ∈ {0, 2}N such that x = s(b)⊕ s(c). As
for i ∈ I we have a2i−1 = 0 ∧ a2i = 0, it is easy to check that for i ∈ I we are in
one of the following five situations:

(1) (b2i−1, b2i) = (2, 2) and (c2i−1, c2i) = (0, 0),
(2) (b2i−1, b2i) = (2, 0) and (c2i−1, c2i) = (0, 2),
(3) (b2i−1, b2i) = (0, 2) and (c2i−1, c2i) = (2, 0),
(4) (b2i−1, b2i) = (0, 0) and (c2i−1, c2i) = (2, 2),
(5) (b2i−1, b2i) = (0, 0) and (c2i−1, c2i) = (0, 0).

We define now two sequences d, e ∈ {0, 2}N. If i ∈ N \ I, then we put d2i−1 =
b2i−1, d2i = b2i, e2i−1 = c2i−1 and e2i = c2i. Suppose now that i ∈ I. If (4) or (5)
holds then we also put d2i−1 = b2i−1, d2i = b2i, e2i−1 = c2i−1 and e2i = c2i. If (1)
or (2) or (3) holds then we put d2i−1 = 0, d2i = 0, e2i−1 = 2 and e2i = 2. Then
x = s(a) = s(d) + s(e) and s(d) ∈ A, s(e) ∈ C and the first inclusion is proved.

We shall show now that A ⊕ C ⊆ D7. Let u ∈ A, v ∈ C and let a ∈ {0, 1, 2}N

be a sequence such that s(a) = u⊕ v. Since Γ ⊆ D7, we may assume that s(a) /∈ Γ.
Let b ∈ {0, 1, 2}N and c ∈ {0, 2}N be such sequences that I = {i ∈ N : b2i−1 =
0 ∧ b2i = 0} ∈ U , u = s(b) and v = s(c). We shall check all possible configurations
of pairs (a2i−1, a2i) for i ∈ I.

(1) if (c2i−1, c2i) = (0, 0), then (a2i−1, a2i) ∈ {(0, 0), (0, 1)},
(2) if (c2i−1, c2i) = (2, 2), then (a2i−1, a2i) ∈ {(2, 2), (0, 0)},
(3) if (c2i−1, c2i) = (2, 0), then (a2i−1, a2i) ∈ {(2, 0), (2, 1)},
(4) if (c2i−1, c2i) = (0, 2), then (a2i−1, a2i) ∈ {(0, 2), (1, 0)}.

Hence (a2i−1, a2i) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 1), (2, 2)} for each i ∈ I
and, therefore, the inclusions D1 ⊆ A⊕ C ⊆ D7 are proved.

From Lemmas 5.5, 5.7 and 5.8 we get λ∗(D1) = λ∗(D7) = 1. The same lemma
implies that λ∗(Dc

1) = λ∗(Dc
7) = 1, therefore λ∗(D1) = λ∗(D7) = 0. Hence, from

the inclusions D1 ⊆ A⊕C ⊆ D7 we have just proved, we infer that λ∗(A⊕C) = 1
and λ∗(A⊕ C) = 0. �

Corollary 5.10. Let C denote the standard ternary Cantor subset of [0, 1].
Then there exists a set A ⊆ C such that A + C is a nonmeasurable subset of the
real line.
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Proof. The only difference between this corollary and Theorem 5.9 is that in
Theorem 5.9 we considered subsets of ([0, 1),⊕) instead of those of the real line.
Note that

A⊕ C = ((A + C) ∩ [0, 1)) ∪ ((A + C) ∩ [1, 2) + {−1})

hence measurability of A + C implies measurability of A⊕ C. �

Remark 5.11. A similar result may be proved for the Baire property. Namely,
for the same set A which we constructed in the proof of Theorem 5.9 one can prove
that A + C does not have the Baire property.

Conjecture. Suppose that P is a closed subset of the real line R such that λ(P ) = 0
and λ(P + P ) > 0. Then there exists a set A ⊆ P such that A + P is a Lebesgue
nonmeasurable set.

Theorem 3.1 implies that this conjecture is consistent with ZFC. It is, of course,
quite easy to formulate far-reaching generalizations of this conjecture.

6. The ideal of meager sets

Let us recall that an ideal I of subsets of a set X is a c.c.c. ideal if for every
family A ⊆ P (X) \ I such that (∀A,B ∈ A)(A = B ∨A∩B ∈ I) we have |A| ≤ ℵ0.
We also say that an ideal I is µ-additive if add(I) ≥ µ.

Definition 6.1. Let κ, λ, µ, ν be cardinal numbers. The relation (κ : λ, µ) →
ν holds if for every family R of µ-additive ideals on κ such that |R| = λ there exists
a family {Xα}α<ν such that

(1) (∀α < ν)(Xα ∈ P (κ) \
⋃
R),

(2) (∀α < β < ν)(Xα ∩Xβ ∈
⋂
R).

Theorem 6.2 (Alaoglu, Erdös). (∀κ) (((κ : ω, ω1) → ω1) ↔ ((κ : 1, ω1) → ω1)).

We will need the following version of Theorem 6.2, which follows easily from
the proof of Theorem 6.2 from [17]:

Lemma 6.3. Assume that {In}n∈ω is a family of σ-additive ideals on κ which
are not c.c.c. Then there exists a family {Xα}α<ω1 ⊆ P (κ) such that

(1) (∀α < ω1)(∀n ∈ ω)(Xα 6∈ In)
(2) (∀α, β < ω1)(α 6= β → Xα ∩Xβ = ∅).

Let T be an uncountable Polish topological space. In this section the ideal KT

is denoted by K. The family of all open subsets of T is denoted by OT . For two
subsets A,B ⊆ T we write A ⊆∗ B if A \ B ∈ K and A =∗ B if A ⊆∗ B and
B ⊆∗ A.

Definition 6.4. Let N ⊆ X ⊆ T . We say that the set N is completely
non-Baire in X if

(∀A ∈ BT )(A ∩X 6∈ K → (A ∩N /∈ K ∧ A ∩ (X \N) /∈ K)).

Notice, that a set N is completely non-Baire in X if for every open base S of
the topological space T we have

(∀U ∈ S)(U ∩X 6∈ K → (U ∩N /∈ K ∧ U ∩ (X \N) /∈ K)).
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Lemma 6.5. Suppose that for every family Q ⊆ K of pairwise disjoint sets such
that

⋃
Q /∈ K there exists a subfamily Q′ ⊆ Q such that

⋃
Q′ /∈ K and

(∀U ∈ OT )(U ∩
⋃
Q /∈ K → U ∩

⋃
Q 6⊆∗

⋃
Q′).

Then for every family P ⊆ K of pairwise disjoint sets such that
⋃
P /∈ K there

exists a subfamily P ′ ⊆ P such that the union
⋃
P ′ is completely non-Baire in⋃

P.

Proof. Let P = {Pα}α<κ ⊆ K be a family of pairwise disjoint sets such that⋃
α<κ Pα 6∈ K. Let C be a minimal open set with respect to the relation ⊆∗ such

that
⋃

α<κ Pα ⊆∗ C. For each nonempty open set U ⊆ C we put

IU = {X ⊆ κ :
⋃

α∈X

Pα ∩ U ∈ K}.

Then IU is a proper σ-ideal. Notice that if ∅ 6= V ⊆ U ⊆ C are open sets and
the ideal IU satisfies c.c.c then the ideal IV is a c.c.c. ideal, too. Moreover, if
{Un : n ∈ ω} is a family of open nonempty subsets of C and for each n ∈ ω the
ideal IUn

is a c.c.c. ideal, then IS
n Un

is a c.c.c. ideal, too.
Let S be a maximal family of pairwise disjoint nonempty open subsets of C

such that IU is a c.c.c ideal for each U ∈ S. Let A =
⋃
S and let B be an open set

such that A ∪ B =∗ C and A ∩ B = ∅. Then IA is a c.c.c. ideal and IU is not a
c.c.c ideal for each nonempty open set U ⊆ B.

Suppose that B 6= ∅. Let {Un}n∈ω be a countable base of open subsets of B.
We put In = IUn

. By assumption, In is not a c.c.c. ideal. By Lemma 6.3 we
get a disjoint family {Xβ}β<ω1 of subsets of κ such that for every β < ω1 the set
(
⋃

α∈Xβ
Pα)∩B is completely non-Baire in (

⋃
α<κ Pα)∩B. Since IA is a c.c.c. ideal,

we can find β0 < β1 < ω1 such that (
⋃

α∈Xβ0
Pα)∩A ∈ K and (

⋃
α∈Xβ1

Pα)∩A ∈ K.
If B = ∅ then we put Xβ0 = Xβ1 = ∅.
Notice that if A = ∅ then the set

⋃
{Pα : α ∈ Xβ0} is a completely non-Baire

in
⋃

α<κ Pα. Hence we may assume that A 6= ∅.
We define now by transfinite recursion on ordinal number ξ some sequence (Yξ)ξ

of pairwise disjoint subsets of κ. Suppose we have already defined sets (Yζ)ζ<ξ. Let
us put Tξ = κ \ (Xβ0 ∪Xβ1 ∪

⋃
ζ<ξ Yζ). If (

⋃
α∈Tξ

Pα) ∩ A ∈ K then we terminate
our construction. If (

⋃
α∈Tξ

Pα)∩A 6∈ K then we choose a set Yξ with the following
three properties:

(1) Yξ ⊆ Tξ,
(2)

⋃
α∈Yξ

Pα ∩A 6∈ K,
(3) (∀U ∈ OT )(U ∩

⋃
α∈Tξ

Pα ∩A 6∈ K → U ∩
⋃

α∈Tξ
Pα ∩A 6⊆∗

⋃
α∈Yξ

Pα).

Since IA is a c.c.c. ideal, our construction must break after some λ < ω1 steps. For
each nonempty open subset U of A we define

GU = {ξ < λ : (
⋃

α∈Yξ

Pα) ∩ U /∈ K}.

Notice that if ∅ 6= U ⊆ A then U ∩
⋃

α<λ

⋃
α∈Yξ

Pα /∈ K, so GU 6= ∅. We claim that
GU is infinite. Suppose otherwise and let GU = {α0, . . . , αn}, α0 < α1 < . . . < αn.
Then

U ∩
⋃
P =∗ U ∩

⋃
ξ≤αn

⋃
α∈Yξ

Pα,
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whence
U ∩ (

⋃
P \

⋃
ξ<αn

⋃
α∈Yξ

Pα) ⊆∗
⋃

α∈Yαn

Pα,

and thus
U ∩

⋃
α∈Tαn

Pα ⊆∗
⋃

α∈Yαn

Pα,

which contradicts the choice of Yαn
.

Let us fix {Vn}n∈ω a countable base of open subsets of A. Then for every n ∈ ω
the set GVn

is infinite. So we can find an injection ϕ : ω → λ such that

(∀n ∈ ω)(
⋃
{Pα : α ∈ Yϕ(2n)} ∩ Vn /∈ K ∧

⋃
{Pα : α ∈ Yϕ(2n+1)} ∩ Vn /∈ K).

Let X = Xβ0 ∪
⋃
{Yϕ(2n) : n ∈ ω}. Then the set

⋃
α∈X Pα is completely non-Baire

in
⋃

α<κ Pα. �

The Cohen Boolean algebra is the complete Boolean algebra BR/KR.

Lemma 6.6. Assume that there exists a pairwise disjoint family {Pα}α<κ ⊆ K
such that

⋃
α<κ Pα 6∈ K and such that for every set X ⊆ κ either

⋃
α∈X Pα ∈ K

or there exists an open set U such that U ∩
⋃

α<κ Pα 6∈ K and U ∩
⋃

α<κ Pα ⊆∗⋃
α∈X Pα. Let I = {X ⊆ κ :

⋃
α∈X Pα ∈ K}. Then the Boolean algebra P (κ)/I is

isomorphic to the Cohen algebra.

Proof. Let C be an open set, minimal with respect to the relation ⊆∗, such
that

⋃
α<κ Pα ⊆∗ C. Let {Un}n∈ω be a base of open subsets of C and let us put

Bn = {[X] ∈ P (κ)/I : Un ∩
⋃

α<κ

Pα ⊆∗
⋃

α∈X

Pα}.

Then P (κ)/I \ {0} =
⋃

n Bn. Hence P (κ)/I is a c.c.c. Boolean algebra. Therefore
for each n ∈ ω there exists a family {Xn

k : k ∈ ω} such that∏
Bn =

∏
{[Xn

k ] : k ∈ ω} = [
⋂
{Xn

k : k ∈ ω}].

Let Yn =
⋂

k Xn
k . Since K is a σ-ideal we have [Yn] ∈ Bn. Thus {[Yn] : n ∈ ω} is a

countable dense subset of the algebra P (κ)/I.
Finally let us observe that the Boolean algebra P (κ)/I has no atom. Namely,

assume that [X] is an atom. Then for every Y ⊆ X either [Y ] is zero or [Y ] = [X].
Since K is σ-additive we would obtain a σ-complete ultrafilter on |X|. But |X| ≤ 2ω,
which is impossible. �

We will need the following theorem from [12]:

Theorem 6.7 (Gitik, Shelah). If I is a σ-ideal on κ, then P (κ)/I is not iso-
morphic to the Cohen algebra.

Theorem 6.8. Let P be a pairwise disjoint family of meager sets such that⋃
P /∈ K. Then there exists a subfamily P ′ ⊆ P such that

⋃
P ′ is completely

non-Baire in
⋃
P.

Proof. If the hypothesis of Lemma 6.5 is satisfied, then its conclusion gives
us the conclusion of Theorem. If the hypothesis of Lemma 6.5 is not satisfied, then
by Lemma 6.6, we find a σ-ideal I on the cardinal number |P| such that P (|P|)/I
is isomorphic to the Cohen algebra, which contradicts Theorem 6.7. �
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