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ABSTRACT. We study the Feynman-Kac semigroup generated by the Schrédinger operator
based on the fractional Laplacian —(—A)*/2 —q in R?, for ¢ > 0, o € (0,2). We obtain sharp
estimates of the first eigenfunction ¢ of the Schrodinger operator and conditions equivalent
to intrinsic ultracontractivity of the Feynman-Kac semigroup. For potentials ¢ such that
lim|;|— g(7) = 0o and comparable on unit balls we obtain that ¢;(z) is comparable to
(Jo|+1)~%=*(g(x)+1)~* and intrinsic ultracontractivity holds iff lim, . q(x)/ log |z = oo.
Proofs are based on uniform estimates of g-harmonic functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

The aim of this paper is to study intrinsic ultracontractivity for Feynman-Kac semigroups
generated by Schrodinger operators based on fractional Laplacians and obtain sharp estimates
of the first eigenfunction of these operators. Mainly we use probabilistic methods.

Let X; be a symmetric a-stable process in RY, d € N, a € (0,2). This process is a Markov
process with independent and homogeneous increments and the characteristic function of the
form E°(exp(i€X;)) = exp(—t]¢|*), £ € R, ¢ > 0. As usual E?, x € R? denotes the expected
value of the process starting from = € R

The Feynman-Kac semigroup (7;), ¢ > 0 for X; and a locally bounded, measuarable
potential 0 < g(x) < oo is defined as follows

t
(1) T,f(z) = E* {exp (—/ q(X,) ds> f(Xt)} , f e L*RY, 2 e R%.
0
The generator of this semigroup is the Schrodinger operator based on fractional Laplacian
—(=A)*2 —q.

In recent years Schrodinger operators based on non-local pseudodifferential operators have
been intensively studied. For example in 2008 R. Frank, E. Lieb and R. Seiringer [22] showed
Hardy-Lieb-Thirring inequality for such Schrédinger operators. This was done in connections
with the problem of the stability of relativistic matter, which problem is closely related to
non-local Schrodinger operators and has been widely studied see e.g. [23, 21, 31, 30]. In the
last 20 years there were obtained many results for Schrédinger operators based on fractional
Laplacians [11, 12, 36, 15, 16, 26, 7, 8, 14]. These results concern the conditional gauge
theorem, g-harmonic functions, intrinsic ultracontractivity, estimates of eigenfunctions. Most
of these results are obtained for Schrodinger operators on bounded domains and not on the
whole R? as in our paper.

The paper which is the most related to our paper is [27], where similar problems were
studied for the Schrédinger operator —((—A +m?*)%/2 —m) —q, where m > 0. The operator
—((=A 4+ m?*)®/2 —m) for m > 0 is an infinitesimal generator of the relativistic a-stable
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process [32]. It is worth to point out that there are huge differences between our paper and
[27]. Our paper not only concerns different Schrédinger operators —(—A)*2 — ¢ but uses
completely new methods. These methods may be described as the use of uniform estimates
of g-harmonic functions in proving intrinsic ultracontractivity. We take these methods from
M. Kwasnicki paper [28], where he used uniform boundary Harnack principle (uBHP) for
a-harmonic functions (shown in [10]) in proving intrinsic ultracontractivity. It is worth to
point out that both the proof of uBHP in [10] and our uniform estimates of g-harmonic
functions (Lemma 6, Theorem 6, Corollary 5) use a very important idea from R. Song and J.
M. Wu paper [35, proof of Lemma 3.3]. Let us also note that the results proven in our paper
are much sharper than those in [27]. In particular we obtain characterization of intrinsic
ultracontractivity and sharp estimates of the first eigenfunction (Theorem 1, Theorem 2) for
much wider class of potentials ¢ than in Theorem 1.6 in [27]. This gives e.g. a very natural
property of intrinsic ultracontractivity stated in Corollary 2. There is no such result in [27].

Now we introduce notation needed in formulating our results. The Feynman-Kac semi-
group (73) is given by the kernel u(t, x,y), that is

15w = [ ultnn)f@dy, seRY fe PR

For each t > 0 the kernel u(t,-,-) is continuous and bounded on R? x R%. For any t > 0,
z,y € R? the kernel is strictly positive. The proof of these properties is standard. It is similar
to the proofs for the classical Feynman-Kac semigroups (see e.g. [17]). For the convenience
of the reader we write the short proof of properties of u(¢, x,y) in Lemma 3.

Our first result gives a simple criterion of the compactness of operators 7;. By LpS. we
denote the class of locally bounded, measurable functions ¢ : R — R.

Lemma 1. Let g € LS., ¢ > 0. If ¢(x) — o0 as |x| — oo then for all t > 0 operators T; are
compact.

On the other hand, if there is an infinite sequence of disjoint unit balls such that ¢ is
bounded on this sequence, then 7T; are not compact (for justification of this statement see
the proof of Theorem 1.1 in [27], page 5039).

When for all ¢ > 0 operators T} are compact, then the general theory of semigroups (see
e.g. [18]) gives the following standard results. There exists an orthonormal basis in L?(R?)
consisting of eigenfunctions ¢, such that T,p, = e **p,, where 0 < A\; < Ay < A3 < ... —
o0o. All ¢, are continuous and bounded. The first eigenfunction ¢; can be assumed to be
strictly positive.

Let us assume that for all ¢ > 0 operators T; are compact. The semigroup (7}) is called
intrinsically ultracontractive (abbreviated as IU) if for each ¢t > 0 there is a constant C,; such
that

(2) u(t,z,y) < Corpr(x)e1(y), z,y € R™

The notion of IU was introduced in [19] for very general semigroups. Important examples of
such semigroups are the semigroups of elliptic operators Hy and the semigroups of Schrodinger
operators H = Hy — g both on R?, as well on domains D C R? with Dirichlet boundary
conditions. IU for such semigroups has been widely studied, see e.g. [1, 20, 18, 3]. IU has
also been studied for semigroups generated by —(—A)%2? and —(—A)*? — ¢ on bounded
domains [15, 16, 26].
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The classical result for the Feynman Kac semigroup (7;) on R? generated by H = A — ¢ is
the following fact (Corollary 4.5.5, Theorem 4.5.11 and Corollary 4.5.8 in [18], cf. also [19]).
If g(z) = |z|%, then (T}) is IU iff 3 > 2. Moreover for 3 > 2 we have cf(x) < p,(x) < Cf(z),
|z| > 1, where f(z) = |z|78/4F@=D/2 exp(—2|z|'TF/2 /(2 + ).

Now we come to formulating main results of our paper. The Feynman-Kac functional is
defined as e,(t) = exp(— fo ,t>0. For ¢ € L°, ¢ > 0 and an open set D C R4
and x € D we deﬁne

locy

vp(x) = B [ /0 v eq<t)dt1 |

where 7p = inf{t > 0: X; ¢ D} is the first exit time from D. For a regular (say bounded
Lipschitz) open set D we have vp(z) = [, Vp(z,y)dy, where Vp(z,y) is a q-Green function
of D (for a definition of Vp(x,y) see Preliminaries).

The next theorem gives sharp estimates of the first eigenfunction.

Theorem 1 Let g € L., ¢ > 0 and q(z) — o0 as |x| — oco. Then there exist constants
qu and Cq such that for all z € R? and D = B(x,1)

clt )vD( ) C’éz)vp(x)
<3> T e < #0 < T e

Additionally, vp(x) can be replaced by [g. V (z,y)dy, where V(z,y) = [;° u(t, z,y) dt.

An essential dependence between estimates of the first eigenfuncton and IU already comes
out in the classical setting. In our case a knowledge of asymptotic behaviour of the first
eigenfunction also leads us to obtain criteria for IU.

Theorem 2. Let g € LS, g > 0 and q(x) — oo as |z| — oo. The following conditions are
equivalent:
(i) The semigroup (Ty) is intrinsically ultracontractive.
(ii) For any t > 0 there is a constant C,, such that for all z,y € R* we have
u(t,z,y) < Coa(L+ |z)) 7 (L + [y~ _
(iii) For anyt > 0 there is a constant Cy such that for all v > 0, x € B(0,7)¢ we have
Eft < TB(0,r)e> eq(t)] < Cyu(l + r)ime.
(iv) For any t > 0 there is a constant Cy, such that for all x € R* we have
Tixme(r) < Coa(1+ [a])

The next corollaries follow immediately from equivalence of conditions (i),(ii) and (i), (iii).

Corollary 1. Let g € LS., ¢ > 0 and g(z) — oo as |x| — oo. If the semigroup (1) is
intrinsically ultracontractive, then each Ty is a Hilbert-Schmidt operator.

Corollary 2. Let q1,q2 € LS, ¢1 > 0 and ¢ () — oo as |x| — oo. If the semigroup

+) for potential qy is intrinsically ultracontractive and q; < qo, then (T}) for potential qo is
T, tential s intrinsically ult tracti dqg < th T, tential }
intrinsically ultracontractive.

A simple consequence of Theorem 2 is the sufficient condition for IU, which can be formu-
lated in terms of the behaviour of the potential ¢ at infinity.

Theorem 3. Let q € Ly, g > 0. If lim)y oo 1géri| = 00, then the operators T; are compact

and the semigroup (T}) is intrinsically ultracontractive.
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A neccesary condition for IU can be stated as follows.

Theorem 4. Let g € L2, ¢ > 0 and q(z) — oo as || — oo. If the semigroup (T3) is
SUPyeB(a,c) 4(Y)

intrinsically ultracontractive, then for any € € (0,1] we have limjg .o o [ =

The next theorem, arising from Theorem 1, contains more explicit estimates for the first
eigenfunction.

Theorem 5. Let ¢ € L3S, ¢ > 0 and q(x) — o0 as |x| — co. Let x € R and let M,, > 1

loc»
be the constant such that

My, (1+q(2)) < qly) < Myo(1+q(2)), y € B(z,1).
Then we have the following estimates
Oy Cy2)
(4) - < pi(z) < e

(14 q(2)) (1 + |2)+e (14 q(2))(1 + [a])

with constants Cg:) = 2_IC§I)M¢J_,;PO(TB(0,1) > 1) and CZ} = CF My, where 3V, C are
the constants from (3).

A natural conclusion from the above theorem is the following result for potentials ¢ com-
parable on unit balls.

Corollary 3. Let g € LS., ¢ > 0 and q(z) — o0 as |z| — oco. Let M, > 1 be a uniform
constant such that

(5) M1+ q(x)) < qly) < My(1+q(2)), reR%y e B(x,1).
Then, for all x € R?, we have
Cé:s) 054)

< pi(x) <

6 :
o L+ a@) (LT [ T+ @)L [

Examples of ¢ satisfying (5) are q(x) = |z|?, ¢(z) = exp(B|z|), B > 0 but not ¢(z) =
exp(]z]?). The following example shows that the assumption (5) in the Corollary 3 is essential.

Example 1. Let 2% < a1 < as < a3 < ... — o0 be a sequence such that lim,, % = 00.
1
Set r, = ~ia- Define:

n

aq for x| <y,
q(z) = { an for n—14r, <|z|<n—ry,n>1,
(%) (lz| =n4+rpp) +an  for n—rp <z <n+r,p,n>1

The potential q is a nonnegative, locally bounded and continuous function such that q(x) — oo
as |z| — oo. Howewver, the upper bound estimate in (6) does not hold.

The justification of this example will be given in the last section. The justification is based
on the estimates of the heat kernel for Dirichlet fractional Laplacian obtained by Z.-Q. Chen,
P. Kim, R. Song in [13, Theorem 1.1] and results of K. Bogdan, T. Grzywny [9, Corollary 1].

The next corollary follows from Theorem 3 and Theorem 4 and gives the condition equiv-
alent to IU for potentials comparable on unit balls.

Corollary 4. Let g € LS., g > 0 and q(x) — oo as |z| — oo. If the condition (5) is satisfied,

loc»

then the semigroup (1y) is intrinsically ultracontractive if and only if q(m)‘ — 00 as |z| — 0.

log |z
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The paper is organized as follows. In Preliminaries section we introduce notation and
collect various facts which are needed in the sequel. In Section 3 we prove uniform estimates
of g-harmonic functions: Lemma 6, Theorem 6, Corollary 5 ("uniform” means not depending
on the potential ¢). These results may be of independent interest. In section 4 we study
conditions for compactness of T;. Section 5 contains the proofs of the first eigenfunction
estimates and the proofs of main theorems concerning intrinsic ultracontractivity. Proofs of
more exact results for potentials comparable on unit balls are contained in the last section.

2. PRELIMINARIES

Let a € (0,2). For x € R? and a set U C R, the symbols |z|, |[U| denote the Euclidean
norm of z and the d-dimensional Lebesque measure of the set U. By B(x,r), x € R%, r > 0,
we denote the standard Euclidean ball. The set U¢ is a complement of an arbitrary subset U C
R? and OU denotes its boundary. For z € U let 6y (x) = dist(z,0U) = inf {|z — y| : y € OU}.
For a set U and r > 0 we also define rU = {rz : z € U}.

By C,. we always mean a strictly positive and finite constant depending on «, d and
parameter k (we always omit dependence on o and d, and do not indicate it). We adapt the
convention that constants may change their values from one use to the next. Sometimes we
will write C,gl), C’,g) when we need to refer to concrete constants in the sequel.

Now we briefly introduce the needed properties of the process X; and some facts from
its potential theory. The reader can find the wider introduction to the potential theory of
stable processes in [6, 25, 15]. X; is a standard rotation invariant a-stable Lévy process (i.e.
homogenous, with independent increments) with Lévy measure given by the density v(z) =
Alz|~4, where A = 2°7~92T((d + «)/2)|T(—a/2)|7'. By P* we denote the distribution
of the process starting from z € R?. For each fixed ¢ > 0 the transition density p(t,y — )
of the process X, starting from = € R is a continuous and bounded function on R¢ x R?
satisfying the following estimates

t
|y — z|d+e’

t
() ¢t min{ t—d/a} < p(t,y —x) < Cmin {W’t_d/a} . z,y€RY.
We denote P, f(z) = E*f(X;) = [ga f(¥)p(t,y — x)dy. Using estimates (7), we can simply
show that operators B, : L}(RY) — L>*(RY), B, : LY(RY) — LY (RY), P, : L*°(RY) — L>°(RY)
are bounded. These properties will be crucial in the proof of Lemma 3.

By pp(t, z,y) we denote the transition density of the process killed on exiting an open set
D. We have

po(t,x,y) =p(t,y —z) —E*[mp <t;p(t —mp,y — X7,)], z,y € D,t>0.

We put pp(t,z,y) = 0 whenever v ¢ D or y ¢ D. It is clear that P*(rp > t) =
poD(taxvy)dy'

A function F' : R? — R is called C™! if it has a first derivative F” and there exists a
constant ¢ such that for all z,y € R? we have |F'(x) — F'(y)| < d|z — y|. We say that a
bounded open set D C R? is a C'! domain if for each € dD there are: a C'! function
F, : R“! — R (with a constant § = §(D)), an orthonormal coordinate system CS,, and a
constant n = n(D) such that if y = (yi,...,y4) in C'S, coordinates, then

DN B(x,n)={y:ya> F.(y1,...,ya—1)} N B(z,7n).
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It was proved in [13, Theorem 1.1] that for C*! domain D, t € (0,1], x,y € D, we have

c! (1 A 55—\5?) (1 A 55—\;?) p(t,y —x) < pp(t,z,y)

gC(lAéﬁ—\;?) <1/\65—\/(§/>>p(t,y—x).

The upper bound for semibounded convex domains was shown earlier, in [34, Theorem 1.6].
The following lemma was obtained in [9, Corollary 1] as a straightforward corollary from
the above estimates of pp(t,x,y). It only will be used in the justification of Example 1.

Lemma 2. If D C R¢ is a CY' domain, then there is a constant C' such that

B e 55 (@)
(8) C <1Aﬁ)§P(TD>t)§C(1Aﬁ), te (0,1],x € D.

The Green function of an open bounded set D is defined by Gp(z,y) fooo pp(t,z,y)dt.
For nonnegative Borel function f on R* we have [, Gp(z,y)f(y)dy = E* [[;” f(X;)dt]. In
the sequel we will often use the following well known fact [24] E*(7p(,) = c(r? — |z[*)*/2,
r>0,z€ B(0,r), c=T(d/2)(2°T (1 + a/2)T((d + a)/2))~*

We now discuss properties of Feynman-Kac semigroups for Schrodinger operators based
on —(—A)*/2. We refer the reader to [7, 8, 15] for more systematic treatment of Schrodinger
operators based on —(—A)*/2,

At first we prove the existence and basic properties of the kernel u(t, z, y).

Lemma 3. Let g € Ly, and ¢ > 0. We have:
(i) Tif(x) < Pf(x) for f >0 on RY, x € RY, t > 0.

(ii) For anyt >0, T; : L°(R?) — Cy(RY).

(iii) There exists a kernel u(t,z,y) for Ty, i.e. Tif(x) = [gault,z,y)f(y)dy, t > 0,
reRY felP(RY(1<p< o). Foreach ﬁxedt > 0, u(t,z,y) is continuous and
bounded on RY x RA.

(iv) u(t,z,y) = u(t,y,z), t >0, x,y € R,

(v) 0 <u(t,z,y) <p(t,y—z),t>0, z,y € R%.

The proof of this lemma is standard and is based on [17, Section 3.2]. Similar arguments
may be found in [27, proof of Lemma 3.1]. We repeat these arguments for the convenience
of the reader.

Proof. The property (i) is clear from definition of 7; and our assumption that g > 0.

For the proof of (ii) we put ¢,(z) = Xpon (2)q(z), z € R?, n = 1,2, .... By our assumption
that ¢ € Ly, we have ¢, € J% n = 1,2,.... J“ is the Kato class, its definition may be
found e.g. in (2.5) in [8]. For any n we put T3, f(z) = E%[e,, (t)f(X;)], t > 0, x € R%. By
continuity and boundedness on R¢ x R? (for fixed ¢ > 0) of the density p(t,y — x), we get
P L®(RY) — Cy(RY). By this, formula (2.10) in [8] and the same argument as in the
proofs of [17, Propositions 3.11 and 3.12], we also obtain that T}, : L*(R%) — Cy(R?) for
any n = 1,2.... Furthermore,

Tif (2) = Ton f ()] = [E*[(eq(t) = g, (1)) S (XD < [1f ]| PX(TB0OM) < 1)-

Since for each fixed ¢t > 0 we have P*(7p(o,) < t) — 0 as n — o0, this implies (ii).
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Now we justify the properties (iii)-(v). From (i) and properties of P, we obtain that the
operators T} : L'(R?) — L*(R%) and T; : L*(RY) — L'(R?) are bounded. By this and
theorem of Dunford and Pettis [33, Theorem A.1.1, Corollary A.1.2](see also [17]), for each
t > 0, there exists a measurable on R? x R? kernel u(t, z,y), z,y € R, for T}, that is

1) = [ ult.r ) )iy, JeIMRY > 0,0 e R

By (i) and properties of P, this representation also holds for all f € LP(R%), 1 < p < oo.
The properties (i), definition of 7 and the fact that ¢ € L{® give that for each fixed ¢ > 0
and z € R? we have 0 < u(t, x,y) < p(t,y—x) for almost all y € RY. We may and do assume
that these inequalities also hold for all y € RY. This gives (v).

The standard arguments [17, pages 75-76] implies that T; is symmetric, so for each fixed
t > 0 the property (iv) holds for almost all (x,y) with respect to the Lebesque measure on
R? x R%.

Let fi.(y) = u(t,z,y). Fix t > 0, 29,90 € R%, r > 0. From (iv) (for almost all (z,y) €
R? x RY) and the semigroup property we have

/ U(t,.lfo,y)dy = / T%f%,xo(y)dy
B(yo,r)

B(yo,r)

Since f1 ., € L>*(RY), (ii) gives that Teft o € Cy(RY). Therefore we may and do assume

that for each fixed t > 0 and x € R?, u(t, z,y) is continuous as a function of y. Fixed t > 0.
For any z,y € R? we have

xT

u(t,z,y) :/Rd /Rd u(t/3,x, z)u(t/3, z,w)u(t/3, w,y)dwdz .

For any fixed z,w € R, u(t/3, z, x) — u(t/3, z,z0) and u(t/3,w, y) — u(t/3,w, yo) as & — g
and y — yo. By the dominated convergence theorem we get (iii). This also completes (iv)
for all z,y € R%, ¢t > 0. O

The potential operator for (7}) is defined as follows

Vi) = [t =e | [" a0

for a nonnegative Borel function f on R

Lemma 4. Let g€ LS., ¢ > 0. If g(x) — oo as |x| — oo, then ||V xrd|, < o0.

loc?

Proof. Since q(x) — oo as |z| — oo, there exists R > 1 such that ¢(z) > 1 for |z| > R.
Denote: A = B(0, R)°, B = B(0,2R). For any 0 < N < oo let fy(z) = E* [fON eq(t)dt] Let
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x € B. We have

fw(z) = Z[TB>N/ ]+E$[TB<N/ dt}
_ x[TB>N/ ot ]+EI{TB<N/ dt}+Ex{TB<N/ et dt]
§2E$UO ()dt}mw{fmw/ dt]
< 97, 4 EF {TB < N /TB eq@)dt] < CR+E° {TB < N /Tj:eq(t)dt} |

It is enough to estimate the last expected value. By a change of variables and the strong
Markov property, we obtain

T N ot
B < N / eq :| — :l: |:7'B < N’ efoBQ(Xs)ds/ 6_./7—3 q(XS)det:|
B

t N-7p t4r
<E° |:7'B <Ny [ e e det] E’ |:7'B <N; / ¢ Bq(Xﬂdet}

t B N t
E” lm < N; / ¢~ Jrg P aXs) det] < E* lTB < N;E%X»s { / e~ Jo CI(Xs)detH .
0

:L‘

Thus
9) fn(z) < Cr+E°fn(X;,), x € B.
Let now x € B¢. Observe that B(x,1) C A. Recalling that ¢ > 1 on A, similarly as before,

we have
fN({L'): I|:TA>N / dt:| + E* |:’7'A<N / dt:|
N
< 2E°” U e~ Jo a(Xs) det] +E” |74 < N;e (14)EXa U et dt”
0 0

T4 < N;:e TAEX™a { dt”

TA
< 2E”] / e 'dt] + E*
0

N
<24+ E° |:7'A < N;e ™BenEYa [/ eq(t)dt”
0

< 2+ sup fy(z)E[e TBOD]
reEB
Using this and (9) we get sup,cp fn(2) < Cr+2+sup,cp fn(x)E[e"™B0OD]. Since EY[e”"B0O] =
C < 1, we obtain that sup,cp fn(z) < CIRTE?. Recalling that for x € B¢ we have fy(z) <
2+ sup,cp fn(x)E[e"™B0O]] we conclude that fy is bounded everywhere and uniformly in
relation to N, which finishes the proof. 0

Under the assumptions ¢ € Lis., ¢ > 0, limjy—o ¢(z) = 00, by Lemma 4 and standard
arguments [17, Theorem 3.18], we obtain that the operator V' has a symmetric kernel given

by V(z,y) = [ u(t, z,y)dt, that is V f(z) = [q. V( (y)dy.
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The ¢-Green operator for an open set D is defined by the formula

Vof(o) =B | [ et

for a nonnegative Borel function f on D. Observe that Vpyge(x) = vp(z). Additionally, if
D’ is an open set such that D ¢ D" C R? and f is a nonnegative Borel function on D', then
by the strong Markov property, we have

Vot =& | [ et + & | [ e o]

TD

_ VDf(x) +E° |:6_ foP Q(Xs)ds/ b e_f:D q(XS)de(Xt)dt:|

™D

=Vpf(x) + E [eq(TD)EXTD { /0 ” eq(t) f(Xt)dtH
= Vpf(x) + E*leq(7p)Vpy f(X7,)], w€D.

We will use (10) to obtain the following property of ¢;. Under the assumptions ¢ € L2,
g > 0, lim, e g(z) = oo we have Ty = e My which implies ¢1(z) = M Vpi(x). Now
(10) applied for f = ¢;, D' = R? and an open set D C R? gives

(11) p1(x) = M Vi () + Eeg(p)p1(X7p)] rebD.

If D C R?is a regular (say bounded Lipschitz) open set, then similarly as before, the
operator Vp is given by symmetric kernel Vp(z,y), that is, Vp f(z) = [, Vo(z,y) f(y)dy (see
[7, page 58]). The function Vp(z,y) is called the ¢-Green function of D and since ¢ > 0, it
is clear that in our case Vp(z,y) < Gp(zx,y).

We say that Borel function f on R? is g-harmonic in an open set D C R if

(12) fz) = E* [eqg(10) f(X7,)] zeU,

for every bounded open set U with U contained in D. It is called regular g-harmonic in D if
(12) holds for U = D. It is well known [7], page 83, that every function regular ¢-harmonic
in D is g-harmonic in D. If D is unbounded, then by the usual convention we understand
that in (12) E [e,(7p) f(X,,)] = E® [Tp < 00;¢4(7p) f(X,,,)]. The Borel function f on R? is
said to be g-superharmonic in an open set D C R% if

(13) f(x) > B [eg(t0) f(Xr,)] zeU,

for every bounded open set U with U contained in D. We always understand that the
expectation in (12) and (13) is absolutely convergent.

For an open set D C R? the gauge function is defined by up(z) = E®[e,(7p)], z € D (see
e.g. [7, page 58], [15], [17]). When it is bounded in D, we say that (D, q) is gaugeable. If
D is a bounded domain with the exterior cone property, then the condition g > 0 gives that
(D, q) is gaugeable and for f > 0 we have

(14)  Eley(rp) f(Xo,)] = A /D Vo(z,y) /D

by [7, formula (17) of Section 2 and Theorem 4.10].

f(z‘) dzdy , reD

e |z —yldte
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The following estimate will be very useful in the proof of Lemma 5. It follows from [28,
Lemma 4] for v > 0; for v = 0 it is trivial. For any v > 0, v # d,

(15) / (14 ly) e — y[dy < Cylz| ™, 2] > 1,
B(z,|xz|/4)¢

where 7' = min(y + a, d + a).
The next lemma gives an important estimate which will be needed in the proofs of Theorem
1 and Theorem 2. The proof of Lemma 5 is similar to the proof of [28, Theorem 1].

Lemma 5. Let ¢ € L2, ¢ > 0 and g(x) — o0 as |z| — co. Put D = B(z,1). Let f be a

loc’
nonnegative and bounded function on R® such that for any |x| > 3 we have

f@) < CPu@) | sw g+ [ FE) el

ven(z.13)

x| \¢

Then f(x) < CéQ)UD(x)|a:|_d_°‘ for all |x| > 3.

Proof. Suppose that for some v > 0, v # d, and any x € R? we have f(z) < C,(1+ |z])77.
It is clearly true for v = 0. Then, for |z| > 3, we have

(16)  f(#) < Cypup(x) | sup  fy)+ /B (|27 — " 0de

ve(s )

Lzl
2

Hence, by (15),
(17) f(@) < Cypop(z) | sup  fly)+ |77 |, [ =3,
yEl?(w,%%)

with v = min(y + a,d + a). Observe that |z| < 2Jy| for y € B <:E, %) Hence

(18) o[ f(z) < CPup(x) [ sup |y fly) +1
ven(s2)

Denote: g(s) = sup,cpo,s) ]y|”’/ f(y). It is clear that g is nondecreasing and

(19) g(s) < cOs"

We will show that ¢(s) is bounded too.
Indeed, observe that by definition of vp we have vp(z) < min{E®mp, (inf,cp q(y))~"}.
Since limy|—.0 ¢(x) = 00, vp(x) — 0 as |x] — oo. Thus there exists R > 3 such that

Clg,l’*aUD(fL') < 9= ~1 for |z| > R. By (18), for R < |z| < s we get
2" f(x) < 277 g(2lal) + 277 < 277 g(as) 4277
On the other hand, for |z] < R we have

2P f(x) < g(R) < g(R) + 27 g (25).
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Consequently, g(2s) > 97/ +1 <g(5) — C’ﬁ) when s > R. If g(s) > Céj? then by induction,

n n(y +1) (3) 2200 — 1
(20) 9(2 S) Z 2 g(S) — C((L,y m s n = 1, 2,
Suppose now that for some s > R we have g(s) > (1 + 172;’71) (Jéf?. By (19) and (20), we
get
' n i 1 i
0(2)2 -y Z 9(2 8) 2 (2 (v +1) + m) Ofg?W) Z 2 o +1)C(§73,3, n = 1,2,

This gives a contradiction and g¢(s) is bounded. Hence
(21) J@) < Con (14 [) 7 reR’,

where 4" = min(y 4+ o, d + a).

By (21), we may write the estimates (16) with v = 7" and, consequently, we get (17) with
new, larger 7. Starting from (17), we can repeat our reasoning and we obtain the estimate
(21) again, but now with new, larger 7.

Applying this argument repeatedly, we can improve the degree of the estimate (21) in each
next step. If after some step we get v = d (see (15)), then we put v = d — 5 in the next one.
It is clear that after |24+ | steps we obtain that f(z) < Cy(1+ |z[)79"*, = € R%. By (17),

this also gives f(z) < Cyup(z)|x|~47% for |z| > 3. O

3. UNIFORM ESTIMATES OF g-HARMONIC FUNCTIONS

In this section we obtain uniform estimates of g-harmonic functions in balls. ”Uniform”
means that the constants in these estimates do not depend on the potential ¢q. In studying
IU in next sections it will be crucial that these constants do not depend on ¢. The proofs of
the results in this section adapt the ideas from [10] and [35], where the a-harmonic functions
were considered.

Lemma 6 concerns a comparability of functions up (the gauge function) and vp in the case
of balls and plays the crucial role in the proofs of Theorem 1 and Theorem 6. The proof of
this very important lemma is very similar to its a-stable equivalent, which was proved in [35]
first time. We use the same idea with cut-off function and properties of fractional Laplacian.

Lemma 6. Let g€ LS., ¢ > 0. Letr > 0 and 0 < k < 1. There exists a constants C, , such

loc?

that for any x € R? and D = B(x,r)
(22) C;,i vp(y) <up(y) < Cruvp(y), y € B(x,kr).

Proof. Fix 0 < k < 1. Let f € C?*(R%) be a function such that f =1 on B(x,sr), f =0 on
B(z,r)¢ and 0 < f < 1. By [7, Proposition 3.16], we have for z € D

Vo (—=(=2)%f —af) () = =f(2).

Here it is worth to point out that in [7] e,(t) is defined in a slightly different way than in our
paper (namely, in [7] it is defined without a minus sign).
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For z € B(x, kr) it follows that
| Volen (=22 1wy = 1) = [ Votmat )iy

>1 —/DVD(Z,y)Q(y)dy

_1_E { /0 v eq@)q(Xt)dt] .

Noting that ®(t) = ¢(X}) is locally integrable in (0, 00) almost surely, we have that e,(t) is
locally absolutely continuous in (0, 00) a.s.. Then, by the theory of Lebesgue integration (see
e.g. [17, proof of the Proposition 3.16] and [17, formula (64), section 4]),

/0 Y e (Ba(X)dt =1 — ey(mp).
Hence
up(z) = Efe, (7)) /D Vo2, y)(=2)% F(y)dy < ||(=A)E ]| vn(2)

for z € B(x, kr). Since f € C2(R?), we have ||(— fH < 00. On the other hand, by (14),
for any z € B(x,r), we have

dwdy dwdy
up(z) = Vb(z,y / —_— _/V Z,Y / T lda
D(> /D D( ) De |W — y’d+a D( ) B(z,2r)c -

dw C,
> [ Vo(z,y)d ().
> /D (2, Y) y/B(wT)C e e vp(2)

O

Lemma 7. Let g € L2, ¢ >0, 7> 0 and k € (0,1). There exists a constant C,.,, such that
if D = B(xo,r), 2o € R, and f(x) = E*[e,(1p)f(X,,)] forx € D, f >0, then

f()

W WS B(ﬁCo,/ﬂ").

2 s <Cu |

Proof. Let v = (1 4+ k)r/2. By definition, the function f is regular g-harmonic in D.
Recall that regular g-harmonicity implies g-harmonicity and the equality (12) holds for
U = B(zg,0) C D, where 6 € (v,r). Then for 6 € (y,r) and any = € B(zg,kr) we
have

f(l') =E [eq(TB(xo,(S))f<XTB(107§))] < Ex[f(XTB(xO,g))] :

To estimate the last expectation we follow the proof of [10, Lemma 6]. It is known (see
[5]) that for each x € B(x¢,d) the P* distribution of X (7p(4s)) has a density given by the
formula

52_ _ 2\ /2 1
|x x0| > |y_x0| >57

on,5('r7y) :Ca’d<|y—l’0|2—52 |l’—y’d7
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and Py, 5(z,y) = 0, when |y — x¢| < 6, Coq = ['(d/2)7~¥* Lsin(ra/2). Hence, by Fubini-
Tonelli theorem

1
1) < =

1 rAly—zo| Cad rAly—zo| 52 — |z — zal? a2 1
Ko = [ Pastepas = 225 [T (EE) e
v Y

for y € B¢(xg, 7). The inequalities

/ B[ (X, )6 = / K(e.y)f(w)dy, @€ Bloo,rr),
v B¢(zo,7)

|x—y|_|y—$0\—|$—l’0121_ﬂ7 |y—x0’+521
ly — ol |y — o gl |y — o
and
0 =[x — wo|* < 1
gives that
C rAly—o| ds
Kﬂf,y SA/ SCmy—JC —d—a‘
) S g [ =l =gy = Gy
Hence
flz) < Cn,r/ ly — o~ f(y)dy < Cmr/ ly — x|~ f(y)dy, x € Bz, kr),
B¢(zo,y) Be¢(xg,kT)
which ends the proof. O

A main and crucial tool to study the intrinsic ultracontractivity for stable semigroups
on unbounded open sets in [28] was the uniform boundary Harnack inequality for functions
a-harmonic in an arbitrary open set D C R? with a constant independent of radius of ball
including the domain of a-harmonicity (see [28, Lemma 3]. The idea of such strong version
of this inequality comes from the papers [35] and [10], where the functions harmonic with
respect to symmetric stable process were considered. In our case it suffices to prove the
weaker version of such inequality only for balls.

Theorem 6. Let ¢ € LS., ¢ > 0 and r > 0. There exists a constant C' such that if

C

D = B(xg, 1), zo € R, and f(z) = E®[e,(1p) f(X,,)] for x € D, f >0, then

(24)  Clup(a) /B( W 4 < f) §CvD(x)/ fy)

:DO:%)C |y - $0|d+a B($07%)c |y - $0|d+a ’
for x € B(xo, §).

Proof. First we prove (24) for r = 1. Let 2 € B(zo,1/2). Recall that the equality f(z) =
E*[e,(1p) f(X:,)], x € D, implies (12) for U = B(x¢,3/4) C D. We have
flz) = Ew[XTB(xO,s/z;) € B(x,7/8)% 6‘1(TB($073/4))f(XTB(xO,3/4))]
+ Ex[XTB(zO,3/4) € B($07 7/8)\3([)30, 3/4)7 eq(TB(xo,3/4))f(XTB(10,3/4))]
= [i(z) + fa(x)
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Using the representation (14) for f;, we easy show that
f(z)

C B4,/ (ﬁ)/ —————dz < fi(2)
( 0, / ) B(x077/8)c |Z — x0|d+06
f(2)
SCUBQC,34(ZL’)/ —dZ, CL’EB((II(),l/2>
(z0,3/4) Bao /8y 17 — zo|dte
For fy we have
fo(@) < up(os/m(z)  sup f(y)
f(2)
< CVB(24.3/4 (a:)/ — 1z, x € B(xo,1/2)
(r0.3/4) B(zo,7/8)¢ | — ot
by (22) and (23). Thus
_ f(2)
Clvnal@) [ e < p(a)
(r0:3/4) B(z0,7/8)¢ |2 — mo|®te
f(2)
§0v3x734(x)/ —dz, x € B(xg,1/2).
(r0:3/4) B(z0,7/8)¢ |z — @o|Tte

Clearly, Vp(zo,3/4) (%) < V(o) () and fB(xOJ/S)C %dz < fB(xo,l/Z)C %da It suffices
to show the opposite inequalities. By (10) and (22), we have

UB(J:QJ)(I) < VUB(x0,3/4) (95) + UB(x0,3/4) (95) sup UB(mo,l)(y)
yeB(I()J.)

< CVp(ag,3/4)(T) x € B(xo,1/2).

The last inequality follows by the fact that vpg,1)(y) < EYTp,,1) < C. Similarly, by (23)
we get

/ L)dmdz < / %dz +C  sup  f(y)
Bl(zo,1/2)¢ |# — o B(z0,7/8)¢ |2 — o] yEB(x0,7/8)

cof )
B(x0,7/8)¢

o — x0’d+a
This completes the proof of (24) for r = 1. Now we prove these estimates for an arbitrary

fixed r > 0. By the scaling property (see e.g. [2, page 265]), (X, P?) < (rX,—at, P7). For

an open set U we have

dz .

T =i (> 01X, ey @ Uy = 7% inf {r % > 0: X,ap ¢ 77U}
=r®inf{s>0: X, ¢r U} =r7, =111y .
We get

(25) Epac (Xt,TU,XTU) = EP% (Terat,T'aTr—lU,TXT

r_lU) )
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where Lp. denote the distribution with respect to P*. By this, we obtain

TB(zq,m)
F(@) = Bleq(Tte0m)f (Xop. )] = EF [exp (— / q()@)ds) f(XTB@O,T))]
T TB(yg,1)
=EY {exp (—/0 q(rXT—as)ds) f(rXTB(yOJ))] ,

where 3o = r'xg and y = r~'z. A simple change of variables yields that for z € B(zg,r) we
have

TB(yo,1)
) =B o (= [ 00 X)) £ X0 = B () (K )
where f,.(z) = f(rz) and ¢,.(z) = r%q(rz). It follows that for y € B(yo, 1) we have

fr(y) = EY[eq, (TB(yo,l))fr(XTB(yO,D)] .
By using the inequalities (24) for a potential ¢,, a function f. and B(yo, 1), we obtain for
y € B(yo,1/2)

TB(yg,1) t
C'EY {/ ’ exp (—/ qT(XS)ds) dt} / Lz)ﬂdz
0 0 Blyo1/2)c |2 — Yot

TB(yg,1 t
S fr(y) S CEy |i/ ( >eXp (_/ %"(XS)dS) dt:| / fT(Z)d dZ.
0 0 Blyo1/2)¢ 12 — Yol

Simple changes of variables give

(27) / e / .
B(yo,1/2)° |z — yol| ™t B(ryo,r/2)¢ |z — ryo|?te

and

(26)

(e}

TB(yg,1) t TB(yp,1) Tt
/ exp (—/ qT(XS)ds) dt = / exp (—/ q(TX,,as)ds) dt
0 0 0 0

TQTT*IB(ryO,'r) t
= r_a/ exp (—/ q(rXTas)d,S) dt .
0 0
Furthermore, by this and (25),

TB(yp,1) t T T 1B (ryg,r) t
EY [/ exp (—/ qT(XS)ds) dt} =r *“EY [/ exp (—/ q(rXTas)ds> dt}
0 0 0 0
TB(ryg.r) t
=r “E" [/ exp <—/ q(Xs)ds> dt} .
0 0

Recalling that = ry and xy = ryo, by (26) and (27), we conclude that

"Btz t /()
C~E” {/ exp (—/ q( X, ds) dt] / dz < f(x
0 0 (%) B(aor/2)e |2 — To|T f@)

TB(zg,r) t
< CE” [/ ’ exp (—/ q(Xs)d3> dt} / L@dz
0 0 Blaor/2)e |2 — To|4T®

for x € B(xg,7/2). O

Under the assumptions of Theorem 6 we obtain the following corollary. It will be very
important step in the proof of the characterization of 1U.
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Corollary 5. Let ¢ € L2, q > 0. Assume that there is R > 0 such that q(x) > 1 for
|z| > R. Then there exists a constant C such that if r > 0, xg € R%, |vg| — 7 > R and
f(x) = E*[eq(TB(zo,m)) f (X )] for x € B(zo,7), f >0 then we have

TB(zq,r)

(28) fla)<C W), v € B (q:o, f) .

B(ao,5)e Y — To| T 2

Proof. By condition |z¢| — r > R we have that ¢ > 1 on B(xo,7). The desired inequality is
a simple consequence of (24) and the following estimate

TB(xzq,r) t TB(xq,r) o0
E* {/ exp (—/ q(Xs)ds) dt} <E* [/ e_tdt} < / e tdt =1.
0 0 0 0

Lemma 8. Let g € LS., ¢ > 0. For each fizedt > 0 the function Tyxra(x) is g-superharmonic
in every open set D C R,

Proof. Fixed t > 0 and D C R?. Let U be an arbitrary open bounded subset of D such that
U C D. By a simple change of variables and the strong Markov property, we have

Tixma(w) = B [eg()] = E7leg(t + )] = B [eg(m)e o™ 70%]

O

= B ey(ru)e 01X — B [, (ro) BX e, (1)]
= E” [e,(7v)Tixre(Xr,)] reU.

4. COMPACTNESS OF T}
The following lemma gives the simple characterization of the compactness of T;.

Lemma 9. Let q € Ly,
Tixga(z) — 0 as |z — oo

Proof. Let t > 0 be fixed. We first assume that lim,o Tixra(x) = 0. Let (V4), > 0,
be the family of operators given by kernels v, (t,z,y) = u(t, z,y)XBo0 (¥), that is V., f(z) =
Jaavr(t 2, y) f(y)dy, f e L*(R?). We have

// (vr(t, 2, y)) d:cdy—/ / u(t, z,y)) da:dy</ / p(t,y — x))*dzdy
R JRA B(0,r) JRA B(0,r) JRA

< / / Dty — @)dady = C,|B(0,r)| < oc.
B(0,r) JR4

Hence V., is the Hilbert-Schmidt operator, so it is compact. Furthermore, by the Cauchy-

Schwarz inequality, we have
2
s~ Vosli= [ N[ uttns) o< [ [ a5 dyds
R? [J B(0,r)c R? J B(0,r)c

2
<|fll; sup Tixra(y)-
yeB(0,r)°

q >0 andt > 0. Then the operator T; is compact if and only if

It follows that we can aproximate 7; by compact operators V,.; in the operator norm. Thus
T, is compact.
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Now we prove the opposite implication. We follow the idea from proof of [28, Lemma
1]. Fix t > 0. Assume that 7} is compact. Suppose that for some sequence {z,} -,
such that =, — oo we have Tixgrd(x,) > M > 0. Take r > 0 large enough, so that
fB(O,%)Cp(%’ y)dy < 2. We have

t
7—;SXRd xn / / ( y Ly 2 ) U (_7 Z,?/) dZdy
Rd JRA 2

t t
/ / U (—,azn,z) U (—, z,y) dzdy < Ct/ T X B (2)dz,
Blany) JBlan,3)  \2 2 Blons) °

t t
/ / U (—,xn,z) U (—, z,y) dzdy
Blenr)e JBlen,5) \2 2
t t M
S/ U(—,.Tn,Z)/ p(—,y—Z)dde<—,
Bleng) \2 Bz \2 4

)

t t M
/ / ( xn,z>u<—,z,y>dzdy§/ p(—,z—xn>dz<—.
Rd $m2 2 B(l’n7%)c 2 4

Thus Ty xga(z,) < Cy fB(In 0 T X B(n,r) y(2)dz + &

By taking a subsequence of {a:n} if necessary, we may and do assume that B(x,,r) are pair-
wise disjoint. Hence (XB(z,r))n>0 is the orthogonal sequence of uniformly bounded functions
in L2(R?). Moreover, the Schwarz inequality gives

1 2
T XB(anr (z)) dz > ———— (/ T XB(zn.r (z)dz)
/B(zn,r)< 3 A BEn) |B(2n,7)| B(zn,r) - (o)

> 1 T ( ) UAY > M?
T Tp)— = 22— ——— -
= CFB(wn,r)| "™ 2 AC2 (B, 7)]

By compactness of T}, we can choose the subsequence of T} x (., ) convergent in L?-norm to
some function f € L?*(R%). Thus for infinitely many n

(o eras) "2 ([ @nontes)

! (/B@n,r) (F(2) = Tixse,n ()’ dZ) -

and

e~ I = Pl > g
|B(xn7 ) 7 4075 |B(l’n,7">|
This gives a contradiction. Hence Tyxgre(z) — 0 as |z| — oo. O

Proof of Lemma 1. For any € R? let us put D = B(x,1). For any t > 0 we have
Tixra(x) = E*[e,(t)] = E® [TD > tre ~Joal ds} +E* [TD <tje” Jy o s}

< e~tinfyenaly) | pe [e— JoP q(Xs)ds} < emtinfuepay) 4 O [¢mlven 1W)s0.0]
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Since g(x) — oo as |r| — oo, we obtain lim,. Tixrae(2) = 0. Now the assertion of the
lemma follows from Lemma 9. [
5. INTRINSIC ULTRACONTRACTIVITY OF T;

Proof of Theorem 1. We first prove the upper bound. For |z| < 3 and D = B(x,1), by
formula (11) and estimate (22), we have

p1(2) < llenllo (Mvp () + up(2)) < Cpup(r) < Coup()(1 + |2~
Let now |z| > 3. Putting r = %‘ and D = B(z,1), by (11) and (14), we have

pr() =M /D Vp(z,y)e1(y)dy + E*[Xr, € D0 B(x,7); ¢4(m)p1(X,)]

+E[X;, € B(z,7)% eo(mp)p1(Xop)] < Mvp(x) sup wi(y) +up(z) sup  ¢i1(y)
yeB(z,r) yEB(z,r)

iy / Vi(z,y) / o1(2)]z -yl dzdy.
D B(z,r)e

From (22) we obtain

p1(x) < Mwp(x) sup @i(y) + Cup(z) sup @1(y)
yeB(x,r) yEB(x,r)

+A/ Vp(a:,y)dy/ ©1(2)]z — x| 74 dz
D B(z,r)c

yEB(z,r)

gcqu<x>< w i)+ [ ¢1<z>\z—xr“dz).
B(z,r)e

By Lemma 5 applied to f = ¢;, we get ¢1(z) < Cyup(x)|z|~4 for |z| > 3. The upper
bound of the theorem is proved.
To show the lower bound we use (11) again. Let |z| < 2 and D = B(z,1). We have

p1(r) = Mp(2) infyepos) @1(y) = Cqup(2)(1+ |a])~*.
Let now |z| > 2 and D = B(x,1). By (11) and (14) we have

(o) 2 Bley(r)a(Xop )] = € [ Volan) [ r(a)lz =yl dady

e / V(. y) / o1(2))z — y| e dzdy > Cpop(a)|z] 4.
D B(0,1)

Clearly, vp(z) < [gaV(x,y)dy. By Lemma 4 [[Vxga|l,, < oco. Then, from (10) for
D' =R? f = xga and (22), we obtain [, V(z,y)dy < Cyup(z). O
Proof of Theorem 2. The condition (i) implies (ii) by definition of IU and the upper bound

of Theorem 1.
By (ii) we have

B[t < 70,05 ¢a(t)] < BYX, € B(0,1)"3 0,(1)

= / u<t7$ay)dy S Cq,t(]- + |x|)_d_a S Cq,t(l + r)_d_a7
B(0,r)c

for z € B(0,7)¢. Thus (iii) is proved.
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Now we prove the implication (iii) = (iv). Let R > 1 be large enough, so that ¢(z) > 1
for || > R. Let |x| > 2R, r = |z|/2 and D = B(z,r). By condition (iii) and the strong
Markov property, we have

Toculo) = B [§ < mosen (0] + B 1 2 e )]

(29) < E* [% < TB(0.r)e} €q (%)} +E* |:€q(TD)EXTD {eq (%)H
< Cua(l+|z)) "+ E [eq(TD)T;XRd (XTD)}

We need to estimate the last expectation. Put

EY [eq(TD)TLXRd(XTD)} for ye D,
fly) = ’
T% Xre (V) for y e D°.

Then
f(y) =EY [eg(1p) f(Xrp)] yeD,

and from (28) and g-superharmonicity of function T xga(y) (see Lemma 8), we obtain

fy) Tixwa(y)
@) swscf Ia<co Gy 2e Bla,r/2).
Bla,5ye [y — |7 B(a,p)e |y — 2]
Consequently, by (29) and (30), we have

Tt xra(y
(31) Tixre(r) < Cq,t(1+|w|)_d_“+0/ el >dy.

B(,5) ly — x|dte
Suppose now that for some v > 0, v # d, we have Tyxgra(z) < Cy (1 +|z])~7 for all z € RY,
t > 0. It is clear for v = 0. Then, from (31) and (15), we obtain

(32)
Tixma(r) < Coa(1+[a])™7 + qutﬁ/ (L+1y) 7y — 2|7 dy < Copry (1 +]2]) ™

B(z,5)°

for 4/ = min(y + a,d + a) and |z| > 2R. Clearly, we also have Tyxga(7) < Cys(1 + |x|)*7/
for |x| < 2R.

Now, starting from (31) again and taking v = 7 in (32), we get the estimates (32) with
new, larger 7. By using this argument recursively, we can improve the degree of estimate
Tixra(r) < Coiy(1 + \:c])_”/. If it happens that 7' = d after some step, then we take
7 = d — 5 in the next one. Applying this argument, after [2 + gj steps we obtain that
Tixrae(x) < Cpy(1+ |z|)~4 for all x € R%.

To complete the proof of the theorem we prove the implication (iv) = (i). By the inequality

t t t
u(t,x,y) = / / U (573:7 Z) u (gazvv) u (gavuy) dvdz < CtT%XRd<x)T%XRd(y) )
R? JRd

it suffices to show that Tyxge(z) < Cyup1(x) for x € R? and ¢ > 0.



20 KAMIL KALETA, TADEUSZ KULCZYCKI

Let |z| > 3, D = B(z,1) and r = ‘%' We have

() Toclo) = B [§ < mosey(0)] + 57 |1 2 (0]

We start by estimating the first expected value in (33). By the Markov property, we have

[t Tt t
E {5 < TD;eq(t)] <E 5 < Tp; ey (2)
Tt t o [t t
=E _Z_l < Tp;€q (Z) EX(4) |i1 < Tp;€q (Z):H
[t t
<E" |- <Tp;e, (—)} sup T Xga(Y) -
4 4 yeD 4

Observing that

x_ P dv o |t . i dv
ol =B /0 exp(fo”q(Xads)] =¥ [4< D’/o exp (fo”q(Xs)ds)]

t t t t t
Sl PR " =& [§<mia(5)]
exp <f04 q(Xs)ds)

by condition (iv) of Theorem 2, we obtain

t t d—a
E” |~ <7pieg |~ )| supTexma(y) < Cppvp(x) (L + |2|) 4.
4 4 yeD 4

Consequently,
t
(34) E”* {5 < Tp; eq(t)} < Cypvop(@)(1 4+ |z|)~ .

Now we find the upper bound for the second expected value in (33). The strong Markov
property, (14), (22), condition (iv) and (15) yield

E’ E > TD§6q(t)} < B [eq(TD)EXTD leq (%)H

t

~E" X € Bl [ (3)]| <8 [ € B [ (5|

<up(x) sup Typxri(y) + 0/ VD(%?J)/ Tijoxra(2)]z — y| ™ “dzdy
D B(z,r)e

yEB(z,7)

< Copvp(@)(1+ [2)="* + Cygup(7) / (1+[2))" "%z — a7z

B(z,r)c
< Cyevp()(1+[a])™0

By (33) and (34), this gives Tyxge(z) < Cyyvp(z)(1 + |z|)~4 for |z| > 3.
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For |z| <3 let D = B(z,1). By (33) and (22) we have

t 1 t/2
5 < Tp; t/_2/0 €q(8> ds

. [% <TD;t/L2/OTD 4(s) ds] + E* [ey(mp)]

< Cup(x) +up(x) < Cprvp(x) < Cyrvp(x)(1 + |x])_d_a.

t
Tixgai(z) < E + E* {5 > Tp; eq(t)]

Finally, by Theorem 1, we have Tyxra(x) < Cyr1(2). O
Proof of Theorem 3. Since lim|;_q 1gsi| = 00, we have limp;_ q(z) = oco. Hence, by

Lemma 1 each T} is compact. Moreover, we observe that
E*[t < TB(O.)e eq(t)] < exp(—=A(r)t), r € B(0,7)%r >0,

where A(r inf, 50 ¢(y). By Theorem 2 it is enough to show that exp(—A(r)t) <

C(1 + r)~@=*. But, by the assumption, there is R > 0 such that A(r) > “2log(1 + r)
for » > R. Thus the desired inequality holds for » > R. When r < R, then simply
exp(=A)) < 1= (1+ R+ B) 4 <CL+7) 0. O

Proof of Theorem /. Set r = ‘92”—| for || > 2 and D = B(z,¢) for an arbitrary 0 < € < 1. By
condition (iii) of Theorem 2 we have for |z| > 2, t > 0,

P (t < 7p)e e I < B[t < 7pseq(t)] < BUJE < Tgg e €q(t)] < Cau(1+7)7477.
Hence for 0 < ¢ <1 and |z| > 2
PY(1 < TB(0,e))€ " T¥ED 1wt < Coil| "2
It follows that
e~ SUPyep a(y)t < qut’€|x|—d—a
and, consequently,

SupyED Q(y) > a+ d C(q,t,e

logle| = ¢ tloglz|
We conclude that liminf |, % > %i for any 0 <t < 1. [

6. POTENTIALS COMPARABLE ON UNIT BALLS
Proof of Theorem 5. We fix x € R®. Let M = M, , and D = B(z,1). We have

vp(z) = B* [/OD exp (— /th(Xs)ds) dt] > B UOD exp (—M(1 + q(x)t) dt
_E"[l—exp(=M(1 +q(x))mp)] _ E"[rp 2 1;1 —exp (—M(L +g())7p)]

M1+ () S M1+ q()

)
>E" [rp 2 11— e M (M1 +q(2))) ™" 2 27" P (rp0 2 DM (1 +q(x)) 7
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F1GURE 1. Illustration of notation in the justification of Example 1 for d = 2

On the other hand,

vp(r) = E* {/OTD exp (— /th(XS)ds) dt} <E” UOTD exp (=M (1 +q(2))t) dt

M
=E"[1 —exp (-M (1 +q(x)m)| M1+ q(z)) ' < ———.
[1—exp (=M (1 +q(@)ro) | MQ +q(2) ™ < 7
The estimate (4) is a simple consequence of Theorem 1 and the above inequalities. UJ

Justification of Example 1. Let x,,y, € R? be sequences such that |z,| = n — 1+ 2r, and
Y| = n—1=3r,, |2 —yn| = 5rn. Denote: D, = B(xp,1), D, = B(zn,70), Bn = Byn, 2ry),
B!, = B(yn, ). Recall that r, = —=, a1 > 2%, Hence D, C D,. Let n be large enough, so

that B,, C D,, (see Figure 1).
By (10) and (14), we have

UDp41 (anrl) 2 B |:€q <TD/ ) UDp 1 (XTD/ >}

n+1 nt1

Z Ewn+1 |:XTD/ S Bn+1; €q <TD;L+1> ,UDn+1 <XTD/ )]

n+1 n+1

UD, . (%)
= -’4/ Vi ('rn-l—lvy)/ e dady
Doy D Bl ly — z|d+e

ZA// VD’ 1(xn+17y)/ MdZdy
D B

- o 19— 2T

Crd
>A inf v Z—nﬂ/ Vo (a ;
= zeB;_H Bn+1( )(7rn+1)d+a D:LH Dn+1< n+1,y) Yy
=C(rpe1) @ in/f VB, (2)vp (Tns1)
zeBm_1 n+1
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It is enough to estimate inf,_p g, (2) and vy ) (Z41). By (8) we obtain for z € B,
n+ n+

UBn+1(I> =E" |:/TB”+1 G_G"tdt] = B [1 _ eianTBnH} E” [TBnH > ar_LlQ 1-— efa"TBnH]
0

Qn Qn

E® [TBn+1 >a)h1— 6_1} _ CP*(rg,,, > a,y _ C 5%11@) ro/2 C

= = -1/2 = /2 )
Qn G, Qn an/ an/ \ OnGn41

-1
By the same argument, we have UD;LH(an) > Ca,,,. Hence

UDpt1 (xm—l) > C(anam—l>_1/2(Tn+1>_aar_z}r1 = C<anan+1)_1/2'

It follows that ¢(,41)vp,,, (Tn41) = 1D, (Tps1) > O/ — 00 as n — co. Due to
(3) the upper bound estimate in (6) does not hold. O
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