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Reduction of integration domain in Triebel–Lizorkin spaces

by

Artur Rutkowski (Wrocław)

Abstract. We investigate the comparability of generalized Triebel–Lizorkin and So-
bolev seminorms on uniform and nonuniform domains when the integration domain is
truncated according to the distance from the boundary. We provide numerous examples
of kernels and domains in which the comparability does and does not hold.

1. Introduction. Let Ω ⊂ Rd be a domain, d ≥ 1, and let p, q ∈ (1,∞).
Let K : Rd × Rd → (0,∞] be a homogeneous, radial kernel, i.e. K(x, y) =
k(|x−y|), satisfying

	
Rd(1∧|y|

q)K(0, y) dy <∞. We define the (generalized)
Triebel–Lizorkin space on Ω as

(1.1) Fp,q(Ω) :=
{
f ∈ Lp(Ω) :

�

Ω

( �

Ω

|f(x)−f(y)|qK(x, y) dy
)p/q

dx <∞
}
.

The space Fp,q(Ω) obviously depends on K, but we skip it in the notation
for simplicity.

Fp,q(Ω) is endowed with the norm

‖f‖Fp,q(Ω) = ‖f‖Lp(Ω) +
( �

Ω

( �

Ω

|f(x)− f(y)|qK(x, y) dy
)p/q

dx
)1/p

.

We are interested in the Gagliardo-type seminorm

(1.2)
( �

Ω

( �

Ω

|f(x)− f(y)|qK(x, y) dy
)p/q

dx
)1/p

,

which will be called the full seminorm. Let θ ∈ (0, 1] and let δ(x) = d(x, ∂Ω).
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Our main goal is to establish the comparability of the full seminorm and the
truncated seminorm

(1.3)
( �

Ω

( �

B(x,θδ(x))

|f(x)− f(y)|qK(x, y) dy
)p/q

dx
)1/p

for sufficiently regular K and Ω. Later on, such occurrence will be called a
comparability result.

Here is our first comparability result.

Theorem 1.1. Assume that Ω is a uniform domain, and that K satisfies
A1–A3 formulated in Subsection 2.1 below. Assume that 1 < q ≤ p < ∞.
Then for every 0 < θ ≤ 1,( �

Ω

( �
Ω

|f(x)− f(y)|qK(x, y) dy
)p/q

dx
)1/p

≈
( �
Ω

( �

B(x,θδ(x))

|f(x)− f(y)|qK(x, y) dy
)p/q

dx
)1/p

.

The comparability constant depends on p, q, θ, Ω, and the constants in as-
sumptions A2, A3.

This is a generalization of the result of Prats and Saksman [21, Theo-
rem 1.6] who proved it for the kernels of the form K(x, y) = |x − y|−d−qs
for s ∈ (0, 1). Recently, we were informed that this classical case can also be
resolved using the much earlier result of Seeger [24, Corollary 2].

Another result of this flavor was established by Dyda [11, (13)] and was
used to obtain Hardy inequalities for nonlocal operators. More recent results
on reduction of integration domain in fractional Sobolev spaces include those
of Bux, Kassmann, and Schulze [7] who consider certain cones with apex at x
instead of B(x, δ(x)), and Chaker and Silvestre [8].

Here we mention that, independently of our work, Kassmann and Wag-
ner [18] have also proved comparability results which extend the ones from [21],
allowing for kernels with scaling conditions for p = q = 2. However, their
overall aim and scope are different than ours.

In Theorem 1.1 we adapt the method of proof from [21] to a wide class
of kernels of the form K(x, y) = |x − y|−dφ(|x − y|)−q. The most technical
assumption A2 is tailored for the key Lemmas 2.2, 2.3, however in Subsec-
tion 4.2 we argue that it amounts to at least power-type decay of φ at 0, and
for unbounded Ω to at least power-type growth at ∞.

Notably, we go beyond the uniform domains, where the methods used
by Prats and Saksman are no longer available. Namely, we prove that the
comparability may hold for fractional Sobolev spaces in strip domains.
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Theorem 1.2. Assume that p = q = 2. Let Ω = Rk × (0, 1)l ⊆ Rk+l
with k, l > 0. For d = k + l let K(x, y) = |x − y|−d−α with α ∈ (0, 2). If
k − l − α < −1, then the seminorms (1.2) and (1.3) are comparable.

We also construct a counterexample for α < 1 and k = l = 1. This shows
an intriguing interplay between the kernel and the width of the domain.
Heuristically, it can be seen both in Theorem 1.2 and in Subsection 4.2
that the comparability holds if the stochastic process corresponding to the
jump kernel K · 1Ω×Ω and the shape of the domain Ω favor small jumps
over large jumps. We remark that the connection between the jump kernel
and the stochastic process is a delicate matter. In Section 7 we present a
short discussion of this subject and we place our comparability results in
this context.

Another object of our studies is the 0-order kernel K(x, y) ≈ |x − y|−d.
We provide examples showing that in this case the comparability does not
hold. In an attempt to repeat the proof of Theorem 1.1 we obtain an estimate
of (1.2) by a truncated seminorm with a slightly more singular kernel (see
Theorem 5.1 below).

The classical Triebel–Lizorkin spaces were introduced independently by
Lizorkin [20] and Triebel [26]. The original definition is formulated using
Paley–Littlewood theory and is widely used in analysis and applications (see
e.g. [1, 6, 15]). For various cases of p, q, d and Ω the classical definition was
proved to be equivalent to (1.1) with K(x, y) = |x−y|−d−sq, where s ∈ (0, 1)
(see [21, 25, 27]).

The definition (1.1) seems more natural if the starting point is p = q = 2,
e.g., in the case of fractional Sobolev spaces in nonlocal PDEs [9, 12, 23],
or Dirichlet forms for Hunt processes [4, 14]. It is also a suitable definition
for kernels K more general than |x − y|−d−sq, which is also of interest in
the field of nonlocal operators and stochastic processes. In this paper we
will not attempt to characterize the definition (1.1) in the spirit of classical
definitions by Triebel and Lizorkin in full generality. However, we use Fourier
methods in Section 5, where we compare spaces with kernels which are only
slightly different from each other.

As we argue further in the article, the comparability results can be used
to study a class of stochastic processes whose jumps from x are restricted
to the ball B(x, θδ(x)). The truncated seminorms may also prove useful in
peridynamics, as B(x, θδ(x)) may be understood as the variable horizon; see
e.g. [3, 19], and in particular Du and Tian [10] where horizons depending on
the distance from the boundary are studied.

The paper is organized as follows. Section 2 contains the notions, as-
sumptions, and basic facts used further in our work. Section 3 is devoted to
proving Theorem 1.1. In Section 4 we present positive and negative examples
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of kernels as regards the comparability results. Section 5 contains the anal-
ysis of 0-order kernels. In Section 6 we consider strip domains, in particular
we prove Theorem 1.2. Section 7 presents the connection of our development
with the theory of Hunt processes.

2. Preliminaries and assumptions

2.1. Assumptions on the kernel. We will consider exponents 1 <
q ≤ p <∞ and our assumptions depend on them. As usual, p′ = p

p−1 is the
Hölder conjugate of p. We also let

N(r) = inf{k ∈ N : 2kr > diam(Ω)}, r > 0.

We have N(r) =∞ for every r > 0 if and only if Ω is unbounded.
We assume that the kernelK is of the formK(x, y)= |x−y|−dφ(|x−y|)−q,

where φ : (0,∞)→ (0,∞) satisfies

A1. (1 ∧ |y|q)|y|−dφ(|y|)−q ∈ L1(Rd),
A2. φ is increasing and there exists C2 > 0 such that for t1 = min(q, p−p/q),

t2 =
1
q−1 , and for every 0 < r < diam(Ω), we have

N(r)∑
k=1

φ(r)t1

φ(2kr)t1
≤ C2,

∞∑
k=1

φ(2−kr)t2

φ(r)t2
≤ C2.

A3. There exists C3 ≥ 1 such that φ(2r) ≤ C3φ(r) for 0 < r < 3 diam(Ω).

In particular, we allow unbounded domains in which the scaling conditions
A2, A3 become global. Note that A1 is a Lévy-measure-type condition,
which ensures the finiteness of (1.2) for smooth, compactly supported f .
If q = 2 and φ(r) = rs, s ∈ (0, 1), then K corresponds to the fractional
Laplacian of order s and all the assumptions are satisfied. The conditions
A2 and A3 imply a certain scaling for K; see Subsection 4.2 for the details.
The exponents t1 and t2 in A2 stem from the five instances of usage of
Lemmas 2.2 and 2.3 in the proof of Theorem 1.1. Since φ is increasing, the
bounds in A2 hold for all larger exponents in place of t1 and t2. We note
the following consequence of A3 and the monotonicity of φ, frequently used
below: if x . y, then φ(y)−1 . φ(x)−1.

2.2. Whitney decomposition and uniform domains. For cubes
Q,R in Rd we consider l(R), the length of the side of R, and the long dis-
tance between Q and R: D(Q,R) = l(Q) + d(Q,R) + l(R), where d is the
Euclidean distance. The scaling of the cube is done from its center xQ.

We say that a family of (closed) dyadic cubes W is a Whitney decompo-
sition of Ω if for every Q,S ∈ W,

• if Q 6= S, then int(Q) ∩ int(S) = ∅;
• if Q ∩ S 6= ∅, then l(Q) ≤ 2l(S);
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• if Q ⊆ 5S, then l(S) ≤ 2l(Q);
• there is a constant CW such that CW l(Q) ≤ d(Q, ∂Ω) ≤ 4CW l(Q).

A sequence (Q,R1, . . . , Rn, S) of cubes is a chain connecting Q and S, if
every cube is a neighbor of its successor and predecessor (if any), by which
we mean that their boundaries have nonempty intersection. We will denote
the chain by [Q,S] and the sum of the side lengths of its cubes by l([Q,S]).
We let [Q,S) = [Q,S] \ {S}.

The Whitney decomposition is admissible if there exists ε > 0 such that
for every pair of cubes Q,S, there exists an ε-admissible chain [Q,S] =
(Q1, . . . , Qn), i.e.

• l([Q,S]) ≤ 1
εD(Q,S),

• there exists j0 ∈ {1, . . . , n} such that l(Qj) ≥ εD(Q,Qj) for every 1 ≤
j ≤ j0, and l(Qj) ≥ εD(Qj , S) for every j0 ≤ j ≤ n; Qj0 will be denoted
as QS and called the central cube of the chain [Q,S].

A domain which has an admissible Whitney decomposition is called a uni-
form domain. Unless otherwise stated, [Q,S] is an arbitrary (ε-)admissible
chain connecting Q and S.

The shadow of a cube is Shρ(Q) = {S ∈ W : S ⊆ B(xQ, ρl(Q))}, ρ > 0.
We also denote SHρ(Q) =

⋃
Shρ(Q). Note that we can take a sufficiently

large ρε so that

• for every ε-admissible chain [Q,S], and every P ∈ [Q,QS ], we have Q ∈
Shρε(P ),

• if [Q,S] is ε-admissible, then every cube from it belongs to Shρε(QS),
• for every Q ∈ W, 5Q ⊆ SHρε(Q).

From now on we fix ρε and write Sh(Q) = Shρε(Q) and SH(Q) = SHρε(Q).

Remark 2.1. The proofs throughout the paper involve numerous ‘.’
and ‘&’ signs. We stress that any comparability for φ stems from A2 and
A3. In particular, for fixed p, q the constants can be chosen to depend only
on the geometry of Ω (including the dimension) and on the constants in A2
and A3 wherever φ is used.

The next lemma provides some inequalities for the noncentered Hardy–
Littlewood maximal operator (denoted by M) with connection to the ker-
nel K. It is inspired by the results of [21, Section 2] and Prats and Tolsa [22,
Section 3].

Lemma 2.2. Let Ω be a domain with Whitney covering W and let φ sat-
isfy A1–A3. Assume g ∈ L1

loc(Rd) is nonnegative and 0 < r < 3 diam(Ω).
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For every η ≥ min(q, p− p/q), Q ∈ W and x ∈ Ω, we have
�

Ω∩{|x−y|>r}

g(y) dy

|x− y|dφ(|x− y|)η
.
Mg(x)

φ(r)η
,(2.1)

∑
S:D(Q,S)>r

	
S g(y) dy

D(Q,S)dφ(D(Q,S))η
.

infx∈QMg(x)

φ(r)η
,(2.2)

∑
S∈W

l(S)d

D(Q,S)dφ(D(Q,S))η
.

1

φ(l(Q))η
.(2.3)

Proof. Let us look at (2.1). For clarity, assume that Ω 3 x = 0. Since
1/φ is decreasing, we get

�

Ω∩{|y|>r}

φ(r)ηg(y) dy

|y|dφ(|y|)η
≤
N(r)∑
k=1

�

2k−1r<|y|<2kr

g(y)

|y|d
φ(r)η

φ(|y|)η
dy

.
N(r)∑
k=1

φ(r)η

φ(2k−1r)η
1

|B2kr|

�

2k−1r<|y|<2kr

g(y) dy ≤
N(r)∑
k=1

φ(r)η

φ(2k−1r)η
Mg(0).

The sum is bounded with respect to r thanks to A2.
In order to prove (2.2) note that if D(Q,S) > r, then for all x ∈ Q and

y ∈ S, we have |x − y| + r . D(Q,S). Therefore, by A3 and the fact that
φ is increasing, for every x ∈ Q we have∑
S:D(Q,S)>r

φ(r)η
	
S g(y) dy

D(Q,S)dφ(D(Q,S))η
.

�

Ω

φ(r)ηg(y) dy

(|x− y|+ r)dφ(|x− y|+ r)η

≤
�

Ω∩{|x−y|>r}

φ(r)ηg(y) dy

|x− y|dφ(|x− y|)η
+

�

|x−y|<r

φ(r)ηg(y) dy

rdφ(r)η

.
�

Ω∩{|x−y|>r}

φ(r)ηg(y) dy

|x− y|dφ(|x− y|)η
+

1

|Br|

�

|x−y|<r

g(y) dy.

The claim follows from this estimate. Since the implied constants do not
depend on x, the same holds for the infimum.

Inequality (2.3) can be obtained by taking g ≡ 1 and r = l(Q) in (2.2).
In that case D(Q,S) > r for every S, including Q.

The following lemma is an extension of [21, (2.7), (2.8)].

Lemma 2.3. Let η ≥ min(q, p− p/q), κ ≥ 1
q−1 , assume that A2 and A3

hold, and assume that W is admissible. Then

(2.4)
∑

R:P∈Shρ(R)

φ(l(R))−η . φ(l(P ))−η.
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Furthermore, if S ∈ Shρ(R), then

(2.5)
∑

P∈[S,R]

φ(l(P ))κ . φ(l(R))κ.

Proof. Since the cubes are dyadic, we may and do assume in (2.4) that
l(P ) = 2p0 for some p0 ∈ Z. Every R which satisfies P ∈ Shρ(R) must be
at a distance from P smaller than a multiple of l(R), therefore there can
only be a bounded number K of such cubes R with a given side length.
Furthermore, the cubes considered must be sufficiently large to contain P in
its shadow, that is, l(R) ≥ 2p0−l0 with l0 ∈ N0 independent of p0. We also
obviously have l(R) < diam(Ω). Thus, the sum in the first assertion can be
bounded from above as follows:∑

R:P∈Shρ(R)

φ(l(R))−η ≤ K
p0+N(2p0 )∑
k=p0−l0

φ(2k)−η

= K

p0∑
k=p0−l0

φ(2k)−η +K

p0+N(2p0 )∑
k=p0+1

φ(2k)−η.

The sums are estimated by a multiple of φ(2p0)−η using A3 and A2 respec-
tively, which proves (2.4).

As in the proof of [21, (2.8)] we may deduce that if S ∈ Shρ(R), then
there are a bounded number L of cubes P ∈ [S,R] of a given side length.
Furthermore, for every P ∈ [S,R] we have l(P ) ≤ 2r0+l0 , where l(R) = 2r0

and l0 is a fixed natural number independent of S and R. Therefore we
estimate (2.5) as follows:∑

P∈[S,R]

φ(l(P ))κ ≤ L
r0+l0∑
k=−∞

φ(2k)κ = L

r0∑
k=−∞

φ(2k)κ + L

r0+l0∑
k=r0+1

φ(2k)κ.

The first sum is bounded from above by a multiple of φ(2r0)κ because of the
second assertion of A2, and the second is handled by using A3. This ends
the proof.

3. Proof of Theorem 1.1. Obviously it suffices to show that the trun-
cated seminorm dominates the full one up to a multiplicative constant.

We will work with dual norms, namely

(3.1) sup
g≥0

‖g‖
Lp
′
(Lq
′
(Ω))
≤1

�

Ω

�

Ω

|f(x)− f(y)| |x− y|−d/qφ(|x− y|)−1g(x, y) dy dx.

From now on, g will be as in (3.1).
First let us take care of the case when x and y are close to each other.

By Hölder’s inequality, we get
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∑
Q∈W

�

Q

�

2Q

|f(x)− f(y)|g(x, y)
|x− y|d/qφ(|x− y|)

dy dx

≤
∑
Q∈W

�

Q

( �

2Q

|f(x)− f(y)|q

|x− y|dφ(|x− y|)q
dy

)1/q( �

2Q

g(x, y)q
′
dy
)1/q′

dx

≤
(∑
Q∈W

�

Q

( �

2Q

|f(x)− f(y)|q

|x− y|dφ(|x− y|)q
dy

)p/q
dx

)1/p

.

What remains is the integral over (Ω × Ω) \
⋃
Q∈W Q × 2Q =

⋃
Q∈W Q ×

(Ω\2Q) =
⋃
Q,S∈W Q×(S\2Q). We claim that in this case |x−y| ≈ D(Q,S).

Indeed, since y /∈ 2Q, we immediately get l(Q) ≤ |x − y|. Furthermore, if
l(S) ≥ l(Q) and |x − y| ≤ 2l(S), then Q ⊆ 5S, and by the definition of the
Whitney decomposition l(Q) ≥ 1

2 l(S), which proves the claim. Therefore,
by A3 we get

(3.2)
∑
Q,S

�

Q

�

S\2Q

|f(x)− f(y)|g(x, y)
|x− y|d/qφ(|x− y|)

dy dx

.
∑
Q,S

�

Q

�

S

|f(x)− f(y)|g(x, y)
D(Q,S)d/qφ(D(Q,S))

dy dx.

Let fQ = 1
|Q|

	
Q f(x) dx. By the triangle inequality, (3.2) does not exceed

(A) + (B) + (C) where

(A) =
∑
Q,S

�

Q

�

S

|f(x)− fQ|g(x, y)
D(Q,S)d/qφ(D(Q,S))

dy dx,

(B) =
∑
Q,S

�

Q

�

S

|fQ − fQS |g(x, y)
D(Q,S)d/qφ(D(Q,S))

dy dx,

(C) =
∑
Q,S

�

Q

�

S

|fQS − f(y)|g(x, y)
D(Q,S)d/qφ(D(Q,S))

dy dx.

Using Hölder’s inequality and (2.3) we can estimate (A) from above by

(3.3)∑
Q

�

Q

|f(x)− fQ|
( �

Ω

g(x, y)q
′
dy
)1/q′(∑

S

l(S)d

D(Q,S)dφ(D(Q,S))q

)1/q

dx

.
∑
Q

�

Q

|f(x)− fQ|
( �

Ω

g(x, y)q
′
dy
)1/q′ 1

φ(l(Q))
dx

.

(∑
Q

�

Q

(
|f(x)− fQ|
φ(l(Q))

)p
dx

)1/p

.

Now, by the definition of fQ, Jensen’s inequality, and A3 we get
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(A) .
(∑

Q

�

Q

( �

Q

|f(x)− f(y)|q

l(Q)dφ(l(Q))q
dy

)p/q
dx

)1/p

.

(∑
Q

�

Q

( �

Q

|f(x)− f(y)|q

|x− y|dφ(|x− y|)q
dy

)p/q
dx

)1/p

.

Let us consider (B). If we denote by N (P ) the successor of P in a chain
[Q,S), then by the triangle inequality,

(B) ≤
∑
Q,S

( �

Q

�

S

g(x, y)

D(Q,S)d/qφ(D(Q,S))
dy dx

∑
P∈[Q,QS)

|fP − fN (P )|
)
.

Recall that N (P ) ⊆ 5P , and for every P ∈ [Q,QS ], Q ∈ Sh(P ). For such P
it is also true that D(P, S) ≈ D(Q,S) (see [21, (2.6)]). Therefore, by A3 we
estimate (B) from above by a multiple of∑

P

�

P

�

5P

|f(ξ)− f(ζ)|
|P | |5P |

dξ dζ
∑

Q∈Sh(P )

�

Q

∑
S

�

S

g(x, y)

D(P, S)d/qφ(D(P, S))
dy dx.

By Hölder’s inequality and (2.3) this expression does not exceed (up to a
constant)∑

P

�

P

�

5P

|f(ξ)− f(ζ)|
|P | |5P |

dξ dζ
�

SH(P )

( �

Ω

g(x, y)q
′
dy
)1/q′ 1

φ(l(P ))
dx.(3.4)

Let G(x) =
( 	

Ω g(x, y)
q′ dy

)1/q′ . By [21, Lemma 2.7] we have
	
SH(P )G(x) dx

. infy∈P MG(y)l(P )d. Using this, Jensen’s inequality, Hölder’s inequality,
and the fact that the maximal operator is continuous in Lp′ , p′ > 1, we get

(B) .
∑
P

1

|P | |5P |
l(P )d

φ(l(P ))

�

P

�

5P

|f(ξ)− f(ζ)|MG(ζ) dξ dζ

.
∑
P

�

P

MG(ζ)

l(P )d/qφ(l(P ))

( �

5P

|f(ξ)− f(ζ)|q dξ
)1/q

dζ

.

(∑
P

�

P

( �

5P

|f(ξ)− f(ζ)|q

l(P )dφ(l(P ))q
dξ

)p/q
dζ

)1/p

.

Since |ξ − ζ| ≤ 5l(P ), (B) is estimated.
Now we will deal with (C). Since D(Q,S) ≈ l(QS), by A3 we obtain

(C) .
∑
Q,S

�

Q

�

S

|fQS − f(y)|g(x, y)
l(QS)d/qφ(l(QS))

dy dx.

Furthermore, for every admissible chain we have Q,S ∈ Sh(QS), and so for
all Q,S ∈ W,

(QS , Q, S) ∈
⋃
R∈W
{(R,P, P ′) : P, P ′ ∈ Sh(R)}.
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Consequently,

(C) .
∑
R∈W

∑
Q∈Sh(R)

∑
S∈Sh(R)

�

Q

�

S

|fR − f(y)|g(x, y)
l(R)d/qφ(l(R))

dy dx.(3.5)

By Hölder’s inequality the above expression does not exceed

∑
R∈W

(
	
SH(R) |fR − f(y)|

q dy)1/q

l(R)d/qφ(l(R))

�

SH(R)

( �

SH(R)

g(x, y)q
′
dy
)1/q′

dx

≤
∑
R∈W

(
	
SH(R) |fR − f(y)|

q dy)1/q

l(R)d/qφ(l(R))

�

SH(R)

G(x) dx.

By the last estimate of [21, Lemma 2.7], the fact that infRMG≤ 1
l(R)d

	
RMG,

and Hölder’s inequality we get

(C) .
∑
R∈W

1

l(R)d/qφ(l(R))

( �

SH(R)

|fR − f(y)|q dy
)1/q �

R

MG(ξ) dξ

≤
( ∑
R∈W

�

R

1

l(R)dp/qφ(l(R))p

( �

SH(R)

|fR − f(y)|q dy
)p/q

dξ
)1/p
‖MG‖Lp′ (Ω)

≤
( ∑
R∈W

l(R)d

l(R)dp/qφ(l(R))p

( ∑
S∈Sh(R)

�

S

|fR − f(y)|q dy
)p/q)1/p

.

Let [S,R] be an admissible chain between S and R. Then, after using the
inequality |fR − f(y)|q . |fR − fS |q + |fS − f(y)|q, we get

(C)p .
∑
R∈W

l(R)d

l(R)dp/qφ(l(R))p

( ∑
S∈Sh(R)

∣∣∣ ∑
P∈[S,R)

fP − fN (P )

∣∣∣ql(S)d)p/q
+
∑
R∈W

l(R)d

l(R)dp/qφ(l(R))p

( ∑
S∈Sh(R)

�

S

|fS − f(y)|q dy
)p/q

=(C1)+ (C2).

If we write fP − fN (P ) = (fP − fN (P ))
φ(l(P ))1/q

φ(l(P ))1/q
, then by Hölder’s inequality

we estimate (C1) from above by

∑
R∈W

l(R)d

l(R)dp/qφ(l(R))p

×
( ∑
S∈Sh(R)

∑
P∈[S,R)

|fP − fN (P )|ql(S)d

φ(l(P ))

( ∑
P∈[S,R)

φ(l(P ))q
′/q
)q/q′)p/q

.
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By Lemma 2.3,

(C1) .
∑
R∈W

l(R)d

l(R)dp/q
φ(l(R))p/q−p

( ∑
S∈Sh(R)

∑
P∈[S,R)

|fP − fN (P )|q

φ(l(P ))
l(S)d

)p/q
.

Let us take ρ2 large enough for S ∈ Sh2(P ) := Shρ2(P ) and P ∈ Sh2(R) to
hold. Then

∑
S∈Sh(R)

∑
P∈[S,R) .

∑
P∈Sh2(R)

∑
S∈Sh2(P ). We denote by UP

the sum of the neighbors of P . Since
∑

S∈Sh2(P ) l(S)
d . l(P )d, we find that,

up to a multiplicative constant, (C1) does not exceed∑
R∈W

l(R)d

l(R)dp/q
φ(l(R))p/q−p

( ∑
P∈Sh2(R)

(l(P )−d
	
UP
|fP − f(ξ)| dξ)

q

φ(l(P ))
l(P )d

)p/q
.

Since p ≥ q, we can use Hölder’s inequality with exponent p/q to estimate
this expression from above by∑
R∈W

l(R)d

l(R)dp/q
φ(l(R))p/q−p

( ∑
P∈Sh2(R)

(l(P )−d
	
UP
|fP − f(ξ)| dξ)

p

φ(l(P ))p/q
l(P )d

)

×
( ∑
P∈Sh2(R)

l(P )d
)(1−q/p)p/q

.
∑
R∈W

∑
P∈Sh2(R)

φ(l(R))p/q−p
(l(P )−d

	
UP
|fP − f(ξ)| dξ)

p
l(P )d

φ(l(P ))p/q

.
∑
P∈W

(l(P )−d
	
UP
|fP − f(ξ)| dξ)

p
l(P )d

φ(l(P ))p/q

∑
R:P∈Sh2(R)

φ(l(R))p/q−p.

Furthermore, Lemma 2.3 and Jensen’s inequality give

(C1) .
∑
P∈W

(l(P )−d
	
UP
|fP − f(ξ)| dξ)

p
l(P )d

φ(l(P ))p
(3.6)

.
∑
P∈W

�

UP

|fP − f(ξ)|p

φ(l(P ))p
dξ

≤
∑
P∈W

�

UP

( �

P

|f(ζ)− f(ξ)|q

l(P )dφ(l(P ))q
dζ

)p/q
dξ.

Since UP ⊆ 5P , we have finished estimating (C1).
Now we proceed with (C2). By Hölder’s inequality,

(C2) =
∑
R∈W

l(R)d(1−p/q)

φ(l(R))p

( ∑
S∈Sh(R)

�

S

|fS − f(ξ)|q dξ
l(S)d(1−q/p)

l(S)d(1−q/p)

)p/q
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≤
∑
R∈W

l(R)d(1−p/q)

φ(l(R))p

( ∑
S∈Sh(R)

l(S)d
)p/q−1 ∑

S∈Sh(R)

(
	
S |fS − f(ξ)|

q dξ)p/q

l(S)d(p/q−1)

.
∑
R∈W

∑
S∈Sh(R)

(
	
S |fS − f(ξ)|

q dξ)p/q

l(S)d(p/q−1)φ(l(R))p
.

By rearranging and using Lemma 2.3 we obtain

(C2) .
∑
S∈W

(
	
S |fS − f(ξ)|

q dξ)p/q

l(S)d(p/q−1)

∑
R:S∈Sh(R)

φ(l(R))−p

.
∑
S∈W

(�
S

|fS − f(ξ)|q

l(S)d
dξ

)p/q l(S)d

φ(l(S))p
.

Hence, by Jensen’s inequality,

(C2) .
∑
S∈W

l(S)d

φ(l(S))p

�

S

|fS − f(ξ)|p

l(S)d
dξ =

∑
S∈W

�

S

|fS − f(ξ)|p

φ(l(S))p
dξ.

Thus we have arrived at the same situation as in (3.6) and the proof is
finished (we may need to enlarge the constant CW , which can be done by
diminishing the cubes in the Whitney decomposition).

4. Examples of φ

4.1. Positive examples. We will present some examples of kernels
which satisfy A2 and A3.

Example 4.1. Stable scaling is more than enough for A2 to hold. Indeed,
if we assume that there exist β1, β2 ∈ (0, 1) for which we have

λβ1 .
φ(λr)

φ(r)
. λβ2 , r > 0, λ ≤ 1,

then by the first inequality we get A3 and by the second inequality the series
in A2 are geometric and independent of r.

Let us examine the constant C2 in A2 for p = q = 2, α ∈ (0, 2), and for
kernels of the form K(x, y) = (2− α)|x− y|−d−α, i.e. φ(t) = (2− α)tα/2. In
this case 1

q−1 = min(q, p− p/q) = 1 and for every r > 0 we have
∞∑
k=1

φ(r)

φ(2kr)
=
∞∑
k=1

φ(2−kr)

φ(r)
=
∞∑
k=1

1

(2α/2)k
=

1

2α/2 − 1
.

This quantity is bounded as α → 2−. Since the constant in A3 is also
bounded in this case, we conclude that the comparability in Theorem 1.1 is
uniform for α ∈ (ε, 2) for every ε > 0.
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Example 4.2. Assume that Ω is bounded. Let γ ∈ (0, 1), φ(r) =
[log(1 + r)]γ and R = diam(Ω). Note that for r > 0 we have

1 ≤ log(1 + 2r)

log(1 + r)
≤ 2.

Indeed, by looking at the derivative we see that the ratio is decreasing, the
inequalities result from its limits at 0+ and at ∞. Therefore, φ satisfies A3.
Furthermore, for r < R the lower bound can be replaced with a constant
C = C(R) > 1, hence both series in A2 become geometric and so this
condition is satisfied.

4.2. O-regularly varying functions

Definition 4.3. We say that φ is O-regularly varying at infinity if there
exist a, b ∈ R and A,B,R > 0 such that

(4.1) A

(
r2
r1

)a
≤ φ(r2)

φ(r1)
≤ B

(
r2
r1

)b
whenever R < r1 < r2. Analogously, φ is O-regularly varying at zero if (4.1)
holds for 0 < r1 < r2 < R. The supremum of a and the infimum of b for
which (4.1) is satisfied are called the lower, respectively upper, Matuszewska
indices (or lower/upper indices).

A nice short review of the O-regularly varying functions can be found in
the work of Grzywny and Kwaśnicki [16, Appendix A]; for further reading
we refer to the book by Bingham, Goldie, and Teugels [2].

Assume A2 and A3. We will show that these assumptions enforce O-
regular variation with positive lower index at 0 and, for unbounded Ω, at
infinity by using [16, Proposition A.1]. Note that by A3 for r > 0, k ∈ Z,
and z ∈ [2k−1r, 2kr] we have φ(z) ≈ φ(2kr).

We first consider the regular variation at zero using [16, Proposition
A.1(c)]. Let R = diam(Ω) and t2 = 1

q−1 . Then for every r ∈ (0, R) and
η ∈ R we have

r�

0

z−ηφ(z)t2
dz

z
≈
∞∑
k=1

φ(2−kr)t2(2−kr)−η = r−ηφ(r)t2
∞∑
k=1

φ(2−kr)t2

φ(r)t2
2kη.

By A2 the latter sum is finite for η ≤ 0, it is also bounded away from 0
because of A3. Therefore φt2 (and thus also φ) has to be O-regularly varying
at 0 with some lower index a0 > 0, that is,

φ(r2)

φ(r1)
&

(
r2
r1

)a0/t2
, 0 < r1 ≤ r2 ≤ R.

The above condition yields power-type decay of φ at 0. This could also
be obtained using the other summation condition in A2 by applying [16,
Proposition A.1(d)].
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The behavior of φ at infinity only comes into play when Ω is unbounded,
so we assume that diam(Ω) = ∞ for the remainder of this subsection. Let
r > 0, η ∈ R, and t1 = min(q, p− p/q). We have
∞�

r

z−ηφ(z)−t1
dz

z
≈
∞∑
k=1

φ(2kr)−t1(2kr)−η = r−ηφ(r)−t1
∞∑
k=1

φ(r)t1

φ(2kr)t1
2−kη.

By A2 and A3 the sum is finite and bounded away from 0 if η ≥ 0. Thus
φ−t1 is O-regularly varying at infinity with upper index −a∞ < 0, which is
equivalent to the O-regular variation with lower index a∞ for φt1 :

φ(r2)

φ(r1)
&

(
r2
r1

)a∞/t1
, R < r1 ≤ r2 <∞.

4.3. Negative examples. We will show some examples for which the
seminorms (1.2) and (1.3) are not comparable. Assume for clarity that p =
q = 2.

Example 4.4. Let Ω = (0, 1) ⊂ R and let K(x, y) ≡ 1. Consider the
function f(x) = x−γ with γ ∈ (0, 1/2). A direct calculation shows that

(4.2)
1�

0

1�

0

(f(x)− f(y))2 dy dx = 2

(
1

1− 2γ
− 1

(1− γ)2

)
.

In particular, f belongs to the corresponding Sobolev space (actually the
“Sobolev space” is L2(Ω) in this case). Let ε ∈ (0, 1). We have

(4.3)
1�

0

x+εδ(x)�

x−εδ(x)

(f(x)− f(y))2 dy dx ≤
1�

0

x(1+ε)�

x(1−ε)

(f(x)− f(y))2 dy dx

=
ε

1− γ
− (1 + ε)1−γ − (1− ε)1−γ

(1− γ)2
+

(1 + ε)1−2γ − (1− ε)1−2γ

(1− 2γ)(2− 2γ)
.

As γ → (1/2)− the ratio of the right hand sides of (4.2) and (4.3) goes to
infinity, which shows that in this case the result of Theorem 1.1 does not
hold.

Example 4.5. The preceding example gives an idea on how to show
an analogous fact for any nonzero K such that K(0, ·) ∈ L1([0, 1]). On the
restricted domain of integration we have x ≈ y. Therefore |1/xγ − 1/yγ | .
1/xγ , hence

(4.4)
1�

0

�

B(x, εδ(x))

(
1

xγ
− 1

yγ

)2

K(x, y) dy dx .
1�

0

1

x2γ

�

B(x, εδ(x))

K(x, y) dy dx.
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On the other hand, since K is nontrivial, there exists η > 0 such that for
every x ∈ (0, η) we have

	1
ηK(x, y) dy ≥ C > 0. Therefore

1�

0

1�

0

(
1

xγ
− 1

yγ

)2

K(x, y) dy dx ≥
η/2�

0

1�

η

(
1

xγ
− 1

ηγ

)2

K(x, y) dy dx(4.5)

&
η/2�

0

1

x2γ

1�

η

K(x, y) dy dx &
η/2�

0

1

x2γ
dx.

Note that (4.4) is of the form
	1
0
f(x)
x2γ

dx with f(x) bounded and limx→0+ f(x)
= 0. Let us fix an arbitrarily small ξ > 0, and let ρ be so small that f(x) ≤ ξ
for x ∈ (0, ρ). If we decompose

	1
0 =

	ρ
0 +

	1
ρ, then we see that the ratio of

(4.4) and (4.5) tends to 0 as γ → 1/2.

Remark 4.6. In previous examples the kernel was integrable. This means
that

�

Ω

�

Ω

(f(x)− f(y))2K(x, y) dy dx ≤ 2
�

Ω

�

Ω

f(x)2K(x, y) dy dx

≤ 2‖f‖2L2(Ω)‖K(0, ·)‖L1(Rd).

Therefore, even though the quadratic forms (1.2) and (1.3) are incomparable,
the Triebel–Lizorkin norm ‖ · ‖Fp,q(Ω) is comparable when we replace the full
seminorm with the truncated one.

Example 4.7. For K(x, y) = |x−y|−1 on Ω = (0, 1) the seminorms also
fail to be comparable. Consider the functions fn(x) = n ∧ 1

x . Since

1�

0

x�

0

(f(x)− f(y))2K(x, y) dy dx =
1

2

1�

0

1�

0

(f(x)− f(y))2K(x, y) dy dx,

we will assume that y < x, and work only with the integral on the left
hand side. Note that for fn, the integral over (0, 1/n)2 vanishes. We split the
integral as follows:

1�

0

x�

0

(fn(x)− fn(y))2K(x, y) dy dx

=

1�

1/n

x�

1/n

(
1

x
− 1

y

)2

K(x, y) dy dx+

1�

1/n

1/n�

0

(
n− 1

x

)2

K(x, y) dy dx = I + II.

We first compute I. Note that the integrand is equal to (x−y)2
y2x2

· 1
x−y = x−y

y2x2
.
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Hence

I =

1�

1/n

x�

1/n

x− y
y2x2

dy dx =

1�

1/n

x�

1/n

1

y2x
dy dx−

1�

1/n

x�

1/n

1

yx2
dy dx

= n log n− 2n+ log n+ 2.

For II we only show the asymptotics:

II =

1�

1/n

1/n�

0

(
n− 1

x

)2

K(x, y) dy dx

=

1�

1/n

(
n− 1

x

)2(
log x− log

(
x− 1

n

))
dx

= −n2
1�

1/n

(
1− 1

nx

)2

log

(
1− 1

nx

)
dx

= −n
1−1/n�

0

t2

(1− t)2
log t dt.

For n > 2 we split the last integral:
	1−1/n
0 =

	1/2
0 +

	1−1/n
1/2 . The first one

converges, i.e. it is a (negative) constant. In the second one t2 ≈ 1 and
log t
1−t ≈ −1, therefore

(4.6) −n
1−1/n�

0

t2

(1− t)2
log t dt ≈ n

(
1+

1−1/n�

1/2

dt

1− t

)
= n(1+ log n− log 2).

Thus we get the asymptotics
1�

0

1�

0

(fn(x)− fn(y))2K(x, y) dy dx ≈ n log n.(4.7)

Now consider the truncated case. For clarity, assume that ε = 1
2 . Then

1�

0

x�

x/2

(fn(x)− fn(y))2K(x, y) dy dx =

1�

2/n

x�

x/2

(
1

x
− 1

y

)2

K(x, y) dy dx

+

2/n�

1/n

x�

1/n

(
1

x
− 1

y

)2

K(x, y) dy dx

+

2/n�

1/n

1/n�

x/2

(
n− 1

x

)2

K(x, y) dy dx

= III + IV + V.
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We note that

III =

1�

2/n

x�

x/2

(
1

x
− 1

y

)2

K(x, y) dy dx ≤
1�

2/n

x�

x/2

1

y2x
dy dx =

n

2
− 1,

and

IV =

2/n�

1/n

x�

1/n

(
1

x
− 1

y

)2

K(x, y) dy dx ≤
2/n�

1/n

x�

1/n

1

y2x
dy dx = n log 2− n

2
.

The last integral V is estimated as follows:

V =

2/n�

1/n

1/n�

x/2

(
n− 1

x

)2

K(x, y) dy dx

=

2/n�

1/n

(
n− 1

x

)2(
log

x

2
− log

(
x− 1

n

))
dx

= − n2
2/n�

1/n

(
1− 1

nx

)2(
log

(
1− 1

nx

)
+ log 2

)
dx

≤ − n
1/2�

0

t2

(1− t)2
log t dt ≈ n.

To conclude, we get

(4.8)
1�

0

�

B(x, δ(x)/2)

(fn(x)− fn(y))2K(x, y) dy dx . n.

Since the ratio of the right hand sides of (4.7) and (4.8) diverges as n→∞,
our claim is proved.

5. The 0-order kernel

Theorem 5.1. Let Ω be a bounded uniform domain. If 1 < q ≤ p <∞,
then for every 0 < θ ≤ 1,

(5.1)
( �

Ω

( �

Ω

|f(x)− f(y)|q

|x− y|d
dy

)p/q
dx

)1/p

.

( �

Ω

( �

B(x,θδ(x))

|f(x)− f(y)|q

|x− y|d
(
|log |x− y| | ∨ 1

)q
dy

)p/q
dx

)1/p

.

The implied constant depends only on p, q, θ, Ω.
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In order to obtain this result we first prove an analogue of Lemma 2.2
for K(x, y) = |x− y|−d, i.e. φ ≡ 1. For now every integral is restricted to Ω
by default.

Lemma 5.2. Let Ω be a bounded domain with Whitney covering W. As-
sume that g ∈ L1

loc(Rd) and 0 < r < diam(Ω). Then for every Q ∈ W and
x ∈ Ω, we have

�

|y−x|>r

g(y) dy

|y − x|d
.Mg(x)(|log r| ∨ 1),(5.2)

∑
S:D(Q,S)>r

	
S g(y) dy

D(Q,S)d
. inf

x∈Q
Mg(x)(|log r| ∨ 1),(5.3)

∑
S∈W

l(S)d

D(Q,S)d
. |log l(Q)| ∨ 1.(5.4)

Proof. Let x ∈ Ω. If we take R = diam(Ω), then proceeding as in
Lemma 2.2 we get

�

|y−x|>r

g(y) dy

|y − x|d
≤
dlog2(R/r)e∑

k=1

�

2k−1r≤|y−x|<2kr

g(y) dy

|x− y|d

.Mg(x)dlog2(R/r)e .Mg(x)(|log r| ∨ 1).

As in the proof of Lemma 2.2, in order to prove (5.3) we use (5.2), and we
are left with

�

|x−y|<r

g(y) dy

(|x− y|+ r)d
.

1

|B(x, r)|

�

B(x,r)

g(y) dy ≤Mg(x)(|log r| ∨ 1).

Finally, (5.4) is obtained by taking r = l(Q) and g ≡ 1.

We will also use the following result similar to Lemma 2.3.

Lemma 5.3. Let Ω be a bounded uniform domain with admissible Whitney
decomposition W and let ρ > 0 and η > 1. Then, for every S ∈ W,

(5.5)
∑

R:S∈Shρ(R)

1 . |log l(S)| ∨ 1.

If S ∈ Shρ(R), then

(5.6)
∑

P∈[S,R)

(|log l(P )| ∨ 1)−η . (|log l(R)| ∨ 1)1−η.

Furthermore, for every P ∈ W,

(5.7)
∑

R:P∈Shρ(R)

(|log l(R)| ∨ 1)−η . 1.
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Proof. Throughout the proof we let l(S) = 2s0 , l(R) = 2r0 , l(P ) = 2p0 ,
whenever the cubes are fixed.

Arguing as in the proof of Lemma 2.3 we deduce that there are a limited
number of cubes of a given side length contributing to the sum in (5.5) and
the smallest of these cubes must have side length at least 2s0−l0 for some
fixed natural number l0 ≥ 0. Therefore, if we let 2m0 be the side length of
the largest cube in W, then∑

R:S∈Shρ(R)

1 .
m0∑

k=s0−l0

1 = m0 − s0 + l0 + 1 ≈ |log l(S)| ∨ 1.

As in Lemma 2.3, in (5.6) we have a limited number of cubes of the same
side length, and the length cannot be larger than 2r0+l0 and smaller than
2s0−l0 (l0 may be different than above, but it does not depend on S and R).
Therefore we estimate the sum in (5.6) as follows:∑

P∈[S,R)

(|log l(P )| ∨ 1)−η .
r0+l0∑

k=s0−l0

(|k| ∨ 1)−η ≤
r0+l0∑
k=−∞

(|k| ∨ 1)−η.

Since η > 1, the latter series is finite and it is of order (|r0| ∨ 1)1−η, which
proves (5.6).

In order to prove (5.7) we argue as above in terms of the numbers of the
cubes, and because of η > 1 we find that there is a constant C such that∑
R:P∈Shρ(R)

(|log l(R)| ∨ 1)−η .
m0∑

k=p0−l0

(|k| ∨ 1)−η ≤
m0∑

k=−∞
(|k| ∨ 1)−η = C.

Proof of Theorem 5.1. We proceed as in Theorem 1.1 starting with 1 in
place of φ. The integrals over Q × 2Q are trivially estimated, because the
kernel on the right hand side of (5.1) is larger than the one on the left hand
side.

In (A) and (B) the modification is quite straightforward. Lemma 2.2
is used in (3.3) and (3.4) respectively. Using Lemma 5.2 instead, we get
respectively (|log l(Q)| ∨ 1)1/q and (|log l(P )| ∨ 1)1/q. The remaining ar-
guments are conducted with (|log r| ∨ 1)−1/q in place of φ(r). Note that
(|log r| ∨ 1)−1/q ≈ (|log 2r| ∨ 1)−1/q. We remark that this yields estimates for
(A) and (B), which are better than the ones in the statement, in fact both
expressions are bounded from above by

(5.8)
( �

Ω

( �

B(x,θδ(x))

|f(x)− f(y)|q

|x− y|d
(∣∣log |x− y| ∣∣ ∨ 1

)
dy

)p/q
dx

)1/p

.

Notice the lack of exponent q in the logarithmic term. At this point we dis-
tinguish between the cases p = q and p 6= q. In the former case the test
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functions g from (3.1) are defined by the condition
	
Ω

	
Ω g(x, y)

p′ dy dx ≤ 1,
therefore (C) can be estimated exactly as (A) and (B) because we can inter-
change the roles of Q,S and x, y using Tonelli’s theorem. Thus, in this case
we in fact obtain an estimate better than postulated, as the whole expression
on the left hand side of (5.1) is approximately bounded from above by (5.8).

For the remainder of the proof we assume that p > q. The procedure for
(C) is also similar to the one in the proof of Theorem 1.1, but the computa-
tions are slightly different in terms of exponents, therefore we give the details.
There are no essential changes up to the moment of splitting into (C1) and
(C2), thus we make it our starting point. As in the proof of Theorem 1.1 we
get

(C2) =
∑
R∈W

l(R)d(1−p/q)
( ∑
S∈Sh(R)

�

S

|fS − f(ξ)|q dξ
l(S)d(1−q/p)

l(S)d(1−q/p)

)p/q
.
∑
R∈W

∑
S∈Sh(R)

l(S)d(1−p/q)
( �

S

|fS − f(ξ)|q dξ
)p/q

.

We rearrange, use (5.5) and then Jensen’s inequality twice to obtain

(C2) .
∑
S∈W

l(S)d(1−p/q)
( �

S

|fS − f(ξ)|q dξ
)p/q( ∑

R:S∈Sh(R)

1
)

.
∑
S∈W

l(S)d(|log l(S)| ∨ 1)

(
1

l(S)d

�

S

|fS − f(ξ)|q dξ
)p/q

≤
∑
S∈W

(|log l(S)| ∨ 1)
�

S

|fS − f(ξ)|p dξ

≤
∑
S∈W

�

S

( �

S

|f(ζ)− f(ξ)|q

l(S)d
(|log l(S)| ∨ 1)q/p dζ

)p/q
dξ,

and thus (C2) is estimated, since q/p < 1 < q.
In order to estimate (C1) we write |fP − fN (P )| = |fP − fN (P )|

|log l(P )|∨1
|log l(P )|∨1

and we use Hölder’s inequality with exponent q and (5.6):

(C1) ≤
∑
R∈W

l(R)d(1−p/q)
[ ∑
S∈Sh(R)

( ∑
P∈[S,R)

|fP−fN (P )|q(|log l(P )|∨1)ql(S)d
)

×
( ∑
P∈[S,R)

(|log l(P )| ∨ 1)−q
′
)q/q′]p/q

.
∑
R∈W

l(R)d(1−p/q)(|log l(R)| ∨ 1)−p/q

×
( ∑
S∈Sh(R)

∑
P∈[S,R)

|fP − fN (P )|q(|log l(P )| ∨ 1)ql(S)d
)p/q

.
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By rearranging as in the proof of Theorem 1.1 and by using Hölder’s and
Jensen’s inequalities we further estimate (C1) from above by a multiple
of∑
R∈W

l(R)d(1−p/q)(|log l(R)| ∨ 1)−p/q

×
( ∑
P∈Sh2(R)

∑
S∈Sh2(P )

( �

UP

|fP − f(ξ)|
l(P )d

dξ

)q
(|log l(P )| ∨ 1)ql(S)d

)p/q
.
∑
R∈W

l(R)d(1−p/q)(|log l(R)| ∨ 1)−p/q

×
( ∑
P∈Sh2(R)

( �

UP

|fP − f(ξ)|
l(P )d

dξ

)q
(|log l(P )| ∨ 1)ql(P )d

)p/q
≤
∑
R∈W

∑
P∈Sh2(R)

(|log l(R)| ∨ 1)−p/q(|log l(P )| ∨ 1)p
�

UP

|fP − f(ξ)|p dξ.

We rearrange once more and use (5.7) (recall that p > q) and Jensen’s
inequality to find that, up to a multiplicative constant, (C1) does not ex-
ceed∑
P∈W

(|log l(P )| ∨ 1)p
�

UP

|fP − f(ξ)|p dξ
( ∑
R:P∈Sh2(R)

(|log l(R)| ∨ 1)−p/q
)

.
∑
P∈W

(|log l(P )| ∨ 1)p
�

UP

|fP − f(ξ)|p dξ

.
∑
P∈W

�

UP

( �

P

|f(ζ)− f(ξ)|q

l(P )d
(|log l(P )| ∨ 1)q dζ

)p/q
dξ.

This finishes the proof.

Since the kernel in (5.1) is significantly larger than the one in (5.1), it is
plausible that the reverse inequality is not true. We will show the existence
of a counterexample when Ω = (0, 1), p = q = 2. For an open interval I ⊆ R
we let

F0(I) =

{
f ∈ L2(I) :

�

I

�

I

(f(x)− f(y))2

|x− y|
dy dx <∞

}
,

Flog(I) =

{
f ∈ L2(I) :

�

I

�

I

(f(x)− f(y))2

|x− y|
(
|log |x− y|| ∨ 1

)
dy dx <∞

}
.

We note that in Flog(I) the logarithm is with exponent 1. This suffices for
our present purpose, because q > 1 in Theorem 5.1.
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Theorem 5.4. For every θ ∈ (0, 1], there exists f ∈ F0(0, 1) ∩ L∞(0, 1)
such that

(5.9)
1�

0

�

B(x, θδ(x))

(f(x)− f(y))2|x− y|−1
(∣∣log |x− y|∣∣ ∨ 1

)
dy dx =∞.

Proof. Step 1. First, note that the finiteness of the left hand side of (5.9)
implies that f ∈ Flog(

n
2n+1 ,

n+1
2n+1) for a sufficiently large n ∈ N. Indeed, if

θ ≥ 1/n for some natural number n ≥ 2, then

1�

0

�

B(x, θδ(x))

(. . .) ≥
1�

0

�

B(x, δ(x)/n)

(. . .) ≥

n+1
2n+1�
n

2n+1

�

B
(
x, 1

2n+1

)(. . .)(5.10)

≥

n+1
2n+1�
n

2n+1

n+1
2n+1�
n

2n+1

(. . .).

We fix a number n for which (5.10) is satisfied.

Step 2. In order to construct a counterexample we will use the asymp-
totics of the Fourier expansions of functions in F0(I) and Flog(I). We adopt
the following convention for the Fourier coefficients of an integrable func-
tion f on an interval (a, b):

f̂(m) =
1

b− a

b�

a

f(x)e−
2πimx
b−a dx, m ∈ Z.

Below, f̂(m) will mean the Fourier coefficient on (0, 1). Let f satisfy f(x+1)
= f(x) for x ∈ R. LetK(x, y) equal |x−y|−1 (resp. |x−y|−1(|log |x−y||∨1)).
We claim that a function f ∈ L∞(0, 1) belongs to F0(0, 1) (resp. Flog(0, 1))
if and only if

1�

0

1�

0

(f(x)− f(x− h))2K(0, h) dh dx <∞.

Indeed, we have
1�

0

1�

0

(f(x)− f(y))2K(x, y) dy dx = 2

1�

0

x�

0

(f(x)− f(y))2K(x, y) dy dx

= 2

1�

0

x�

0

(f(x)− f(x− h))2K(0, h) dh dx.

Therefore, it suffices to verify that
	1
0

	1
x(f(x)− f(x−h))

2K(0, h) dh dx <∞
for bounded f . Clearly we can assume thatK(x, y)= |x−y|−1(|log |x−y||∨1).
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Then
1�

0

1�

x

(f(x)− f(x− h))2K(0, h) dh dx .
1�

0

1�

x

(− log h) ∨ 1

h
dh dx

=

1/e�

0

1/e�

x

− log h

h
dh dx+

1/e�

0

1�

1/e

1

h
dh dx+

1�

1/e

1�

x

1

h
dh dx.

All the integrals are finite, therefore the claim is proved.
By Parseval’s identity and Tonelli’s theorem we get
1�

0

K(0, h)

1�

0

(f(x)− f(x− h))2 dx dh

=

1�

0

K(0, h)
∑
m∈Z
|f̂(m)|2|1− e2πimh|2 dh

=
∑
m∈Z
|f̂(m)|2

1�

0

|1− e2πimh|2K(0, h) dh

= 2
∑
m∈Z
|f̂(m)|2

1�

0

(1− cos(2πmh))K(0, h) dh.

Now let us inspect the remaining integrals for both cases of K. For m 6= 0
we have

1�

0

1− cos(2πmh)

h
dh =

|m|�

0

1− cos(2πh)

h
dh ≈ log |m|.

In the logarithmic case
1�

0

1− cos(2πmh)

h
(− log h ∨ 1) dh =

|m|�

0

1− cos(2πh)

h

(
− log

h

|m|
∨ 1

)
dh

≈ log2 |m|.
To summarize, for bounded functions we can characterize F0(0, 1) by

(5.11)
∑

m∈Z,m 6=0

|f̂(m)|2 log |m| <∞

and Flog(0, 1) by

(5.12)
∑

m∈Z,m 6=0

|f̂(m)|2 log2 |m| <∞.

The same characterizations hold for I = ( n
2n+1 ,

n+1
2n+1) and the respective

Fourier expansion.
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Step 3. We give an example of f ∈ F0(0, 1) ∩ L∞(0, 1) for which (5.11)
is satisfied and (5.12) is not. For m = (2n + 1)2l, l = 1, 2, . . . , we put
f̂(m) = 1

l3/2
; for other m we let f̂(m) = 0. Note that f is 1

2n+1 -periodic.
Therefore the jth Fourier coefficient of f on

(
n

2n+1 ,
n+1
2n+1

)
is equal to its

(2n+ 1)jth Fourier coefficient on (0, 1). Since (f̂(m))m∈Z is summable, f is
bounded. Furthermore, l−3 log[(2n + 1)2l] = l−2 log 2 + l−3 log(2n + 1) and
l−3 log2(2l) ≈ l−1. Therefore (5.11) is satisfied and (5.12) is not. By (5.10),
the proof is finished.

6. Uniformity is not a sharp condition. In this section we examine
the strip R × (0, 1), which is a nonuniform domain. We will show that the
comparability fails for fractional Sobolev spaces with α < 1. Then we prove
that for α > 1 and slightly more general kernels the comparability holds.
Later, we present a higher-dimensional case in which the comparability may
also hold for α < 1 in nonuniform domains. For clarity of presentation, we
assume that p = q = 2.

Example 6.1. Let Ω = R × (0, 1) and let K(x, y) = |x − y|−2−α. Note
that Ω is not uniform: if we take two cubes far from each other we will fail
to find a sufficiently large central cube in any chain connecting them.

We will show that for α ∈ (0, 1) the comparability does not hold. Con-
sider a sequence of functions (fn) given by fn(x1, x2) =

(
1− |x1|n

)
∨ 0. Since

fn is constant in the second variable, for every ξ ∈ (0, 1) we have

�

Ω

�

Ω

(fn(x)− fn(y))2

|x− y|2+α
dy dx

=
�

R

�

R

(fn(x1, ξ)− fn(y1, ξ))2
1�

0

1�

0

|x− y|−2−α dy2 dx2 dy1 dx1.

Let the integral over (0, 1)×(0, 1) be called κ(x1, y1). We claim that κ(x1, y1)
is comparable with |x1 − y1|−2−α if |x1 − y1| ≥ 1 and with |x1 − y1|−1−α
otherwise. Indeed, we have |x − y| ≈ |x1 − y1| + |x2 − y2|. If |x1 − y1| ≥ 1,
then

1�

0

1�

0

|x− y|−2−α dy2 dx2 ≈ |x1 − y1|−2−α
1�

0

1�

0

dy2 dx2 = |x1 − y1|−2−α.

For |x1 − y1| < 1 note that for fixed a > 0,

a1+α
1�

0

1�

0

(a+ |x2 − y2|)−2−α dy2 dx2 ≈ a1+α
1�

0

x2�

0

(a+ x2 − y2)−2−α dy2 dx2
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=
a1+α

1 + α

1�

0

(a−1−α − (a+ x2)
−1−α) dx2

=
1

1 + α
− 1

1 + α

1�

0

(
1 +

x2
a

)−1−α
dx2.

For a = |x1 − y1| < 1 we have x2/a > x2, so the last integral is bounded
from above by C ∈ (0, 1). Thus the whole expression is approximately equal
to a positive constant, which proves our claim.

The shape of Ω grants that for every θ ∈ (0, 1] we have
�

Ω

�

B(x, θδ(x))

(fn(x)− fn(y))2

|x− y|2+α
dy dx

≤
�

R

�

B(x1, 1)

(fn(x1, ξ)− fn(y1, ξ))2κ(x1, y1) dy1 dx1.

To simplify the notation we will write fn(x1) = fn(x1, ξ) for some fixed
ξ ∈ (0, 1), x ∈ R. Since fn is Lipschitz with constant 1/n, we have

�

R

�

B(x1, 1)

(fn(x1)− fn(y1))2κ(x1, y1) dy1 dx1

≈
�

R

�

B(x1, 1)

(fn(x1)− fn(y1))2|x1 − y1|−1−α dy1 dx1

=

n+1�

−n−1

�

B(x1, 1)

(fn(x1)− fn(y1))2|x1 − y1|−1−α dy1 dx1

.
1

n2

n+1�

−n−1

�

B(x1, 1)

|x1 − y1|1−α dy1 dx1 ≈
1

n
.

Thanks to the fact that α < 1, the full seminorm is significantly greater as
n→∞:
�

R

�

R

(fn(x1)− fn(y1))2κ(x1, y1) dy1 dx1 &
0�

−n/2

−n�

−∞
|x1 − y1|−2−α dy1 dx1

=

0�

−n/2

1

1 + α

1

(x1 + n)1+α
dx1 ≥

1

1 + α

n/2

n1+α
≈ 1

nα
.

Lemma 6.2. Let Ω = R × (0, 1). If f : R2 → [0,∞) is radial, then	
Ω(1 ∨ |x|)f(x) dx ≈

	
R2 f(x) dx <∞ with a constant independent of f .

Proof. Note that for n ∈ N the area of Ω ∩ (Bn \Bn−1) is comparable to
the (1/n)th of the area of the annulus Bn\Bn−1. Therefore by the rotational
symmetry of f we get
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�

Ω

(1 ∨ |x|)f(x) dx ≈
∑
n∈N

�

Ω∩(Bn\Bn−1)

nf(x) dx

≈
∑
n∈N

�

Bn\Bn−1

f(x) dx =
�

R2

f(x) dx.

The case of α ∈ (1, 2) is included in the following result.

Theorem 6.3. Let Ω = R × (0, 1). Assume that K satisfies A1–A3
and

∑
n≥1

	
B(0,n)c K(0, x) dx <∞. Then the seminorms (1.2) and (1.3) are

comparable.

Proof. We split the domain Ω into open unit cubes Qn centered in
(n, 1/2), n ∈ Z, so that Ω ⊆

⋃
n∈ZQn. Let Ln = Int[Qn−1 ∪Qn ∪Qn+1].

Then Ln is a uniform domain, hence by Theorem 1.1,
�

Ln

�

Ln

(f(x)− f(y))2K(x, y) dy dx ≈
�

Ln

�

B(x, θδ(x))

(f(x)− f(y))2K(x, y) dy dx

with implied constant independent of n. Therefore for every 0 < θ ≤ 1,

(6.1)
�

Ω

�

B(x, θδ(x))

(f(x)− f(y))2K(x, y) dy dx

≈
∑
n∈Z

�

Ln

�

Ln

(f(x)− f(y))2K(x, y) dy dx

≈
∑
n∈Z

�

Qn

�

Ln

(f(x)− f(y))2K(x, y) dy dx,

so it suffices to show that the last expression is comparable with the integral
over Ω ×Ω. We have
�

Ω

�

Ω

(f(x)− f(y))2K(x, y) dy dx =
∑
i,j∈Z

�

Qi

�

Qj

(f(x)− f(y))2K(x, y) dy dx

≈
∑
i∈Z

∑
j+1<i

�

Qi

�

Qj

(f(x)− f(y))2K(x, y) dy dx

+
∑
i∈Z

�

Qi

�

Li

(f(x)− f(y))2K(x, y) dy dx.

Clearly it suffices to estimate the first summand. Since the cubes are far
apart, we have |x− y| ≈ |i− j| for x ∈ Qi, y ∈ Qj . Hence

(6.2)
∑
i∈Z

∑
j+1<i

�

Qi

�

Qj

(f(x)− f(y))2K(x, y) dy dx

.
∑
i∈Z

∑
j+1<i

�

Qi

�

Qj

(f(x)− fQi)2K(x, y) dy dx
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+
∑
i∈Z

∑
j+1<i

�

Qi

�

Qj

(f(y)− fQj )2K(x, y) dy dx

+
∑
i∈Z

∑
j+1<i

∑
j≤n<i

�

Qi

�

Qj

(fQn+1 − fQn)2|x− y|K(x, y) dy dx.

In this inequality we have used (a1 + · · · + am)
2 ≤ m(a21 + · · · + a2m) and

|Qi| = |Qj | = 1. For the first term we use Jensen’s inequality and the fact
that the sum over j is uniformly bounded with respect to i and x ∈ Qi:∑
i∈Z

�

Qi

(f(x)− fQi)2
∑
j+1<i

�

Qj

K(x, y) dy dx .
∑
i∈Z

�

Qi

�

Qi

(f(y)− f(x))2 dy dx.

The latter expression does not exceed (6.1). The second term can be esti-
mated in a similar way after changing the order of summation.

By Lemma 6.2 the additional assumption on K is equivalent to∑
n≥1

�

B(0,n)c∩Ω

|x|K(0, x) dx <∞.

We change the order of summation and use that fact to estimate the last
term on the right hand side of (6.2):∑
i∈Z

∑
j+1<i

∑
j≤n<i

(fQn+1 − fQn)2
�

Qi

�

Qj

|x− y|K(x, y) dy dx

=
∑
n∈Z

(fQn+1 − fQn)2
∑
i>n

∑
j+1<i
j≤n

�

Qi

�

Qj

|x− y|K(x, y) dy dx

.
∑
n∈Z

(fQn+1 − fQn)2 ≤
∑
n∈Z

�

Qn

�

Qn+1

(f(x)− f(y))2 dy dx

.
∑
n∈Z

�

Qn

�

Qn+1

(f(x)− f(y))2K(x, y) dy dx.

Proof of Theorem 1.2. The idea is similar to the above. We split Ω into
a family (Qi)i∈Zk of unit cubes and we let

Li = Int
[⋃
{Qj : B(xQi ,

√
d) ∩Qj 6= ∅}

]
.

By Theorem 1.1, for 0 < θ ≤ 1 we have
�

Ω

�

B(x, θδ(x))

(f(x)− f(y))2|x− y|−d−α dy dx

≈
∑
i∈Zk

�

Qi

�

Li

(f(x)− f(y))2|x− y|−d−α dy dx.

For i = (i1, . . . , ik), j = (j1, . . . , jk) and m ∈ N0, we write j > i + m
if j1 > i1 + m, . . . , jk > ik + m. By j > m we mean j > 0 + m, and
j ≥ i +m is defined by replacing all the inequalities by weak ones. By the
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radial symmetry of |x−y|−d−α it suffices to show that under our assumptions
on l and α we have∑
i∈Zk

�

Qi

�

Li

(f(x)− f(y))2|x− y|−d−α dy dx

&
∑
i∈Zk

�

Qi

∑
j>i+1

�

Qj

(f(x)− f(y))2|x− y|−d−α dy dx.

In order to perform a decomposition similar to (6.2) we fix a method of
communication from Qi to Qj , j > i: first we move on the coordinate i1
until we reach j1, and then we do the same with the next coordinates. The
set of indices of the cubes connecting Qi and Qj in the way presented above,
with Qi included and Qj excluded, will be denoted i→ j. Note that |i→ j|
≈ |i − j|. Let N (Q) be the successor of Q on the way from Qi to Qj . As
before, we have |i− j| ≈ |x− y| for x ∈ Qi, y ∈ Qj , therefore∑

i∈Zk

�

Qi

∑
j>i+1

�

Qj

(f(x)− f(y))2|x− y|−d−α dy dx

.
∑
i∈Zk

�

Qi

∑
j>i+1

�

Qj

(f(x)− fQi)2|x− y|−d−α dy dx

+
∑
i∈Zk

�

Qi

∑
j>i+1

�

Qj

(f(y)− fQj )2|x− y|−d−α dy dx

+
∑
i∈Zk

�

Qi

∑
j>i+1

�

Qj

∑
n∈i→j

(fQn − fN (Qn))
2|x− y|−d−α+1 dy dx.

The first two terms can be handled as in the previous theorem. In the last
one we change the order of summation and find that up to a constant it does
not exceed∑

n∈Zk

( �

Ln

|fQn − f(ξ)| dξ
)2∑

j≥n

∑
i≤n
i+1<j

�

Qi

�

Qj

|x− y|−d−α+1 dy dx.

To finish the proof we note that the double sum over i, j does not depend
on n, hence we take n = (1, . . . , 1) (for short, n = 1) and we estimate as
follows:∑
j≥1

∑
i≤1
i+1<j

�

Qi

�

Qj

|x− y|−d−α+1 dy dx ≈
∑
j≥1

�

Qj

�

B(y, |j|)c∩Ω

|x− y|−d−α+1 dx dy

=
∑
j≥1

�

Qj

∞∑
m=0

�

(B(0, 2m+1|j|)\B(0, 2m|j|))∩Ω

|x|−d−α+1 dx dy
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≈
∑
j≥1

�

Qj

∞∑
m=0

(2m|j|)k(2m|j|)−d−α+1 dy

≈
∑
j≥1
|j|k−d−α+1 =

∑
j≥1
|j|−l−α+1 ≈

∑
j∈Zk\{0}

|j|−l−α+1,

which is finite provided that k − l − α < −1.

7. Application: a new class of Markov processes. In this section we
show how our comparability results can be applied to prove the existence of
Markov stochastic processes corresponding to the truncated seminorms (1.3).
Hereafter we work with Sobolev spaces, i.e. p = q = 2.

We will discuss several cases which depend on various results concerning
Sobolev spaces and censored/reflected Markov processes, each with its own
assumptions. Therefore we refrain from formulating any theorems here, as
they would be unnecessarily complicated. Interested readers may gather the
assumptions from the references provided for each case.

We will gradually introduce some notions concerning Dirichlet forms in
italics; for details we refer to Fukushima, Oshima, and Takeda [14, Chap-
ter 1.1]. Let E be a symmetric bilinear form with domain D[E ] ⊆ L2(Ω) for
some Ω ⊆ Rd. Let E1(u, u) = E(u, u)+ ‖u‖2L2(Ω). We say that (E , D[E ]) (this
pair will also be called form below) is closed if, with respect to E1, every
Cauchy sequence has a limit in D[E ]. We say that the form is closable if it
has a closed extension. In what follows we write

Ecen(u, u) =
�

Ω

�

Ω

(u(x)− u(y))2K(x, y) dy dx,

and for θ ∈ (0, 1],

Etr(u, u) =
�

Ω

�

B(x,θδ(x))

(u(x)− u(y))2K(x, y) dy dx.

The symbol Ecen refers to the censored stable processes introduced by Bog-
dan, Burdzy, and Chen [4]. There, the kernel was the one known from the
fractional Sobolev spaces: K(x, y) = c|x − y|−d−α. Censored processes for
more general K corresponding to a class of subordinated Brownian motions
were studied by Wagner [28].

We will consider the above forms in two contexts. In the first one, we start
with the space C∞c (Ω) of smooth functions, compactly supported in Ω. Using
the arguments which follow equation (2.4) in [4, p. 93] it can be shown that
(Ecen, C∞c (Ω)) is closable and Markovian for an arbitrary Lévy kernel K (in
particular, any which satisfies A1) and set Ω. If we let

F := completion of C∞c (Ω) with respect to Ecen1 ,
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then by [14, Theorem 3.1.1], (Ecen,F) is closed and Markovian, that is, a
Dirichlet form. Furthermore, by construction, it is obvious that C∞c (D) is a
core for (Ecen,F), hence the form is regular and by [14, Theorem 7.2.1] to
every regular Dirichlet form corresponds a Hunt process. Thus, when Ecen
is comparable to Etr we obtain the existence of a Hunt process with the
Dirichlet form (Etr,F). We note that the arguments from [4, p. 93] may
be used directly with Etr because it has a similar structure. Then, indepen-
dently of comparability results, we obtain a regular Dirichlet form (Etr,F tr),
where

F tr := completion of C∞c (Ω) with respect to Etr1 .
The second approach is by considering the domain corresponding to the

active reflected form F ref := F2,2(Ω). Here the argument becomes more te-
dious, since in general C∞c (Ω) (or even Cc(Ω)) need not be dense in F ref .
However, for some K and Ω the density holds true (see e.g., [4, Corol-
lary 2.6] and [28, Corollary 2.9]). In that case we get F = F2,2(Ω) and
when the comparability holds, we in fact have F tr = F2,2(Ω). Thus, the
form (Etr, F2,2(Ω)) is a regular Dirichlet form and there exists an associ-
ated Hunt process. If the density does not hold, the technical remedy is
to change the reference set to Ω (cf. [4, Remark 2.1]). If K and Ω are
sufficiently regular, then there exist extension (and trace) operators be-
tween F2,2(Ω) and F2,2(Rd) (see e.g. Jonsson and Wallin [17, Chapter V]
or Rutkowski [23, Section 6]). Thanks to them we may show that C∞c (Ω)
is dense with respect to Ecen1 in F2,2(Ω) by using the results for the func-
tions on the whole space Rd, available for very general Lévy kernels (see,
e.g., Bogdan, Grzywny, Pietruska-Pałuba, and Rutkowski [5, Lemma A.5]
or Fiscella, Servadei, and Valdinoci [13]). Then we obtain the existence of
a process on Ω corresponding to the regular Dirichlet form (Ecen, F2,2(Ω))
and the comparability yields the existence of the process corresponding to
(Etr, F2,2(Ω)).

The last case seems more interesting in terms of applying the compara-
bility results as we build regular Dirichlet forms from the truncated form
Etr on the well-established Sobolev/Triebel–Lizorkin space F2,2(Ω), which is
then its natural domain.
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