FACULTY OF COMPUTER SCIENCE AND MANAGEMENT			
	SUBJECT CARD		
Name in English:	MATHEMATICS		
Name in Polish:	MATEMATYKA		
Main field of study (if applicable):			
Specialization (if applicable):			
Level and form of studies:	first level, full-time		
Kind of subject:	obligatory		
Subject code:	MAT001448		
Group of courses:	YES		
Kind of subject: Subject code: Group of courses:	obligatory MAT001448 YES		

	Lecture	Exercise class	Laboratory	Project	Seminar
Number of hours of organized University classes (ZZU)	30	30			
Number of hours of total student workload (CNPS)	270				
Form of crediting	exam				
For a group of courses mark the final course (X)	Х				
Number of ECTS points	9				
including number of ECTS points for practical (P) classes	4				
including number of ECTS points for direct teacher-student contact (BK) classes	7				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES High school graduation at basic level.

SUBJECT OBJECTIVES

C1. Acquiring basic knowledge related to solving equations and inequalities involving elementary functions such as polynomials and rational functions, exponential and logarithmic functions.C2. Study of the basic concepts of algebra with the purpose of solving systems of linear equations.C3. Learning the basic concepts, theorems, methods and applications of calculus of functions of one and two variables .

C4. Constructing mathematical models with the aim of applications in economy and technology.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student:

PEK_W01 possesses basic knowledge essential for solving equations and inequalities involving absolute value, polynomials, and rational, exponential and logarithmic functions

PEK_W02 possesses elementary knowledge essential for solving systems of linear equations

PEK_W03 knows basic properties of elementary functions and basics of differential calculus and integral calculus of function of one variable

PEK_W04 possesses basic knowledge of calculus of functions of two variables.

Relating to skills a student:

- PEK_U01 is capable of solving equations and inequalities involving absolute value, polynomials, and rational, exponential and logarithmic functions
- PEK_U02 is capable of solving systems of linear equations
- PEK_U03 can calculate limits of sequences and functions, can determine asymptotes of functions, can calculate derivatives of functions and interpret calculation results, can calculate and interpret indefinite and definite integrals
- PEK_U04 is capable of finding extrema of functions of two variables.

Relating to social competences a student:

PEK_K01 can, without assistance, search for necessary information in the literature

PEK_K02 understands the need for systematic and independent work on mastery of course material.

PROGRAMME CONTENT			
Form of classes - lecture	Nu of	lumber f hours	
Lec 1 Absolute value; equations and inequalities. Geometric interpretation. Equations examples.	conomy based	2	
Lec 2 Polynomials and rational functions; equations and inequalities. Graphic	al interpretation.	2	
Lec 3 Exponential and logarithmic functions. Natural logarithm. Graphs of functions. Simplifying algebraic expressions involving exponentials an logarithms. Economy based examples.	d	2	
Lec 4 Systems of linear equations. Gaussian elimination method.		4	
Lec 5 Limits of sequences, basic properties of limits. Applications of a geom and arithmetic sequence in economy.	etric sequence	2	
Lec 6 Limit of a function. Continuity. Asymptotes. Examples of applications	in economy.	2	
Lec 7 The derivative of a function; geometric and physical interpre differentiation. Chain rule. Higher order derivatives. Applications in ec	tation. Rules of onomy.	2	
Lec 8 Intervals of monotonicity of a function. Local and global extrema. Intervals of concavity. Study of graphs of functions.	rvals of convexity	4	
Lec 9 Indefinite integral, definition and basic properties. Indefinite integral of functions, including polynomials and exponential functions. Integratio substitution.	f certain classes of on by parts and by	2	
Lec 10 Definite integral; definition and basic properties. Geometric interpret between definite and indefinite integral.	ation. Connection	2	
Lec 11 Applications of integral calculus. Area of a flat region.		2	
Lec 12 Functions of two or more variables. Partial derivatives; geometric	cal interpretation.	4	
Partial derivatives of composite functions. Local extrema of functions	of two variables.		
Applications in economy.			
Total hours		30	
Form of classes – Exercise class	Nu of	lumber f hours	
Ex 1 Absolute value: solving equations and inequalities.		2	

Ex 2	Ex 2 Decomposition of a polynomial into irreducible components. Solving polynomial and			
	rational (functions) equations and inequalities.			
Ex 3	Equations and inequalities with exponential and logarithmic functions.	2		
Ex 4	Finding inverse matrices. Solving systems of linear equations using matricial methods.	4		
Ex 5	Computing proper and improper limits of sequences.	2		
Ex 6	Computing proper and improper limits of functions. Asymptotes. Verifying continuity of functions.	2		
Ex 7	Computing derivatives of various functions using rules of differentiation. Tangent line to the graph.	2		
Ex 8	Determining local and global extrema of a function. Examination of a function.	4		
Ex 9	Indefinite integral of elementary functions, including polynomials and exponentials.	2		
	Integration by parts and by substitution.			
Ex 10	Calculating definite integrals. Area of a flat region as an application of definite integral.	2		
Ex 11	Calculating partial derivatives. Finding local and global extrema of functions of two variables.	2		
Ex 12	Tests	2		
	Total hours	30		
TEACHING TOOLS USED				
N1. Lecture – traditional method				
N2. Ex	N2. Exercise class – traditional method (problems sessions and discussion)			
N3. Of	N3. Office hours			

N4. Student's individual work – preparation for the classes

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation: F – forming	Educational effect number	Way of evaluating educational effect achievement
(during semester), P – final		
(end of semester)		
F - Ex	PEK_U01-PEK_U04	oral presentations, quizzes, tests
	PEK_K01-PEK_K02	
F - Lec	PEK_W01-PEK_W04	Exam
	PEK_K02	
Р	PEK_U01-PEK_U04	Rules set by the lecturer
	PEK_W01-PEK_W04	
	PEK_K01-PEK_K02	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] F. Ayres, E. Mendelson: Calculus, 5th edition, McGraw Hill, 2009.
- [2] T. Bednarski, Elementy matematyki w naukach ekonomicznych, Oficyna Ekonomiczna, Kraków 2004.
- [3] J. Banaś, Podstawy matematyki dla ekonomistów, WNT, Warszawa 2005.
- [4] M. Zakrzewski, Markowe wykłady z matematyki. Analiza. Oficyna Wydawnicza GiS, Wrocław 2013.

- [5] T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2007.
- [6] T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2007.
- [7] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2007.
- [8] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2007.

[9] Mike Rosser, Basic mathematics for economists, Second edition, Routledge, 2003.

SECONDARY LITERATURE:

- [1] A. C. Chiang, Podstawy ekonomii matematycznej, PWE, Warszawa 1994.
- [2] M. Dobija, W. Smaga, Podstawy matematyki finansowej i ubezpieczeniowej, PWN, Warszawa-Kraków 1995.
- [3] A. Ostoja-Ostaszewski, Matematyka w ekonomii-modele i metody 1. Elementarny rachunek różniczkowy, PWN, Warszawa 1996.
- [4] A. Ostoja-Ostaszewski, Matematyka w ekonomii-modele i metody 1. Algebra elementarna, PWN, Warszawa 1996

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

dr hab. Maciej Wilczyński (Maciej.Wilczynski@pwr.edu.pl) dr hab. Jacek Serafin (serafin@pwr.edu.pl) Program Committee of the Faculty of Pure and Applied Mathematics

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR THE SUBJECT MATHEMATICS MAT001448

AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY AND SPECIALIZATION

Subject	Correlation between subject educational effect	Subject	Programme content	Teaching
educational	and educational effects defined for main field	objectives	-	tool number
effect	of study and specialization (if applicable)			
PEK_W01		C1	Lec 1-Lec 6	N1,N3,N4
PEK_W02		C2	Lec 4	N1,N3,N4
PEK_W03		C3	Lec 5- Lec 11	N1,N3,N4
PEK_W04		C3	Lec 12	N1,N2,N3
PEK_U01		C1, C4	Ex1-Ex 3	N2,N3,N4
PEK_U02		C2, C4	Ex 4	N2,N3,N4
PEK_U03		C3, C4	Ex 5 – Ex 10	N2,N3,N4
PEK_U04		C3, C4	Ex 11	N2,N3,N4
PEK_K01-		C1-C4	Lec1-Lec12,Ex1-	N1-N4
PEK_K02			Ex11	